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Abstract: Pathogens feed on fruits and vegetables causing great food losses or at least 
reduction of their shelf life. These pathogens can cause losses of the final product or in the 
farms were the products are grown, attacking leaves, stems and trees. This review analyses 
disease detection sensors and algorithms for both the farm and postharvest management of 
fruit and vegetable quality. Mango, avocado, apple, tomato, potato, citrus and grapes were 
selected as the fruits and vegetables for study due to their world-wide consumption. 
Disease warning systems for predicting pathogens and insects on farms during fruit and 
vegetable production are commonly used for all the crops and are available where 
meteorological stations are present. It can be seen that these disease risk systems are being 
slowly replaced by remote sensing monitoring in developed countries. Satellite images 
have reduced their temporal resolution, but are expensive and must become cheaper for 
their use world-wide. In the last 30 years, a lot of research has been carried out in non-
destructive sensors for food quality. Actually, non-destructive technology has been applied 
for sorting high quality fruit which is desired by the consumer. The sensors require 
algorithms to work properly; the most used being discriminant analysis and training neural 
networks. New algorithms will be required due to the high quantity of data acquired and its 
processing, and for disease warning strategies for disease detection. 
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1. Introduction 
 

Sensors and algorithms have been developed to detect fruit and vegetable diseases. Diseases can be 
encountered during the growing stage, the postharvest storage, and at the point of retail where the 
consumer comes in contact with the product. Crop residue-borne fungi and other soil-surface-
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inhabiting microbes, including numerous plant pathogens, are encountered during the production 
stage. These microbes rely on water at or near the soil surface for survival, growth, and reproduction 
[1,2] The presence of wetness (moisture) at the soil-air interface or within the top few millimeters of 
soil is thought to be a very important factor in the development of certain plant pathogens and plant 
diseases [3,4]. Soil surface moisture, often associated with precipitation events or dew formation in the 
canopy [5], is presumed to be one of the critical environmental factors affecting the development of 
these and other residue-borne pathogens [2].  

Leaf wetness influences the initiation and development of many fungal and bacterial plant diseases. 
Bacterial diseases increase in severity in direct relationship to the length of time the leaves are wet [6]. 
Most foliar fungal disease pathogens require specific leaf surface conditions for their spores to 
germinate; favorable temperature and a film of water on the leaf surface are required [7]. The longer 
the leaf surface is wet, the greater the risk of infection and the greater the number of infections per 
leaf. Even patch diseases have been reported to be more severe with prolonged periods of leaf wetness 
[8,9]. Thus, disease management prediction requires leaf wetness assessment. Trees and orchards 
suffer damages by fungi that decay live or dead trees. It is estimated that for every 100 million board 
feet of timber harvested every year in the United States, heart decay fungi destroys about 30 million 
board feet of timber volume [10]. Bacterial wet-wood infections are present in hardwood and some 
conifers causing annual losses due to drying defects in oak lumber of about 500 million board feet 
[11]. 

The battle against postharvest decay of fruits and vegetables has been fought for decades and 
consumers who shop for quality fresh fruits and vegetables must often discard spoiled produce [12]. 
Harvested fruits have to be sorted in order to eliminate those with disease. If one rotten fruit is present 
inside a box, a high probability of infection in healthy fruits exists. Although the development of 
modern fungicides and storage technologies have greatly extended the shelf life of fruit after harvest, 
postharvest losses vary from an estimated 5 percent to more than 20 percent in the United States, and 
can be as high as 50 percent in developing countries [13]. Postharvest losses were measured in Costa 
Rica at rates of 44%, 35%, 32% and 30% for mango, avocado, melon and papaya, respectively [14]. 
Losses between 40 and 50% occurred in retail shops. Fungicide efficiency has decreased with the 
development of pathogen resistance and to public perception that pesticides are harmful to human 
health and the environment [12]. Thus, alternative methods to control postharvest diseases are urgently 
needed.  

The structure and physiological status of a plant is represented by reflectance patterns. The amount 
of reflected light depends on an amount of leaf-related factors, such as external morphology, internal 
structure, concentration, and internal distribution of biochemical components. Much remote sensing 
research has been done at plant leaf-level to ascertain the amount of stress in plants. Alteration of the 
interaction of light with the foliar medium and its effect on physiological changes has been studied 
[15]. The most common and widespread change occurs in the proportion of light-absorbing pigments 
[16], most notably chlorophylls a and b which absorb light in the 430–660 nm region. Investigators 
have observed differences in reflectance due to stress induced changes in pigment concentration in the 
green peak (525-605 nm) and along the red edge (~750 nm) [17,18] . 

Plant resistance responses to pathogen attack commonly involve the accumulation of specific 
compounds with either signaling or antimicrobial properties. The latter can include both structural 
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modifications to impair pathogen ingress and direct toxic effects on the pathogen (e.g. phytoalexins). 
Key components in plant disease resistance include salicylic acid [19] and phenolic compounds, 
including flavonoids [20]. As phenolic compounds generally have the property of emitting 
fluorescence after UV excitation [21], they provide an elegant way to reveal stress symptoms [22,23]. 
Ethylene involved in systemic plant resistance, is a plant growth regulator and its molecular simplicity 
is in contrast with its complex role in the physiology of plants [24]. An ethylene sensor based on laser 
photo-acoustic spectroscopy (LPAS) was designed [25]. LPAS technique offers an elegant and 
accurate solution to perform high sensitivity trace gas detection (typically under 1 ppb) for small 
molecules and posses a time resolution of only a few minutes. 

Disease warning systems have been developed as tools for Integrated Pest Management (IPM) to 
help growers decide when to apply a fungicide spray. The systems use data about the weather, crops, 
and/or pathogens and provide outbreak risk information. Warning systems can save fungicide sprays 
and reduce production costs. Weather data is the main component of the disease warning system, but 
depends on accuracy, costs and logistics. Weather stations usually have air temperature, radiation, 
relative humidity, rainfall, and wind speed sensors. An additional sensor important for disease 
detection is the leaf surface wetness sensor (LSW) which works both on the soil-air interface and as an 
electronic leaf sensor. The capacity to detect wetness at the soil-air interface and to estimate wetness 
duration would be used in future disease development models [26,27]. 

Airborne remote sensing technology has been employed for detecting crop disease and assessing its 
impact on productivity [28,29]. Satellite remote sensing has been used to detect some pest problems. 
QuickBird imagery was evaluated for detecting citrus orchards affected by sooty mould [30]. 
Researchers have used Landsat [31] and SPOT [32,33] satellite imagery with coarse spatial resolutions 
to detect and assess insect damage to forests. 

This review analyzes the main non-destructive technologies for fruit and vegetable disease 
detection, both in field and for postharvest management. Field diseases have to be predicted just in 
time to avoid losses while infected fruit have to be removed. It is impossible to analyze all the fruits 
and vegetables, so the most important detection techniques (mango, avocado, potato, tomato, 
cucumber, apple, orange, lemon and grapes) are mentioned together with risk-disease management and 
remote sensing. 

 
2. Non Destructive Sensing 
 

Technology measurements for quality evaluation and sorting of products such as ultrasound, X-ray, 
magnetic resonance, hyperspectral imaging and fluorescence based on physical properties are carried 
out. Research has been done on developing sensors for real time, non destructive sorting of fruits and 
vegetable maturity, defect and disease detection.  
 
2.1. Non Destructive Measurements 
 

Ultrasound technology is used in a limited range in the food industry. Ultrasonic waves can be 
transmitted, reflected, refracted or diffracted as they can interact with the material. Wave propagation 
velocity, attenuation and reflection are the important ultrasonic parameters used to evaluate the tissue 
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properties of horticultural products. Ultrasonic measurements could be used for firmness determination 
in some fruits but that a more powerful ultrasonic source is required to penetrate them [34]. Acoustic 
tomography quantified red oak decay and the tomograms could not distinguish between large internal 
cracks and heartwood decay [35]. Ultrasonic transmission through potatoes was used for hollow heart 
detection [36].  

Three X-ray techniques are used to measure the interior quality of fruits and vegetables: two- 
dimensional radiography, line scan radiography and X-ray computerized tomography (CT). The 
application of X-ray CT for quantifying physical properties of fleshy fruits requires appropriate 
correlations between the physical property and X-ray absorption have been demonstrated by many 
researchers [37-39]. X-ray techniques has been applied for detecting watercore in apple, split pit in 
peach, the presence of pits in processed olives and cherries, freeze damage in citrus, bruises, and the 
presence or feeding of insects on fruits [38,40-42]. Internal changes during peach ripening and 
different maturity can be clearly monitored through X-ray imaging [43]. X-ray spectrometry combined 
with chemometrics presents high potential to discriminate conventional from organic grown tomatoes 
and coffee beans [44]. 

