
Citation: Woodrum, C.; Wagner, T.;

Weeks, D. Improving 2–5 Qubit

Quantum Phase Estimation Circuits

Using Machine Learning. Algorithms

2024, 17, 214. https://doi.org/

10.3390/a17050214

Academic Editors: Hua-Lei Yin and

Nan-Run Zhou

Received: 15 March 2024

Revised: 10 May 2024

Accepted: 11 May 2024

Published: 15 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Improving 2–5 Qubit Quantum Phase Estimation Circuits Using
Machine Learning
Charles Woodrum 1,*, Torrey Wagner 1 and David Weeks 2

1 Data Analytics Certificate Program, Graduate School of Engineering and Management, Air Force Institute of
Technology, Wright-Patterson AFB, OH 45433, USA; torrey.wagner.2@us.af.mil

2 Department of Engineering Physics, Graduate School of Engineering and Management, Air Force Institute of
Technology, Wright-Patterson AFB, OH 45433, USA; david.weeks@afit.edu

* Correspondence: woodrum.27@osu.edu

Abstract: Quantum computing has the potential to solve problems that are currently intractable to
classical computers with algorithms like Quantum Phase Estimation (QPE); however, noise signifi-
cantly hinders the performance of today’s quantum computers. Machine learning has the potential to
improve the performance of QPE algorithms, especially in the presence of noise. In this work, QPE
circuits were simulated with varying levels of depolarizing noise to generate datasets of QPE output.
In each case, the phase being estimated was generated with a phase gate, and each circuit modeled
was defined by a randomly selected phase. The model accuracy, prediction speed, overfitting level
and variation in accuracy with noise level was determined for 5 machine learning algorithms. These
attributes were compared to the traditional method of post-processing and a 6x–36 improvement in
model performance was noted, depending on the dataset. No algorithm was a clear winner when
considering these 4 criteria, as the lowest-error model (neural network) was also the slowest predictor;
the algorithm with the lowest overfitting and fastest prediction time (linear regression) had the high-
est error level and a high degree of variation of error with noise. The XGBoost ensemble algorithm
was judged to be the best tradeoff between these criteria due to its error level, prediction time and
low variation of error with noise. For the first time, a machine learning model was validated using
a 2-qubit datapoint obtained from an IBMQ quantum computer. The best 2-qubit model predicted
within 2% of the actual phase, while the traditional method possessed a 25% error.

Keywords: quantum computing; ensemble models; neural network; quantum phase estimation;
post-processing; measurement interpretation

1. Introduction

Quantum Phase Estimation (QPE) is a quantum computing algorithm that estimates
the phase of an eigenvalue or of multiple eigenvalues of a unitary operator U. To further
understand QPE and the problem addressed in this paper, we will first explore some
of the mathematical background of quantum mechanics and the derivation of the QPE
algorithm [1–4]. Quantum mechanics describes physical particles or groups of particles
using states (usually denoted with a “ket” |ψ ⟩) in a Hilbert space. For this application of
quantum computing, the Hilbert space describes particles or groups of particles with states
in a Hilbert space spanned by two basis states, |0⟩ or |1⟩. In this case, the particle or group
of particles is called a “qubit”, and a general qubit state is denoted |ψ ⟩ = α|0⟩ + β|1⟩
with complex α, complex β and |α|2 + |β|2 = 1. When a qubit’s state is measured, the
wavefunction collapses into one of the basis states with probability |⟨ϕ|ψ⟩|2, where the
“bra” ⟨ϕ| = ⟨0| or ⟨ϕ|= ⟨1| , with each bra being an element in the dual space to the space
in which the ket |ψ⟩ lies.

Changing the state of a qubit within the standard QPE circuit is mathematically repre-
sented by acting on the state of the qubit with a unitary operator, which preserves the sum
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of squares of all vector components. Unitary operators are operators in the Hilbert space
such that UU† = U†U = I, where U† is the conjugate-transpose of the operator and I is the
identity operator. Measurement of a qubit is a non-unitary operation, though, in this context,
it is performed at the end of the circuit and is described probabilistically. While not incor-
porated in this simulation of QPE circuits, another application of non-unitary operations
includes circuit noise analysis associated with open system dynamics [4]. It is often neces-
sary to work with composite systems representing more than one quantum object. In this
case, basis states of the whole system, |ψ ⟩, are Kroncker products (a specialization of finite-
dimensional tensor products) of the individual basis states, denoted, for example, with
|ψ ⟩ = |0⟩ ⊗ |0⟩⊗|0⟩ or simply as |0⟩|0⟩|0⟩ or |000⟩. Operators on the composite state are