In the nuclear magnetic resonance (NMR) imaging technique, water in the material is subjected to 
both static and oscillating magnetic fields at right angles to each other and areas with greater free water 
appear brighter (MRI). Disorders involving water distribution as watercore, chilling injury, bruising, 
decay and presence of insects can be visualized [45-49]. MRI has been used to show ripening [50], 
seeds or pits [51], pathogen invasion [52], bruises [53], and ripening changes due to freezing and 
chilling [48,54]. A study of red cherries correlated firmness, dry matter, soluble solid content, total 
acidity and brix acid ratios [55]. However, NMR imaging has a number of disadvantages: the high cost 
of the instruments, radiation hazard, insensitivity near the surface, variation in readings due to density 
changes, which may cause error rates up to 15%. Actually those equipments are of no practical use as 
they are expensive and difficult to operate, but have a great potential for evaluating the internal quality 
of fruits and vegetables.  

Imaging techniques have been developed as an inspection tool for quality and safety assessment of 
agricultural food products. Imaging is generally non-destructive, reliable, and rapid depending on the 
specific technique used [56]. Inspection of tomatoes, apples, peaches with respect to size, color and 
shape by machine vision is already automated in the industry [57-59]. Studies with different fruits 
indicated that the decay of chlorophyll parallels the ripening process [60,61].  

Hyperspectral imaging systems combine conventional imaging techniques and spectroscopy to 
acquire both spatial and spectral information from fruits and vegetables for determining important 
quality parameters [56,62-65]. However, the technology thus far is very slow and cannot be 
implemented in a real time detection system. Starch or soluble solids [66,67] contents can be 
determined in intact fruit (apple, citrus, kiwifruit, mango, melons, peach, potato and tomato). Oil 
content in seeds, nuts and avocado can be determined using near infrared (NIR), while differences 
between healthy and damaged tissues in visible and NIR diffuse reflectance are useful for detecting 
bruises [68,69] chilling injury [70], scald [71], decay lesions and numerous other defects.  

Fluorescence results from excitation of a molecule by a high energy light (short wavelength) and its 
subsequent instantaneous relaxation with the emission of lower energy light (longer wavelength). 
Fluorescence measurements of chlorophyll containing tissue are routinely used for investigations of 
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photosynthetic activity in plant leaves [72]. Chlorophyll content and its photosynthetic capacity are 
often related to maturity of plant organs and can detect defects or injuries. Physiological stresses that 
affect chloroplast or photosynthesis, such as temperature, salinity, moisture [73], atmospheric 
pollutants [74] and mechanical damage can also be detected [75]. Fluorescence or delayed light 
emission (DLE) imaging is used on physiological studies of chilling injury and similar stress responses 
on fruits and vegetables [76,77]. Fluorescence and DLE have been studied as possible methods for 
evaluating maturity in fruits and vegetables that lose chlorophyll as they ripen or mature [78]. 
Fluorescence detected citrus rind based on fluorescence of oils that leaked from damaged cells.  

 
2.2. Disease Warning Systems  
 

In a susceptible crop, the increase of a foliar parasite during a growing season often is determined 
primarily by weather factors, particularly duration of wetness and air temperature [79]. Consequently, 
the effects of these factors on foliar parasites have been investigated extensively [80]. In many 
experimental studies [81,82], wetness duration and temperature are manipulated under controlled 
conditions to evaluate their effects. Variation in some measure of the parasite’s response, such as rate 
of sporulation or germination, infection efficiency, latent period, lesion density, disease incidence, or 
disease severity, is assessed [83]. 

Forecasting systems are useful for diseases that are important but sporadic. Mango anthracnose 
forecast in the seasonal tropics would be most useful in dry seasons, when sporadic rain is possible, or 
during transitional periods between dry and wet seasons. Once the rainy season is established, 
calendar-based fungicide applications are the best strategy for chemical control, since conditions are 
usually favorable for disease development. The most advisable strategy would depend on the time of 
flowering of a given orchard in a given region of production [84]. 

Electronic leaf wetness sensors (LSW) determine surface water deposition by a change in sensor 
resistance or capacitance, ranging in size from crude wires to fine grid networks etched on a printed 
circuit board [85,86]. Direct LSW measurement was obtained by placing an electronic grid directly on 
the leaf [87]. These sensors have not gained widespread adoption as daily maintenance is required to 
ensure that they have good contact with the leaf surface [88]. The LSW size and shape sensor should 
be similar to that of the leaf or organ. In onions, a cylindrical shaped sensor has been found to be 
useful [89], although it was proved with a form similar to the fruit shape [88]. The wetness sensor 
represented leaf wetness reasonably well, although most sensors over-predicted canopy wetness. The 
drawback is that it gets the measurement of only a single location in the production area, which may 
not be a complete representation of the entire crop zone. 
 
2.3. Remote Sensing 
 

Remote sensing technology from ground, air, or space-based platforms is capable of providing 
detailed spectral, spatial and temporal information on vegetation health, and vigor; and it has 
significant crop yield estimation applications [90-92]. Spatial resolution is a measure of the smallest 
object detectable on the ground. The number of available image-forming pixels in the sensor itself, and 
its distance from the ground, contribute to determining the pixel-size on the ground and the overall 
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image footprint. The smallest object that can be directly detected by the sensor is 30 m (Landsat) or 20 
m (SPOT) in each dimension [93]. More recently, high resolution satellites such as IKONOS, which 
provides 4 m resolution multispectral imagery are available, but the cost of such data remains a 
significant impediment to its widespread use [94] IKONOS- panchromatic can provide 1 m resolution. 
Airborne mounted sensors such as airborne digital cameras or video systems, which are flown up to 3 
km above the ground, generally have 1- to 2-m pixels and corresponding image footprints of the order 
of 100 Ha [94].  

Radiometric resolution specifies the number of discrete spectral levels available to individual pixels 
to record the intensity of measured radiation from a target in a given waveband. In practice, however, 
n-bit systems tend to only have (n-2)-bits of information in image pixels as usually the lowest 2-bits of 
data carries the system noise, including dark-current and thermal noise [95,96]. Temporal resolution 
or, more simply, revisit-frequency is an important attribute of any sensor when used for commercial 
monitoring or management purposes. Typical commercial satellites like the American Landsat and 
French SPOT satellites have revisit intervals of 16 and 26 days, respectively. IKONOS revisit timing 
ranges from 1 to 3 days. Aircraft mounted sensors, on the other hand, are more amenable to user-
defined visitations, and have the added advantage of being able to operate under a high-cloud base.  

The spectral resolution is the number of wavebands of data that can be simultaneously recorded at 
each pixel. The amount of sunlight reflected off a target is described in terms of the target's reflectance 
profile. All photosynthesizing plants do not reflect much light in blue or red wavelengths because 
chlorophylls (and related pigments) absorb much of the incident energy in these wavelengths for the 
process of photosynthesis [97]. In the near infrared wavelengths (wavelengths greater than about 700 
nm) photosynthesizing plants reflect large proportions of the incident sunlight (in excess of 65%). 
These wavelengths, to which the human eye is insensitive, can be detected by appropriate instruments. 
The amount of sunlight reflected in these wavelengths is very sensitive to leaf cell structure and this is 
influenced by water content [98].  

A consequence of the upper limit on the amount of data that can be processed and stored in real-
time by any remote sensing system is the compromise between spatial, radiometric and spectral 
resolution. In general, this equates to a trade-off between spatial and spectral resolution. The terms 
multispectral and hyperspectral are often interchanged, although they usually define instruments 
according to the number of wavebands of information that is recorded for each image pixel [97]. The 
more general adjective ‘multispectral’ is used to describe instruments that record information in only a 
small number of wavebands; typically 2-10. Hyperspectral instruments record information in a large 
number of wavebands, typically greater than 10. 

Spectral vegetation indices reduce the multiple-waveband data at each image pixel to a single 
numerical value (index), and many have been developed to highlight changes in vegetation condition 
[99,100]. Vegetation indices utilize the significant differences in reflectance of vegetation at green, red 
and near infrared wavelengths.  

Predicting the probability of biological invasion and probable invaders has been a long-standing 
goal of ecologists. A major challenge of invasion biology lies in the development of pre and post 
predictive models and understanding of the invasion processes. Introduced species vary in their 
invasive behavior in different regions [101]. Predicting the ecological behavior of a species in a new 
environment may be effectively impossible [102]. Estimating animal species numbers, population size 
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and related features is rather difficult in comparison to plants. However, indicated clear relationships 
between the characteristics of releases and the species involved [103], and the successful establishment 
and spread of invaders. A modified change vector analysis (CVA) was developed using normalized 
multi-date data from Landsat TM and examined Adelges piceae infestation. 