also Kronecker products of individual operators, so U |ψ⟩ = U1 ⊗ U2|00⟩ = U1|0⟩ ⊗ U2|0⟩.
We can re-express the qubit state written as a series of 0’s and 1’s into a decimal number by
assigning an order to the qubits, then converting the binary string into a decimal number.
Thus, we could take the string of qubits q1, q2, . . . , qn and create the decimal number
x = ∑n

k=1 2k−1qk. Most of the paper deals with results written in this decimal form.
The QPE algorithm is used in a number of quantum codes and determines the eigenval-

ues of a general unitary operator U with corresponding eigenvectors, |u⟩. The eigenvalues
have the form e2πiθ , where θ ∈ [0, 1) is the “phase” of the unitary operator. In this paper,
we will deal with a restricted situation where we only have one phase to estimate for each
unitary operator.

In order to estimate the phase of some unitary operator, we must begin with a circuit
with N qubits split into a first and second register with n and m qubits, respectively. Initially,
all qubits in the first register are set to the |0⟩ state and the qubits in the second register
are set to an eigenvector of the unitary operator |u⟩2, where the subscript 2 denotes the
fact that this ket refers to the state of the second register. This leads to an initial state of
|ψ1⟩ = |0⟩⊗n ⊗ |u⟩2. We apply a Hadamard gate H to each qubit in the first register to yield
the state in Equation (2):

H|0⟩ = 1√
2
(|0⟩+|1⟩) H|1⟩ = 1√

2
(|0⟩−|1⟩) (1)

|ψ2⟩ = 2−
n
2 (|0⟩+|1⟩)⊗n ⊗ |u⟩2 (2)

Following this operation, we apply a controlled unitary operation 2j−1 times for the
jth qubit in the first register. A controlled unitary operation, denoted CU, will apply the
unitary operation to the second register if the control qubit is |1⟩ and not apply it if the
qubit is |0⟩, with the result shown in Equation (3). This concludes the operations that
involve the second register.

|ψ3⟩ = 2−
n
2

{⊗n
j=1 CU2j−1

(|0⟩+ |1⟩)
}
|u⟩2

= 2−
n
2

{⊗n
j=1

(
|0⟩+ |1⟩ U2j−1

)}
|u⟩2

= 2−
n
2

{⊗n
j=1

(
|0⟩+ e2πiθ2j−1 |1⟩

)}
|u⟩2

= 2−
n
2

2n−1
∑

k=0
e2πikθ |k⟩ ⊗ |u⟩2

(3)

The next step in the derivation is to apply the inverse quantum Fourier transform F†.
The F† is based on the inverse discrete Fourier transform (IDFT), which takes a (normalized)
vector of complex numbers, say x0, x1, . . . , xN−1, and outputs another vector of complex
numbers y0, y1, . . . , yN−1, where yk = 1√

N ∑N−1
j=0 xje−2πijk/N . The F† takes the quantum

state in the numerical basis and transforms it to a superposition of all states in the numerical
basis with the coefficient of each basis state in the transformation being the IDFT value.
The effect of F† is to transform the n qubit state |j⟩ to the state F†|j⟩ shown in Equation (4).
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The F† operator is applied to the first register to obtain the final state of the circuit |ψ4⟩
before measurement shown in Equation (5):

F†|j⟩ = 2−n/2
2n−1

∑
x=0

e−2πijx/2n |x⟩ (4)

|ψ4⟩ = F†|ψ3⟩ = 2−n
2n−1

∑
k=0

2n−1

∑
x=0

e−2πik2−n(x−2nθ)
∣∣∣x〉⊗ |u⟩2 (5)

Measurement in QPE is performed only on the first register. Each of the qubits are mea-
sured to produce a string of bits, which is then converted into a decimal number between 0
and 2n−1. The probability of measuring a given number x is the probability of measuring
the state |x⟩ in the |ψ4⟩ equation above, and the probability of such a measurement is the
modulus squared of the coefficient of state |x⟩. Thus, the probability of x given θ, denoted
P(x|θ) =

∣∣⟨x|ψ4⟩|2 , is shown in Equation (6):

P(x|θ) =
∣∣∣∣∣2−n

2n−1

∑
k=0

2n−1

∑
x′=0

e−2πik2−n(x′−2nθ)
〈

x
∣∣x′〉∣∣∣∣∣

2

=

∣∣∣∣∣2−n
2n−1

∑
k=0

e−2πik2−n(x−2nθ)

∣∣∣∣∣
2

(6)

When θ can be represented exactly by a decimal string of n qubits (say 0.θ1θ2 · · · θn),
then this probability distribution P(x|θ) becomes 1 for the numerical value associated
with the string of bits representing θ (in this case P

(
∑n

d=1 θd2d
∣∣∣θ) = 1 with 0 otherwise).

However, when this is not possible (like for θ = 1/3), P(x|θ) will have non-zero values for
all x. An example of the final circuit diagram is shown in Figure 1, which depicts a 3-qubit
QPE circuit diagram where the unitary operator is a phase gate corresponding to θ = 1/3 in
the probability distribution. Note that an X gate is applied to the second register (q3) to
put the second register into an eigenstate of the phase gate. For validation of this work, a
2-qubit version of this circuit was run on the IBM Perth quantum computer.
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Figure 1. A circuit diagram for a 3-qubit QPE circuit where the unitary operator is a phase gate with
phase 2/3—this corresponds to a θ = 1/3 in the probability distribution.

The process of doing QPE is akin to sampling from P(x|θ) with x ∈ {0, 1, . . . , 2n − 1}
and using the results to estimate the exact value of θ. The main difficulty with performing
QPE on today’s quantum devices is that present-day devices are plagued by noise in spite
of mitigation attempts [5–7], which adds an unknown term to the distribution. The process
of performing QPE on today’s devices is similar to sampling from another distribution
∼
P(x|θ) =

∣∣∣2−n∑2n−1
k=0 e−2πik2−n(x−2nθ)

∣∣∣2 + ϵ(x), where
∼
P(x|θ) is a proper probability distri-

bution, but the form and effect of ϵ(x) is not known with certainty. It is possible to recreate
some types of noise in simulations of quantum circuits, and one type of noise, depolarizing

noise, is added in this paper. Examples of
∼
P(x|θ) are found in Section 2.2.

The datasets were created with 21 levels of depolarizing noise so that the model per-
formance on a variety of noise could be evaluated. The researchers sought to have a single,
tunable noise parameter for circuit generation, and depolarizing noise was straightforward
to implement. Levels of noise from 0 to 0.2 in steps of 0.01 were chosen to represent the
range of noise realistically possible, from ideal at 0 to extremely high at 0.2. It is worth not-
ing that this choice was mostly for practical purposes, since it is computationally expensive
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to perform these simulations. Someone could, however, produce more data with finer than
0.01 steps in noise and go beyond a noise level of 0.2.

In the training of the models, the level of noise will be uncertain since the quantum
phase is estimated by a model, and it is desirable for a model to have consistent predictive
performance regardless of the noise level. An example of this is shown in Figure 2, where
the left panel shows a model whose performance varies with noise, and the right panel
shows mostly level performance.
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Figure 2. Example of undesired model performance that varies with the level of simulated noise (left)
and desired level model performance with the level of simulated noise (right). The model metric
in the y-axis is the mean squared error (MSE), and these examples use the XGBoost algorithm with
different levels of the maximum depth parameter.

1.1. Data Understanding

The phases of data understanding, data preparation, modeling and evaluation from
the cross-industry standard process for data mining (CRISP-DM) were followed in this
analysis [8]. The first phase seeks to understand the datasets analyzed in this work. The
datasets were generated using a simulated QPE circuit created using IBM’s qiskit, for 2-,
3-, 4- and 5-qubit circuits in a process described in Sections 2.1 and 2.2. In a circuit with n
qubits in the first register, we measure n qubits once the QPE algorithm described in the
introduction is implemented. Each qubit is measured as a 0 or 1. Since there are n of these
qubits, we can measure 2n possible outputs. When this sequence of n qubits is considered
as a binary number, it can be converted into a decimal number ranging from 0 if all 0’s are
measured, to 2n − 1 if all 1’s are measured. A single “shot” of the circuit, corresponding to
one sampling from the probability distribution described in the Introduction, is just one of
these values in the range 0 to 2n − 1. The same circuit is run repeatedly to sample many
times from the probability distribution. An example for a 2-qubit circuit is presented: if we
measure it 400 times and 00 is measured 100 times, 01 is measured 200 times, 10 is measured
50 times, and 11 is measured 50 times, then the feature 00 takes on the value 100/400 = 0.25.
In a similar manner, feature 01 takes on the value 200/400 = 0.5, and features 10 and 11 take
on the value 50/400 = 0.125. Therefore, the vector of features representing one data point
would be [0.25, 0.5, 0.125, 0.125], and we would hope to derive an estimation of the phase
from this vector of four features. The process is analogous in systems of higher qubits, and
the number of features grows like 2n. In this experiment, we have generated a dataset with
these feature vectors for many different circuits with some associated phase and recorded
the noise parameter (described in Section 2.2) and the phase in order to train the model.