Although high spectral and spatial resolution provide the ability to classify canopy species, precise 
classification of a species is still difficult. Several such studies of the spectral properties of invasive 
species have been derived, mostly from low altitude aerial photography or field spectrographs, but 
minimum information will reach the remote observer. Other factors like atmospheric noise, humidity, 
shadow, contribution from soil add to the confusion and the low chance of discrimination of separate 
species [105]. Furthermore, variation in orientation of leaves, age of a leaf, variation in leaf area index, 
different slopes of the locations where the individuals are found could make the spectral signature of a 
species difficult to define. Also, all leaves are not exposed to the same level of incoming radiant 
energy and often do not reflect back to the sky due to distortions in the leaf surface. It is not however 
practically feasible to determine the ideal wavelengths for discrimination when large numbers of 
invasive species are present. Furthermore, if the presence of number of invasive species per pixel 
increases, the difficulty in identifying the individual components that contribute to the mixed spectrum 
also increases. These problems will be further aggravated if species variability in spectral signatures is 
high. For large scale direct remotely sensed monitoring of several invasive species, the possibility of 
correctly identifying all individuals through direct mapping thus appears doubtful. 

Absorption of incident light in the visible range and in the NIR range changes when plants are 
disease-stressed [106,107]. Damage of foliar internal structure, intracellular water content, decrease of 
chlorophyll content and pigment changes result from plant-disease interaction. This consequently 
influences their reflectance obtained from airborne remote sensing. Therefore, comparing the spectrum 
difference of plants in stress from the healthy ones, theoretically we are able to identify the stress 
severity of green vegetation. Reflectance tends to increase in individual leaves as the leaf matures but 
the changes are wavelength dependent. Water stress by reducing the internal water content increases 
the reflectance from an individual leaf. Information gathered from individual leaves provides a basic 
set of information about the mechanism of the changes occurring within a plant [108,109]; however, to 
be of practical application it must be extended to a canopy or field level [110]. Canopies exhibit the 
same properties of individual leaves but several variables that now must be considered. Leaf surfaces 
often act as polarizing filters and reflect back to portions of the sky that are not always detected by 
viewing the canopy only from the vertical direction. Leaf fluorescence has been observed in all plants 
and can be related to the efficiency of the photosynthetic process. It is possible that leaf fluorescence 
could be used to assess the impact of diseases on the physiological status of a plant. This technique has 
only been used on individual leaves; however, it could be extended to canopies through the use of 
laser-induced fluorescence [110]. 

Non-contact sensing methods for estimating surface moisture cheaply and faster over large areas are 
being studied in order to replace contact sensing field instruments. The heat generated as water in a 
leaf freezes can be readily imaged [111], while in extreme cases raised temperatures can be used as a 
measure of these increased respiration rates [112]. In most cases, however, the heat generated by 
respiration is too small in quantity to have a detectable effect on leaf temperature. Thermal imaging 
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can be used to study plant water relations, and specifically stomatal conductance, because a major 
determinant of leaf temperature is the rate of evaporation or transpiration from the leaf [109]. 

Scientists have evaluated radio detection and ranging (RADAR) [113], nuclear magnetic resonance 
(NMR), and microwave transmission [114] as tools for LSW estimation. Leaf surface water can be 
measured by the reflectance of the canopies, which is influenced by the total amount of water (both 
surface and internal water) in the sensor’s field of view [115]. The thickness of the surface water could 
be detected by comparing the reflectance measurements of plant canopies with and without surface 
water [116]. 

 
2.4. Algorithms 
 

The use of algorithms began in the 1970s with least squares. From 1981 – 1985, the usage of RLS 
and Entropy began. Maximum Likelihood and Least squares were popular during 1986 – 1990. 
Maximum Likelihood, Least squares and Entropy were popular during 1991 – 1995 [117]. There was a 
drastic change in the usage of algorithms from 1996 – 2000 and this might be due to the introduction 
of hyperspectral imagery. Maximum Likelihood still seems to be popular, followed by Least squares 
and Entropy. The usage of principle component analysis (PCA) and Genetic algorithms has increased. 
From 2001 to the present year, the usage of Least squares has decreased compared to previous years, 
but Maximum Likelihood and Entropy are still widely used. 

Partial least square regression is a multivariate statistical method for establishing models combining 
the features of principle component analysis and multiple regressions [118]. The decomposition of data 
is similar to the principle component analysis with an additional advantage of data reduction on both 
spectral and concentration data. When the spectral data is processed using the PLS algorithm two 
eigen-vectors are formed representing variation in spectral data and changes in spectra due to 
variations in concentration. 

Linear discriminant analysis (LDA) is a method of predicting a classification based on known 
values of the variables. LDA is a statistical, supervised method used for dimensionality reduction and 
feature optimization. The technique is based on how close a set of measurement variables are to the 
multivariate means of the levels being predicted [119,120]. Based on the discriminant analysis of the 
training data set, the Mahalanobis distance to each class cluster is computed. Based on this distance a 
probability can be calculated providing the likelihood that the sample is classified with a class label. 
The contribution of individual variables to the accuracy of prediction was assessed using the 
magnitude of the ratio of variances between consecutive stepwise additions to the model (F-ratio 
statistic). 

Principle component analysis is a multivariate statistical method to reduce the large number of 
original variables into some linear combinations of transformed variables [121]. These transformed 
variables represent the constituents from the spectral information and represent the largest variations 
among the values of the spectral data. 

An Artificial Neural network (ANN) is an information processing concept constructed by a large 
number of individual, locally connected processing elements or units called neurons similar to the 
biological nervous system or human brain [120,122,123]. These neurons in the network sum up the 
results of the respective input connections, weight them and transform the weighted sum by a non-
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linear function of variables. ANN is applied in many complex real-world problems like pattern 
recognition, forecasting and data classification. The use of ANN in the field of image processing, 
remote sensing and weather forecasting is increasing rapidly because of the ability of ANN to handle 
large volume of complex data for processing and classification. 

Remote sensing uses these algorithms but they have to be optimized due to the high quantity of data 
acquired. Several types of data are available, but most use images which could be visible, NIR, 
infrared, ultraviolet or radar. Image classification is defined as the process of creating thematic maps 
from satellite imagery [124]. Image classification classifies each pixel of an image into land cover 
categories. In the case of crisp or hard classification, each pixel is assigned to only one class. 
However, in fuzzy or soft classification, a pixel is associated with many land cover classes. In general, 
classification techniques may be supervised or unsupervised. Supervised classification procedures tend 
to require considerable interaction with the analyst, who must guide the classification by identifying 
areas on the image which are known to belong to each category of interest [125]. This control is 
essential if it is the specific task to compare one classification with another of the same scene at 
different dates, or if the classification must be compatible with those of adjacent regions. Serious 
classification errors are detectable by field verification to determine whether they have been correctly 
classified. 

Supervised classification has numerous disadvantages, as the analyst imposes a classification 
structure upon the data based on predefined classes instead of finding natural classes in an image. In 
supervised classification, training sites and classes are based primarily on the information categories 
and only secondarily on spectral properties. Another source of error is the selection of training data, 
since these samples of pixels may not be representative of conditions encountered throughout the 
image. Moreover, supervised classification is not able to recognize the specific or unique categories 
which are not represented in training data due to the small areas they occupy on the image or simply 
because they are not known to the analyst.  

Unsupervised classification involves the process of automatically segmenting an image into spectral 
classes based on the natural groupings found within the data set. Multi-band spectral response patterns 
are grouped into clusters which are statically separable. In supervised classification, any individual 
pixel is compared to each discrete cluster to select the one which is closest in terms of spectral values. 
The two most frequently used grouping algorithms are K-means and ISODATA cluster algorithms, 
which are iterative procedures. Three advantages of unsupervised classification are: no extensive prior 
knowledge of the region of interest is required; the opportunity of human error is minimized; unique 
classes are recognized as distinct units in unsupervised classification. Since unsupervised classification 
identifies spectrally homogenous classes within the data, such classes do not necessarily correspond to 
the informational categories which are of interest to the analyst.  

Unlike supervised and unsupervised image classification, SMA did not rely on the detection or 
identification of pixel clusters with similar reflectance spectra. Rather, it is possible to consider each 
pixel individually and assess the presence and proportion of selected end-members. The fraction 
images produced by SMA refer to a pixel- by pixel measure of the percentage composition of each 
end-member in the spectral mixing model. The SMA technique is able to generate more accurate 
estimates of the end-member classes and appeared to be an effective means of mapping vegetation 
cover. Since supervised and unsupervised methods are based on predefined classification schemes 
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classifying entire pixels, this causes an error which often produces too high or low estimates of land 
cover classes due to the inability to distinguish sub-pixel covers. From these facts it is clear that the 
application of SMA and the production of end-members fraction images for land cover classification 
allow for a more detailed analysis of individual pixels in the image. Thus, it can maintain higher 
accuracy in classification and provide more realistic representation of landscape, as opposed to the 
patchy and discrete nature of traditional classification techniques. 

Change Vector Analysis (CVA) is an effective approach for detecting and characterizing land cover 
change. Processing and analyzing is applied to multi-spectral/multi-temporal data layers [126,127]. 
The vector describing the direction and magnitude of change from the first to second date is a spectral 
change vector. This time trajectory is represented as a vector in multidimensional measurement space. 
The length of the change vector indicates the magnitude of change, while its direction indicates the 
nature of the change [128]. 

 
3. Sensing Per Crop 
 

Studies are being carried out for each fruit and vegetable around the world, depending on the 
importance of crop yields per country. It is impossible to write a review that covers all these researches 
so the main fruits and vegetables around the world would be covered, including apple, grapes, 
avocado, mango, citric, tomato and potato (Table 1). The latter botanically is not a fruit or a vegetable, 
but developed countries consume potatoes in huge quantities, so a lot of funding is available to detect 
diseases and increase its quality.  

 
Table 1. Pathogens attacking selected fruits and vegetables. 

Fruit or vegetable  Pathogen common name Pathogen scientific name 
Mango and avocado Anthracnose Colletotrichum 

gloeosporioides 
 stem-end rot Lasiodiplodia theobromae
Potato Fusarium wilt Fusarium oxysporum 
 Late blight Phytophthora infestans 
Tomato  Fusarium wilt Fusarium. oxysporum 
 Rhizopus rot Rhizopus stolonifer 
 Downy mildew Pseudoperonospora cubensis 
Apple Apple scab Venturia inaequalis 
 Fire blight Erwinia amylovora 
 Black rot Physalospora obtuse 
Citrus Black spot Guignardia citricarpa 
 Gummosis Phytophthora parasitica
 Trizteza Toxoptera citricidus 
 Sooty canker Hendersonula toruloidea 
Grapes Downy mildew Plasmopara vitcola 
 Bunch rot Botrytis cinerea 
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3.1. Sensing Mango and Avocado Diseases 
 

Anthracnose, the most important mango disease, is caused by the fungus Colletotrichum 
gleosporioides. Flower blight, fruit rot, and leaf spots are among the symptoms of this disease 
[129,130]. Fruit infection commonly occurs and can result in serious decay problems in the orchard, in 
transit, at the market, and after sale [131]. The fungus invades the skin of fruit and remains in a 
“latent” state until fruit ripening begins. Ripe fruit, both before or after picking, can then develop 
prominent dark-brown to black decay spots and can result in extensive fruit rotting. Anthracnose is 
usually more serious in years when rain and heavy dews are frequent, from the onset of flowering until 
fruit are about half size. 

Stem-end-rot causing fungi in mango are endophytic, and such pathogens are activated when fruits 
begin to ripe and continue until complete degradation of the tissues [132]. The long time taken for 
natural ripening allows fungi to multiply rapidly producing stem-end-rot before ripening process is 
completed [133-135]. The major fungus responsible for stem-end-rot Lasiodiplodia theobromae, 
cannot directly penetrate into the plant tissue and hence requires wounds to facilitate penetration. 

 
3.1.1. Sensors and Algorithms 
 

A NIR model was developed to predict mango anthracnose in fruits still hanging in the trees [136]. 
Discriminant analysis was used to determine the best wavelengths (690 nm, 710 nm and 515 nm) and 
predicted the disease when it was still not visible (Table 2). A better model used HSI together with the 
spectral bands to increase the prediction accuracies [137]. Black pulp is another disease that is not 
visible until the fruit ripens; and it was detected with a thin needle which pushed the pulp towards a 
photo detector which was able to detect the disease [138]. 

Mangoes could be sorted by firmness [139] as hard, soft and very soft with 90% accuracy at a speed 
of one fruit per second (Table 3). NIR reflectance spectra on the 760 –2500 nm spectral range were 
used to measure mango flesh dry matter [140]. The best correlating wavelengths found by discriminant 
analysis were 904, 872, 1660 and 1516 nm, providing a R2 = 0.90 with flesh dry matter (Table 4). 
Hyperspectral imaging for estimating total soluble solids, water content and fruit firmness in mango 
was obtained [141]. The correlation coefficient for total soluble solids and water content prediction 
was 0.78 and 0.81, respectively, while firmness correlation coefficient was 0.88. 

 
Table 2. Sensors used for post-harvest detection of diseases and defects. 

 Ultrasonic Magnetic 
resonance 

Machine 
vision 

Spectral 
analysis 

X-ray Others 

Mango and avocado  ◘ ◘ ◘ ◘  
Potato ◘ ◘ ◘ ◘ ◘  
Tomato   ◘ ◘  Electronic nose 
Apple   ◘ ◘ ◘  
Citric   ◘ ◘   
Grapes  ◘    Chlorophyll fluorescence 
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Table 3. Post-harvest operations where sensing is applied. 

 Maturity & Bruise TSS, firmness Disease det. Freezing & chilling injury 
Mango and avocado ◘  ◘ ◘ 
Potato  ◘ ◘  
Tomato ◘ ◘ ◘  
Apple ◘ ◘ ◘ ◘ 
Citric  ◘ ◘  
Grapes  ◘   

 
Table 4. Algorithms used for the different operations on postharvest. 

 PCA LDA Neural networks Others 
Mango and avocado ◘ ◘   
Potato ◘ ◘ ◘  
Tomato ◘ ◘ ◘ Fuzzy 
Apple ◘ ◘ ◘ Fuzzy 
Citric ◘ ◘ ◘ Fuzzy 
Grapes  ◘   
 Disease warning 

systems 
Remote sensing 

 Spectral ratios & NDVI Infrared Fluor & Thermog. 
Mango and avocado ◘    
Potato ◘ ◘   
Tomato ◘ ◘ ◘ ◘ 
Apple ◘ ◘ ◘  
Citric ◘ ◘ ◘  
Grapes ◘ ◘ ◘ ◘ 

 
X-ray imaging was proven to be reliable when the mango is cut open [142,143]. MRI images 

obtained of mango fruits infected by the fruit fly showed dark areas in the seed eaten by the weevil, 
meanwhile healthy fruits showed a uniform light grey area [49]. X-ray can be considered a better 
technique for weevil detection in mango than MRI due to its lower cost [144]. 

A useful relationship between dry matter and the ratio of the oil/water were obtained with NMR in 
intact avocado that had desirable features for high-speed sorting [145]. Hass’ avocado harvested at 
four different times during a growing season was analyzed by both reflectance and NIR spectroscopy 
to determine fruit dry matter. The model gave a R2 = 0.88, suggesting NIR avocado grading on the 
basis of their DM content, to improve taste and oil content. Three of these wavelengths were obtained 
in the vicinity of 900-920 nm [146]. 

Low-altitude aerial color infrared (CIR) imagery identified Phytophthora cinnamomi infestation in 
avocado orchards [147]. Two anthracnose predictive models based on temperature and moisture were 
developed in Australia and Phillipines. The Mango Anthracnose Estimator (MAE) uses as variables 
the temperature and wetness duration for the prediction of dark appressoria production from conidia 
applied to detached mango leaves [148]. The use of the model resulted in a reduction of four to eight 
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fungicide sprays pear season to control flower anthracnose as compared to weekly spraying [149]. The 
Philippine model includes relative humidity in addition to wetness and temperature and was tested 
under field conditions [150]. Comparing both models present important differences in level of 
infection predicted from a given combination of temperature and wetness duration. High discrepancy 
indicates that weather-based forecasting systems for anthracnose should not be extrapolated from one 
region to another and the infection should be elucidated locally [84]. Although disease warning models 
have been developed, remote sensing is in its initial stage. 

 
3.2. Sensing Apple Diseases 
 

Apple scab is caused by the fungi Venturia inaequalis and is an economically important disease for 
apple producers. This disease causes almost as much loss to apple growers as all the rest of the apple 
diseases put together [151]. The scab fungus attacks leaves, stems, and fruit. The apple scab fungus 
overwinters in the dead apple leaves under the trees [152]. Depending on the temperature, first visible 
symptoms may show as soon as 8 days after the initial penetration by the ascospore. Hundreds of new 
spores are formed in the infection lesion and rain disperses the spores from the infection lesion to 
healthy leaves and to the young developing fruit, where they start a secondary infection.  

The apple Black Rot is a fungus disease caused by Physalospora obtuse that occurs throughout the 
warmer regions of the world. The fungus attacks fruit, leaves, and limbs. Infection of the fruit may 
occur from the time the fruit is initiated until harvest, causing postharvest decay. The disease first 
appears as a small brown spot any place on the surface of the fruit. The black rot infection develops 
slowly, and complete decay of the fruit usually does not occur until the fruit is mature and turns black 
[153]. As the rot progresses, the decayed tissue is firm and leathery. Symptoms first appear on the 
leaves as small, dark purplish spots. 