Each row of the dataset contains the transmitted phase, the added noise level and
the features that contain the quantum information. For a 2-qubit system there are four
features, and the 3/4/5 qubit systems have 8/16/32 features, respectively. For the 2-qubit
dataset, histograms with kernel density estimate overlay are presented in Figure 3 for the
transmitted phase (left) and induced noise level (right). Uniform distributions of phase
and noise were expected as the transmitted phase was randomly generated, and data were
generated uniformly for 21 different noise levels. If these values were unequally distributed,
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it would be difficult to verify that model performance was consistent across their range.
The datasets for the 2-qubit and 5-qubit systems contained 210,000 rows, the 3-qubit dataset
contained 52,500 rows, and the 4-qubit dataset contained 105,000 rows.

Algorithms 2024, 17, x FOR PEER REVIEW 5 of 18 
 

Each row of the dataset contains the transmitted phase, the added noise level and 

the features that contain the quantum information. For a 2-qubit system there are four 

features, and the 3/4/5 qubit systems have 8/16/32 features, respectively. For the 2-qubit 

dataset, histograms with kernel density estimate overlay are presented in Figure 3 for 

the transmitted phase (left) and induced noise level (right). Uniform distributions of 

phase and noise were expected as the transmitted phase was randomly generated, and 

data were generated uniformly for 21 different noise levels. If these values were une-

qually distributed, it would be difficult to verify that model performance was consistent 

across their range. The datasets for the 2-qubit and 5-qubit systems contained 210,000 

rows, the 3-qubit dataset contained 52,500 rows, and the 4-qubit dataset contained 

105,000 rows. 

 

Figure 3. Histogram with kernel density estimate overlay for the transmitted phase (left) and in-

duced noise level (right) in the 2-qubit dataset. The y-axis for both subpanels is the relative count 

in each vertical bar of the histogram. 

It is expected that the distributions of each channel in an n-qubit system will be sim-

ilar, and Figure 4 confirms this, showing histograms of each channel for the 2- and 3-

qubit systems. Verifying this expectation in Figure 4 increased confidence in the integrity 

of the large datasets. The non-normal distributions are the expected result of the QPE 

probability (Equation (6)) and the injected noise levels. In each sub-panel of Figure 3, the 

non-normal distributions are explained as follows: 

• Values near 0 should occur most often, while values close to 1 only occur when the 

phase exactly lines up with a value of 𝑘/2𝑛, where 𝑘 is an integer between 0 and 

2𝑛 − 1. 

• We expect a small peak at 0.405 since this corresponds to a value of the phase close 

to (𝑘 ± 0.5)/2𝑛, where there are 2 peaks of equal size near 0.405 rather than one 

largest peak, as is the case when 𝜃 is not close to (𝑘 ± 0.5)/2𝑛. 

• The 4- and 5-qubit system dataset histograms are similar to Figures 3 and 4. 
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vertical bar of the histogram.

It is expected that the distributions of each channel in an n-qubit system will be similar,
and Figure 4 confirms this, showing histograms of each channel for the 2- and 3-qubit
systems. Verifying this expectation in Figure 4 increased confidence in the integrity of the
large datasets. The non-normal distributions are the expected result of the QPE probability
(Equation (6)) and the injected noise levels. In each sub-panel of Figure 3, the non-normal
distributions are explained as follows:

• Values near 0 should occur most often, while values close to 1 only occur when the
phase exactly lines up with a value of k/2n, where k is an integer between 0 and 2n − 1.

• We expect a small peak at 0.405 since this corresponds to a value of the phase close to
(k ± 0.5)/2n, where there are 2 peaks of equal size near 0.405 rather than one largest
peak, as is the case when θ is not close to (k ± 0.5)/2n.

• The 4- and 5-qubit system dataset histograms are similar to Figures 3 and 4.
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1.2. Literature

In the literature, researchers have explored measurement interpretation as an alterna-
tive to the highest-peak method [9] and using machine learning for noise prediction [10].
The present work is the first instance of machine learning being applied to the problem of
interpreting quantum phase estimation measurement output, other than preliminary work
performed by the author with a less sophisticated noise model [11]. The goal of the present
work is to find a method for QPE that improves upon the traditional, highest-peak method
of estimation.