Fire Blight, caused by the bacterium Erwinia amylovora, is one of the most destructive diseases of 
apple and pear in the United States. The fire blight bacterium may attack any part of the tree from the 
roots to the leaves. The disease usually appears in the spring as blossom, leaf, and twig blight. Infected 
blossoms suddenly wilt and soon turn light to dark brown. As the disease progresses beyond, it invades 
the fruit spur and spreads out into the leaves. The leaves wilt and the entire spur growth turns brown 
on apple or dark brown to black on pear and dies [154]. The invading bacteria progress more rapidly 
down the shoots or twigs than in the fruit spur. A severely infected apple or pear tree may have so 
many blighted terminals that it has the appearance of being scorched or burned by fire. The diseased 
fruit is firm and later leathery, shriveling and turning brown on apple or black on pear and usually 
remains attached to the spur. 

 
3.2.1 Sensors and Algorithms 
 

Post-harvest detection of defects are carried out in automatic sorting lines (Table 2). Different 
researchers [56,71,155-157] analyzed apple diseases mainly for fruit quality sorting and detection of 
the three diseases at the same time. Differences in spectral responses at 450, 675 and 686 nm with a 6 
nm bandwidth provided excellent apple scab detection independent of apple cultivar and color [56]. 
This study showed that the asymmetric second difference method and principal component analysis 
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(PCA) gave very similar results for the disease detection, fungal contamination, bruises and soil 
contamination on apples (Table 4). A neural network using up to 200 neurons was used to detect 
diseases on apples using entropy, local homogeneity, energy and inertia as image parameters and 
achieved an 89% success rate on the detection of damaged apples [158]. An automatic near infrared 
vision system was developed for apple defect inspection using a monochrome CCD camera attached 
with a 700 nm long-pass filter. The inspection procedure consisted of four steps: blob extraction, 
feature extraction, rule base construction and recognition [58]. A near-infrared (NIR) and a mid-
infrared (MIR) dual-camera vision system was also used for quality inspection on refrigerated apples 
[159]. The MIR cameras had a sensitive spectrum range from 7.5 to 13.5 μm and detected only stem-
ends and calyxes (Table 3). Recognition rates on refrigerated Red Delicious apples of about 94% for 
stem-ends and 92% for calyxes were achieved. The correct classification rates of good and defective 
apples were, 100% and 92%, respectively. 

A line-scan X-ray imaging device detected bruises in Red Delicious and Golden Delicious apples 
[59]. One day and one month old bruises were analyzed, testing spatial and transform features. Best 
classification results were obtained using an artificial neural network and two kinds of features: spatial 
edge features and discrete cosine transform coefficients (Table 2). For old bruises, accuracies of 90% 
and 93% were achieved, respectively, for Red Delicious and Golden Delicious apples. New bruises 
were not adequately separated using this methodology (accuracy was approximately 60% for both 
apple varieties).  

Remote sensing of scab infection plots throughout the vegetation period applies a standardized 
difference vegetation index (SDVI) to it. A combination of visible bands gives a much lower detection 
level than combinations of wavebands in the NIR. Symptoms of the infection leaves at the beginning 
did hardly show any visual infection (brown spots) but apparently the fungus was already present in 
the leaves affecting its internal structure [92,160,161]. Three months later the disease in the visible 
part of the spectrum was clear, as the damage to the internal structure of the leaves became larger. Out 
of these results it was concluded that a common vegetation index such as the normalized difference 
vegetation index (NDVI) is not the ideal one for early scab detection; combinations of NIR bands will 
perform much better (Table 4). Early stress detection for scab, making use of SDVI’s can best been 
done using as second wavelength a waveband situated between 750 nm and 1,400 nm and first 
wavelength between 750 nm and 850 nm [162]. 

More recently in Germany, the apple scab model ASCHORF was developed and can provide 
practical recommendations to plant protection services and apple growers [163]. The modeled 
infection risk is dependant on temperature and leaf wetness duration. Leaf wetness duration is 
calculated but not measured and is based on energy balance principles. The model uses a sliding 10-
day time series and acquires data for the previous four days from the standard meteorological network 
and then inputting grid point data from numerical weather prediction models. 

 
3.3. Sensing Citrus Diseases 
 

Blight affects mainly grapefruits and oranges, and incidence is lower on lemons and mandarins. 
Water transport in the xylem of blighted trees is impaired. The failure of water transport [164] seems 
to be attributable to the amorphous plugs [165], and symptoms appear to be due to lack of water 
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transport to the canopy. Blight symptoms are somewhat like those of vascular wilt fungi diseases 
caused by soil-borne systemic agents. However, no specific vascular wilt pathogen has been identified, 
although there were early claims that hyphae could be found associated with vascular occlusions. 

Phytophthora foot rot or gummosis of citrus is caused by two soil microorganisms: Phytophthora 
parasitica and P. citrophthora. Disease incidence is especially high in trees established with the graft 
union at or below the soil surface, exposing susceptible scion tissue to the two pathogens [166]. Severe 
losses also can occur in groves subjected to flood irrigation if trees are planted on susceptible 
rootstocks. Longitudinal cracking of bark, accompanied by profuse gumming, usually is positive 
evidence of infection. Advanced stages of infection will result in yellow, sparse foliage and is named 
brown rot as diseased areas on the fruit are brown in color. Trees may later collapse and die due to the 
girdling action of the fungal infection. 

Citrus Tristeza Virus (CTV) is one of the most destructive of the many viruses that affect citrus, 
(Table 1). The virus pathogen has been responsible for the death of 18 million trees in Argentina and 
10 million trees in Brazil. In 1946, American and Brazilian plant pathologists reported that tree failure 
was caused by a virus disease [166]. The Brazilians found that an aphid, Toxoptera citricidus, was a 
vector of the virus. Common symptoms include reduced fruit size, leaf vein-clearing, yellowing and 
cupping of leaves, and stem pitting. Infection of sweet orange, mandarin, or grapefruit trees on sour 
orange rootstock causes necrosis in the phloem of the sour orange rootstock just below the bud union. 
This girdling causes eventual decline and death of the infected tree. 

The sooty canker or limb wilt disease is caused by the fungus, Hendersonula toruloidea, a wound 
pathogen that invades citrus bark that has been damaged by freezing injury, sunburn, or mechanical 
injury but does not infect uninjured bark tissue [166]. The most common symptom of sooty canker is 
the sooty, black growth that develops beneath bark tissue, due to the presence of black masses, fungal 
spores that appear under the bark and on the surface of the canker. The leaves on branches with 
cankers wilt, turn brown, and die, as well as the branches on to the cankered area. Most cankers 
develop on unshaded trunks or limbs that face toward the sun. Sunburned trunks and limbs are highly 
susceptible to infection. 
 
3.3.1. Sensors and Algorithms 
 

A machine vision system [167] discriminated normal and diseased citrus leaf samples with greasy 
spot, melanose and scab (Table 2). The leaf sample discriminant analysis using Mahalanobis statistical 
classifier achieved over 95% accuracy for all classes when using hue and saturation texture features 
(Table 4). A back-propagation neural network algorithm achieved accuracies over 90% for all classes 
with the same texture features. Windscar was the most prevalent defect ranging from 23% on tangerine 
to 32.6% for grapefruit [168]. Classification was based on either Bayesian parametric techniques or on 
back propagation neural networks. Yielding the highest percent correct classification was the Bayesian 
approach. The parameters used for disease detection were HIS (Hue, Intensity and Saturation). RGB 
color systems using artificial neural network for orange-sorting are used in Brazil [169]. The 
feasibility of using machine vision system with neural networks to predict the sugar content or pH of 
orange fruit was tested [170]. 
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The possibilities of adopting VIS/NIR spectra for measuring the quality characteristics of Satsuma 
mandarin was explored and developed a relationship between the VIS/NIR spectral measurements and 
major physiological properties like firmness [171], soluble solid content and acidity of the fruit (Table 
3). The study concluded that the full spectral range of 400-2,350 nm has great potentials to assess the 
quality characteristics of mandarin fruit. An electronic nose was used to distinguish the maturity stage 
in mandarin [172]. Linear discriminant analysis was able to classify correctly 92% of the samples, 
while principal component analysis did not work properly. Spectral reflectance of citrus leaves 
changed as citrus canker lesions developed, being more pronounced in the 600-700 nm [173].  

Typically absorption of pigments in the UV and in visible spectral range up to 500 nm is very high 
in the citrus peel, and low reflectance values are mainly originating from scattering in this range. From 
720 nm up to the water absorption band centered at 980 nm, citrus peel has reflectance values around 
70-80%, and decrease of the NIR reflectance due to softening (pre-necrosis stage) are obtained. Peel 
damage seen as tissue browning decreases the NIR reflectance. Changes in reflectance spectra can be 
seen already after 1-2 days after inoculation of orange fruits infested with P. italicum and P. 
citrophtora [174]. MIR images of internal rots produced by Alternaria citri, Diplodia natalensis and 
Botrytis cinerea in oranges var Navel Barnfield detect fruits with healthy external appearance [46]. 

The black spot of citrus (Citrus sp.) is caused by Guignardia citricarpa with ascospore production 
depending on temperature, leaf wetness, and rainfall. Ascospore production was related to leaf wetness 
only in the orange orchard but was not related to total rainfall or temperature [175]. Temperature and 
relative humidity were not important factors in post-bloom fruit drop caused by Colletotrichum 
gloeosporioides. Leaf wetness 4-8 days before the target day was a significant factor and rainfall acts 
as a conidia disperser and as a provider of moisture for spore germination [176]. 

Citrus foot rot foliage loses their chlorophyll and become chlorotic (yellowish-white) in contrast to 
the dark-green foliage of healthy trees [177]. For quick assessments of vegetation stress in citrus crops 
in the visible and near infrared region of the electromagnetic spectrum, an inexpensive multi-band 
video system was used to distinguish between grapefruit and orange trees in the yellow-green band 
[178]. Aerial photography and videography have been found useful for tree inventory in the Merritt 
Island National Wildlife Refuge citrus groves [179]. Remote sensing evaluates plant stress monitoring 
salinity [180], delineation of saline soils [181], and the detection of insect infestations [182]. In studies 
of general vegetation spectral reflectance, the near-infrared (IR) band (0.75 μm–1.35 μm) is important 
in detecting healthy and stressed trees based on leaf air content; healthy leaves with more air and a 
thicker mesophyll increase near-IR scatter [183]. In the visible region of the spectrum, especially at 
0.45 μm, reflectance of citrus (Valencia orange) leaves was found to be influenced by leaf water 
content, chlorophyll content and leaf air volume [184], more than by leaf thickness (Table 4). 

These positive forecasts of citrus production in Florida, however, face threats from virus and insect 
infestations. The 2002 Commercial Citrus Inventory showed a 4.2% decline in total citrus area 
coverage from 2000 due in part to diseases such as citrus canker (Xanthomonas axonopodis pv. citri), 
tristeza (Citrus Tristeza Virus). Little leaf notcher (Artipus floridanus), and the Diaprepes root weevil 
(Diaprepes abbreviatus) are of economic significance to citrus growers [184]. 
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3.4. Sensing Tomato and Cucumber Diseases 
 

Fusarium wilt is caused by the F. oxysporum fungi. Symptoms of Fusarium diseases are rots, leaf 
spots, blights or wilts [186] and once the soil is infested, the pathogen is difficult to eliminate since it 
survives in the soil for long periods [7]. The optimum temperature for growth of F. oxysporum is 28-
29°C. There are no symptoms of infection if the soil temperature is below 20°C or above 30°C [187].  

Rhizopus rot is a fungal soft rot requiring injuries caused by insects, hail, or cracking for infection 
to occur. The early appearance of the fungal mycelium is as a fluffy white mass [7]. Rot progression is 
temperature related with rapid fungal growth at 27°C, and no spore germination at 4°C. To minimize 
the incidence of Rhizopus rot, fruit has to be carefully handled to avoid wounds while keeping clean 
storage containers, warehouses, and hydrocooling water (Table 1). Rhizopus rot is more likely to be a 
problem when fruit is allowed to fully ripen on the plant and when poor sanitary conditions are found 
on field bins and at the packinghouse. Other diseases that attack tomato plants are anthracnose, early 
and late blight, Septoria leaf spot. 

Downy mildew of cucurbits is a devastating disease, especially in temperate regions of the world 
[188] where humid conditions favor disease spread; infection by zoospores requires free water on the 
lower leaf surface for at least 2 h, and production of zoosporangia in the dark occurs at an RH of >90% 
for at least 6 h [189]. After penetrating the leaf through stomata, this pathogen rapidly colonizes the 
mesophyll of its host cell producing intercellular hyphae and intracellular haustoria for the uptake of 
nutrients [190]. First symptoms on leaves are small, slightly chlorotic to bright yellow areas on the 
upper surface without loss of vitality in plant cells.  

 
3.4.1 Sensors and Algorithms 
 

It is a challenge to detect surface defects on tomatoes in an automatic sorting line. In comparison 
with bruises, the other surface defects, such as the blossom-end rot, sunscald, mold and cracks are not 
so difficult to recognize for a vision system. Tomato bruises were detected using a hyperspectral 
imaging setup [191] in the wavelength region between 400 and 1,000 nm (Table 2). Chemometrics 
tools were used to extract the effective wavebands for surface defects detection and for identifying the 
stem-end.  

F. oxysporum was detected on tomatoes using spectral Fourier signatures with an accuracy of 91% 
[192,193]. Spectral signatures were analyzed by a Fourier program providing different harmonics, 
which were discriminated to obtain differences between healthy and diseased plants. An automatic 
conveyor belt was developed to sample the inoculated tomatoes on-line using 1 nm spectral 
bandwidths acquired with a computerized spectrometer [194]. Four different concentrations were 
applied encountering 92% on detection accuracy for a concentration of 6.5 x 104 sporangiospores/mL. 
Reflectance at 670 and 960 nm [195] was used to detect mold and other surface defects. 

An electronic nose was used to evaluate the maturity [196] and to monitor the shelf life of tomatoes 
(Table 3). Results showed that pink-stage fruit could be distinguished from light-red stage and red-
stage ones based on the E-nose using principal component analysis (PCA) and linear discriminant 
analysis (LDA). E-nose sensor response signals were predicted and the coefficients were 0.981 and 
0.968 for initially light-red stage fruit and red-stage fruit, respectively (Table 4). A sensor was 
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developed to sense Rhizopus stolonifer by the peduncle scar. The tomato peduncle scar acts as a 
membrane to decrease water loss in harvested fruits. Air is sucked and the relative humidity measured. 
A controlled pressure was applied to green and red infected tomatoes obtaining 91% and 89% on 
detection accuracy, respectively. The advantage of this method is that monitoring is non-dependent on 
its maturity stage [197]. 

Disease-warning systems are the most effective ICM option for tomato disease control. These 
systems use research-based information about weather conditions that increase the risk of fungal 
disease outbreaks. Disease-warning systems allow growers to spray fungicides only when the risk of 
an outbreak (and accompanying potential economic loss) is sufficiently high. Daily weather data 
(maximum and minimum air temperature, hours of leaf wetness, maximum and minimum air 
temperature during the wet period, hours of relative humidity > 90% and daily rainfall) were the 
environmental inputs to FAST. Because epidemics of late blight (causal agent: Phytophthora 
infestans) sometimes appeared in Pennsylvania tomato field, the BLITECAST model [198], a disease-
warning model based on air temperature and hours of HR > 90%, was run in tandem with the FAST 
model. 

In Ontario, growers use another model called TOM-CAST, which provides disease-risk ratings as 
Daily Severity Values (DSV's) to apply fungicide spray only when the sum reaches a predetermined 
threshold. At each site, temperature, relative humidity, rainfall amount, and duration of wetness 
periods were recorded by electronic sensors at 5-minute intervals and summarized hourly by an 
automated datalogger. Data were downloaded to a PC via modems and telephone so that DSV's for 
TOM-CAST could be calculated for the period from noon to 11 a.m. each day. It saves from 2 to 3 
sprays per season which corresponds to fungicide sprays up to 50%, saving 125 US/ha [199]. Percent 
incidence of anthracnose was not significantly higher for thresholds of 20 or 25; with a DSV's 
threshold of 15, anthracnose incidence was affected neither by sensor location nor by distance from the 
field to a weather station. Marketable yield for DSV's thresholds of 15 or 20, but not 25, was not 
significantly lower than for the weekly-spray treatment [200].  

The TOM-CAST system can be used to schedule fungicide sprays for controlling early blight where 
weather data is available. The first fungicide application after transplanting should occur when 25 
DSV's have accumulated [200]. If 25 DSV’s have not accumulated before mid-July, the first fungicide 
should be applied at that time. Subsequent applications should occur when 18-22 DSV's have 
accumulated since the previous application. Scheduling fungicides using TOM-CAST provide good 
control of Septoria leaf spot. Those leaves sampled for the presence of Septoria lesions on leaves and 
stems were inspected. The fungus prefers cool, wet springs for early disease spread.  

Spectral ratio analysis based on principle component analysis [201] and clustered analysis was used 
in remote sensing of diseases (Table 4). They observed that the sensitive spectral wavelengths and 
reflectance values enabled them to discriminate Phytophthora infestants infection on tomatoes. Multi 
spectrum imaging detected the diseases and insect pests of tomato [202]. The experimental results 
showed that near infrared band (0.7-1.3 µm) is more significant than visible light band in monitoring 
the crop diseases and insect pests. The 0.75-0.93 µm band is useful for inspecting the tomato late 
blight. The spectral band of 750-930 nm is, statistically, the best for the remote sensing of tomato 
disease, followed by that of 950-1,030 nm and 1,040-1,130 nm [203]. Five narrow ranges are 
especially important for development of approaches to identify the diseased plants from the healthy 
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ones: two peaks centering respectively at 850 nm and 1,050 nm, and three valleys respectively at 625 
nm, 1,500 nm and 2,100 nm. Leaf reflectance spectra of tomato leaves damaged by leaf miner were 
obtained [204]. Spectral reflectance decreases significantly with the increasing severity level of 
infestation at the short wavelengths of near infrared 800–1,100 nm but changes for individual bands of 
1,450 and 1,900 nm where spectral reflectance increases with the increasing infestation severity. 

Digital infrared thermography has been shown to be a useful tool for the prediction of diseases. 
Infrared thermography was tested on the detection of cucumber downy mildew caused by 
Pseudoperonospora cubensis [205]. The maximum temperature difference (MTD) within a leaf or a 
canopy turned out to be suitable for the differentiation of infected and non-infected tissue under 
controlled conditions. Environmental conditions during thermographic measurement, in particular air 
temperature and humidity, as well as water content and age of the leaf influenced the temperature of its 
surface. In some studies, conditions that enhance transpiration rate facilitated the detection of changes 
in leaf temperature of infected leaves. However, as modified by environmental conditions, digital 
infrared thermography alone is not suitable for the quantification of diseases in the field. 

Measurements of stomatal aperture during the early stages of pathogenesis indicated that the 
decreased water content of infected tissue 2 d after inoculation coincided with a slight increase in 
stomatal opening. In darkness, the aperture of stomata which had an average area of 25.5 μm2 in non-
inoculated leaves dramatically increased due to the development of downy mildew and reached 160% 
and 280%, respectively, 3 d and 6 d after inoculation [206]. Two to three days after inoculation, the 
heterogeneity of the transpiration rate within infected leaves was significantly higher than for healthy 
leaves. Digital infrared thermography proved to be a simple but reliable parameter for this 
heterogeneity and may be used for the discrimination of healthy leaves or canopies [207] and those 
with downy mildew (Table 4). At later stages leaf tissue became necrotic, associated with a 
transpiration approaching zero and a drastic increase of local temperature; the average leaf temperature 
may be largely unaffected. The simultaneous presence of chloroses and necroses in leaves results in 
the highest values of the thermograms, which slowly decreases when the leaf becomes completely 
necrotic. 
 
3.5. Sensing Potato Diseases 
 

Despite a century of research, potato late blight (caused by Phytophthora infestans) remains a 
constant threat to potato production in many parts of the world. In high rainfall growing areas, control 
of late blight is by frequent application of fungicides, but consumer concerns over chemical residues 
may force modifications to current practice. Late blight appears on potato leaves as pale green, water-
soaked spots, often beginning at leaf tips or edges (Table 1). Lesions enlarge rapidly and turn dark 
brown to purplish-black. During periods of high humidity and leaf wetness, a cottony, white mold 
growth is usually visible on lower leaf surfaces at the edges of lesions. In dry weather, infected leaf 
tissues quickly dry up and the white mold growth disappears. Late blight appears on potato tubers as a 
shallow, coppery-brown dry rot that spreads irregularly from the surface through the outer tissue. On 
tuber surfaces, lesions appear brown, dry, and sunken, while infected tissues immediately beneath the 
skin appear granular and tan to copper-brown [208].  
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3.5.1. Sensors and Algorithms 
 

Tuber physiological disorders such as brown center, hollow heart, and translucent end, as well as 
secondary growth, growth cracks, bruise susceptibility, and heat necrosis have been associated with 
water stress and/or wide variations in soil moisture content [209-212]. 

A vision system graded potatoes by size, and detected external defects such as greening, mechanical 
damages, rhizoctonia, silver scab, common scab, cracks and growth cracks [213]. Mirrors were used to 
obtain a 360° view of the potato with a 3-CCD line-scan camera to inspect the potato in flight as they 
pass under the camera (Table 2). The color segmentation procedure used Linear Discriminant Analysis 
(LDA) and a Fourier Transform based shape classification technique based on the boundary distances 
and the centroid of the potato. A color machine vision system was trained to distinguish between good 
and green potatoes [214]. The vision system achieved over 90% accuracy in inspection of potatoes 
with hue histograms and multivariate discriminant techniques (Table 3).  

NIR detected defective potato tubers [215] which are Phytophthora infected using discriminant 
analyses of reflectance rates (Table 4). As a result, for the ranges of specific wavelengths, there were 
clear differences between untreated and defective potato tubers. The light source was applied not only 
to the defective side, but to the entire surface of the potato tubers.  

Magnetic resonance imaging was applied to detect non-visible internal bruise and spraying 
symptoms caused by a virus and to get insight on the chemical and anatomical causes of such defects 
[53]. P. infestans, Phoma foveata, Fusarium sulphureum y F. coeruleum fungus were detected using 
magnetic resonance [216]. Previous X-ray methods were modified to enhance the contrast of the 
hollow heart potatoes [217]. A potato was placed in an X-ray field and a scanning detector traversed 
the length of the potatoes. The output of detector was amplified, digitized, and transferred to a 
computer for analyzing and recording. 

Ultrasonic transmission through potatoes is possible for the detection of hollow heart at a frequency 
of 50 kHz with a power level of 0.22 W [36]. At this frequency, ultrasound penetrated the whole 
potato tuber in the transverse direction along the longitudinal axis of the tuber, and yields information 
about the inside of the potato tuber. The analysis of the waveform of transmitted signals in time 
domain is sufficient to indicate the presence of hollow heart in potatoes. Average transmission losses 
of hollow heart potatoes were found to be greater than 0.28 dB/mm, and when this value was used as 
threshold, a predictive accuracy of 98 percent was achieved.  

Forecasting of late blight uses data from in-field automatic weather stations for limiting 
agrochemical use during the potato growing stage. Ideal conditions for Phytophthora infestans spore 
production are relative humidity greater than 95% and temperature over 10°C at nighttime [218]. 
Serious infection occurs when free water is available on the crop surface, being rainfall and prolonged 
high relative humidity required after spore production. Critical periods can be predicted when 
minimum temperature is over 10°C, relative humidity greater than 90% for a period from 12 to 48 
hours and rainfall is present in the period following up to 10 days. Prediction should be based on 
hourly observation of temperature and relative humidity. 

Consistently rainy summer or fall weather promotes late blight. However, in the 1990’s, epidemics 
of late blight developed in potato crops in arid production areas of the Pacific Northwest where late 
blight had not been a problem [219]. Irrigation that tends to keep the foliage wet may contribute to this 
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developing risk. Potatoes cultivated under center pivot irrigation can receive a relatively low volume 
of irrigation water for a long time near the pivot, favoring late blight occurrence. Late blight tuber rot 
increased significantly as more irrigation water was applied, and was significantly greater within 30 m 
of the pivot than at greater distances [220]. Long duration sprinkler irrigation also favored late blight 
in Oregon and California [221]. Under overhead sprinkler irrigation the proportion of potato leaflets 
containing late blight oospores and the number of oospores per leaflet were dependent on the soil 
water regime [222].  

Potato vines that remain wet for long periods create a propper microenvironment for early blight 
(Alternaria solani), late blight (Phytophthora infestans), white mold (Sclerotinia sclerotiorum), and 
blackleg (Rhizoctonia solani) [223]. The timing of these diseases and associated crop losses vary 
regionally with yearly weather patterns, and can be affected by irrigation methods, which increase or 
decrease the duration of high humidity in the crop canopy. Long periods of leaf wetness or high 
relative humidity within the potato canopy favor infection by white mold [224]. Avoiding light, 
frequent irrigation of coarse-textured soils, and avoiding heavy, less frequent irrigation of fine-textured 
soils can diminish the risk of white mold. 

 
3.6. Sensing Grape Diseases 
 

Downy mildew (Plasmopara vitcola) is one of the most important fungal diseases for wine grapes 
and can lead to considerable losses in grape yield and quality. Downy mildew attacks all green parts of 
the grapevine (Table 1). On young leaves, the disease will appear on the upper surface as small yellow 
spots referred to as oil-spots [225]. As these spots enlarge they may appear to cover most of the leaf, 
especially if there is more than one spot on the leaf. Total crop loss may occur if severe infection is not 
managed, especially near flowering. Under warm, humid conditions (>98% humidity and > 55°F) at 
night, white, fluffy sporulation develops on the lower surface of the leaf. White spore masses also 
develop on infected flower and fruit clusters eventually wither and die [226]. Spores are spread to new 
leaves and clusters by wind and rain and the fungus require a film of water for infection. The disease 
can spread rapidly under warm conditions with frequent rain or dew.  

Botrytis cinerea can infect all green parts of the vine being bunch rot the biggest problem. Early in 
the season, buds and young shoots may be infected and turn brown. Inflorescences may also be 
blighted and wither away. The fungus can infect grape berries directly through the epidermis or 
through wounds, and may continue to invade the entire cluster. Infected white grapes turn brown and 
purple grapes become reddish. During dry weather, infected berries dry out; in wet weather, they tend 
to burst and become covered with a grayish mold, which contains millions of spores. These spores are 
spread during moist periods by wind to new infection sites. The disease is favored by temperatures of 
59-68ºF and free water or at least 90% humidity [227]. 

 
3.6.1 Sensors and Algorithms 
 

By using an imaging system, higher chlorophyll fluorescence (F690) was found for unripe white 
grape clusters than for ripe grapes [228], as expected, since the chlorophyll content decreases during 
the ripening of the grapes, Table 3. Magnetic resonance (Table 2) was used to study grape growth, 
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visualizing internal characteristics and obtaining total volume of the grape cluster [229]. 
Contamination of grapes by different diseases has also been studied by magnetic resonance [230].  

The PERO model was developed to calculate the start of infection of the grapevine disease 
Peronospora that is determined by temperature and leaf wetness [163]. The model inputs hourly air 
temperature, relative humidity, calculated leaf wetness, daily extreme temperatures, and daily rainfall. 
The model output probable infection dates and oilspot lesions were used for agro-meteorological 
advice. The PLASMO (Plasmopora Simulation Model) model was developed to simulate the 
biological cycle and the disease leaf area of grapevine downy mildew allowing for the best timing of 
fungicide treatments [231]. Data inputs are hourly temperature, relative humidity, rainfall and leaf 
wetness. The results are expressed in percentage of leaf area covered by oil-spot lesion. 

Relationships between yield and quality indicators are often inferred; however these relationships 
do vary significantly between vineyards [232,233], and possibly within vineyards. Moreover, 
preliminary data suggest regions of high and low-yielding vines in a vineyard tend to remain stable in 
time, inferring that soils play a significant role in such variability [234]. The accurate characterization 
of spatial variations in those parameters that influence vineyard productivity requires a considerable 
amount of data. Traditional methods of generating such data are generally time consuming and 
expensive. For example, measuring basic fruit quality and yield parameters of sixty sample sites in a 
one hectare block requires more than thirty work-hours. The move toward on-the-go sensing of yield 
and quality parameters by combining the latest sensor technology with GPS-equipped vehicles is slow 
and currently limited to grape yield. However, rapid sensing techniques such as measurement of 
baume using near infrared (NIR) spectroscopy [235] and grape phenolic composition using visible-
NIR spectroscopy [236] are potential candidates for on-the-go sensing. The use of rapid 
electromagnetic induction or EM-survey techniques to accurately characterize soil structure is also 
becoming more widely used in the grape and wine industry [237]. 

Grape phylloxera (Daktulosphaira vitifoliae Fitch) infestation affects a number of California grape 
regions and in recent years devastated many vineyards [238]. An airborne multispectral digital imaging 
system related crop canopy reflectance and canopy density under various degrees of phylloxera stress 
[239]. Decreased foliar nitrogen and chlorophyll concentrations are also known symptoms of 
phylloxera stress. A new approach for calculating stress indices [240] used the shaded portion of the 
canopies, particularly useful for row or tree crops (Table 4). Its limitation is the tendency for stomata 
to be more closed in the shade and the smaller range of temperatures expected for a given range of 
conductance. Evidence was provided for grapevine that, not only leaf or canopy temperatures but also 
the temperatures of other surfaces within the canopy (including wet or dry reference surfaces), were 
dependent on the water relations of the crop.  

 
4. Pathogen Detection in the Future 
 

Sensors for disease detection and food quality will evolve in the following decade with the aids of 
nanotechnology and MEMS. Actual NIR, fluorescence and vision sensors can detect more accurately 
fruit quality and predict diseases better than our eyes. Sensor spectral range is broader than eye's 
spectral response and sensors are capable of detecting polarized light. Nanotechnology cells will be 
able to capture gases in bubbles creating internal reactions without affecting fruit or vegetable quality. 
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Ethylene, pigment status, diseases and enzymes will be predicted temporarily and spatially throughout 
the fruit.  

MEMS are nanotechnology chips which can sense and take control actions. MEMS produced 
extensively have low costs and could help to optimize precise fruit ripening harvest, reducing post 
harvest costs. The author visualizes the future with a MEM plastic unit added per fruit, memorizing its 
history and growth characteristics with detail. The MEM will acquire fruit internal nutrient 
concentration (e.g. calcium and nitrate ions), type of soil, applied fertilization, and pesticide usage. 
The information will also include commercialization details as transportation, cooling, texture and 
firmness during controlled atmosphere treatments. Retail daily analysis of ripeness, rots, impact 
damage, chlorophyll, carotenoids, and water status should be monitored on real time for consumer 
safety. 

Biosensors will also evolve and will be used together with intelligent biological agents as wasps, 
spiders or bees providing intelligent crop status sensing. Their attraction or repulsion to fruits can help 
on detecting fruit ethylene production, respiration rate and fruit ripeness. Even trained parrots could be 
used as indicators of mango ripeness. Fruit bio-security will be a big issue to assure that consumer 
health can be guaranteed.  

As sensors improve and provide more information higher data acquisition will be required but 
algorithms will tend to become simpler. Supervised algorithms will be used if they continue to be 
trained during their operation; these algorithms would be iterative and will replace multiple regression 
equations which are used at the present on most processes. Genetic algorithms will be used more often 
while fuzzy algorithms will disappear as a prediction tool.  

Although remote sensing is a strong tool its view is reserved to the top of the crop-tree canopies. 
With controlled mirrors crop status within the entire plants could be observed. The mirrors should be 
controlled to avoid sensor saturation with radiation. By the next decade, entire plant measurements 
will be placed on the top of the canopy using codes easily interpreted by satellites, avoiding excessive 
data transmission. 

5. Conclusions 

A lot of work has been carried out to save farms from pathogen attacks, although some attacks have 
been really devastating, as in the citric industry in Florida. Research is being done locally in each 
country or through grants with developed countries where sophisticated equipment is available for 
doing the tests. Results have saved million of hectares from its premature damage, and research will 
continue if we need to provide food for the world inhabitants in the future. 

Disease warning systems are being used all around the world for all the existing crops requiring 
only a net of meteorological stations. Conventional stations require the addition of the wetness sensor 
which has the ability to determine the humidity in the canopies and fruits, being the essential 
component of the risk system. Although there are a lot of sensor designs its trend is to find a non-
contact sensor which can provide the information quickly and accurately. Programs and algorithms are 
not sophisticated and software properly designed for tomatoes is being also used in apple orchards 
(TOMCAST). This software has the advantage that it predicts the disease but it cannot be used in a 
general approach to detect all type of diseases on an orchard. These warning systems provide huge 
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savings on fungicide application reducing fruit contamination for the consumers. Its maintenance is 
high, loosing accuracy with time so research is being carried out to find other risk systems.  

Remote sensing technology is advancing quickly and soon will be able to predict farm diseases if 
the temporal resolution can be reduced to a maximum of one day. Its spatial accuracy should be 
reduced to 10 cm increasing the quantity of data collected. A hyperspectral imaging, thermographic 
and chlorophyll fluorescence setup is the optimal system required to predict diseases from the sky, but 
environmental variables and canopy structures affect measurements and require special algorithms for 
proper operation. 

Disease detection of fruits on vegetable in sorters is in a more advanced stage. Defect products can 
be separated from healthy ones with high accuracies avoiding higher losses during transport and user 
consumption. In some cases NMR has been used and its application on real-time systems is not 
economically feasible at the moment, as well as the electronic nose. X-ray systems are getting cheaper 
and can be used to detect weevils inside fruits in a continuous sorter system. Throughout all this 
review advances on sensor technologies and their algorithms have been analyzed, although it was 
impossible to include all fruits and vegetables. In the future NMR high speed on-line systems will be 
available and all the internal properties of the produce will be known, while remote sensing will have 
to work in order to avoid farm damaging by diseases. 

This paper has reviewed important applications carried out during this century and important 
changes will come with nanotechnology sensors, biosensors and MEMS. Algorithms will be simpler 
and always iterative, changing as fruits evolve naturally. Even intelligent ants, spiders, wasps and birds 
can be used to assess crop status in the field. 
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