2. Materials and Methods

The code for the models was prepared and executed within a Python 3.10.12 environ-
ment, including sklearn 1.2.2 and keras 2.13.1. Each of the 2/3/4/5-qubit datasets were
divided into an 80% training set and a 20% test/holdout set. For neural network algorithms,
the training set was further subdivided into 80% training and 20% validation sets. The
methods described in this section include the quantum circuit modeling, generation of
the dataset, noise generation, details on each of the algorithms and a speed-of-prediction
analysis. The methods are summarized in the pseudocode below:

• Define the quantum circuit

# Select phase values uniformly between [0, 2π) for generating circuits.
# Create qiskit QPE circuits with qubits = [2,3,4,5] in the first register and 1 qubit

in the second register.
# Specify the unitary operator and eigenvector.

• Define noise and create datasets

# Introduce depolarizing noise with probability p using qiskit NoiseModel.
# Simulate circuits with 21 noise levels p = [0.00, 0.01, 0.02, . . ., 0.20].

• For dataset in qubits = [2,3,4,5]:

# Create and split datasets with phase, noise level and features for each quantum
circuit simulated.

# For algorithm = [linear regression, random forest, XGBoost ensemble, neural
network]:

• Evaluate overall performance of traditional phase estimation
• For noise level p = [0.00, 0.01, 0.02, . . ., 0.20]

# Evaluate each algorithm to determine performance variation with
noise

• Training parameters are summarized in Tables 1 and 3

• Analyze and compare model performance

# Compare metrics = [MSE, prediction speed, overfitting, variation of accuracy
with p] for each algorithm.

# Select the optimal algorithm as the best tradeoff of these metrics.

• Validation

# Initialize IBMQ Perth quantum computer using qiskit_ibm_runtime.
# Send circuit output to trained models.
# Compare predictions from models to the analytic results.

2.1. Quantum Circuit Modeling

In order to construct the datasets, a Python package performing high-level quantum
computing tasks was used. The package qiskit developed by IBM was used to generate
QPE circuits with either 2, 3, 4 or 5 qubits in the first register and 1 qubit in the second
register. Aside from the number of qubits in the first register, the distinguishing features
of a standard QPE circuit are the specifications of U and |u⟩. In our case, regardless of the
number of qubits in the first register, the unitary operator whose phase was being estimated
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was the phase gate P(ϕ) from Equation (6). The phase gate denoted in matrix form, and its
eigenvectors |0⟩ and |1⟩ are shown in Equations (7)–(9). The corresponding eigenvalues are
1 and eiϕ.

P(ϕ) =
[

1 0
0 eiϕ

]
(7)

|0⟩ =
[

1
0

]
(8)

|1⟩ =
[

0
1

]
(9)

The second register is initially in the state |0⟩, but an X gate is applied to the qubit trans-
forming it into the |1⟩ state. Thus, when the unitary operations are applied, U|u⟩ = e2πiθ

∣∣u〉
becomes P(ϕ)|1⟩ = eiϕ

∣∣1〉, so we have θ = ϕ/2π. The values of θ estimated by the QPE
circuits were chosen uniformly from the interval [0, 1), and thus the values of ϕ in each
Phase gate were chosen uniformly from the interval [0, 2π). For each value of θ, 21 circuits
were generated with different levels of noise, the specifications of which are detailed in
Section 2.2.

2.2. Noise Modeling

Noise was introduced via the qiskit NoiseModel, which contains options for adding
many different types of noise to the circuit. In this case, in order to create a tunable
parameter of noise, the type of noise added was the depolarizing error of probability p for
both 1 and 2 qubit gates since the circuits in this work have only 1 and 2 qubit gates. The
circuit having noise parameter p essentially means that there is probability p that, when a 1
or 2 qubit gate is applied, the qubits involved will depolarize, going from their initial state
(needed for the algorithm to work) to a mixed state. The further details of quantum circuit
noise and depolarizing noise have been explored in the literature; however, they are beyond
the scope of this paper [4,12,13]. Figure 5 shows the feature counts when 100,000 shots are
simulated within a 4-qubit system with θ = 1/3. The left/center/right panels show the
features with noise levels of p = 0, 0.05 and 0.2. The result of the absence of noise (left) was
a strong, noticeable peak near the best approximation of θ = 1/3, and a less prominent peak
when noise was increased (right) when p = 0.2.
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Note that the y-axis is not fixed.

The result of increasing the noise created a decaying signal in the ultimate distribution.
Each time a phase was selected for an n-qubit circuit, a circuit estimating that phase was
created in qiskit 21 times, each with a noise parameter p ranging from 0 to 0.2 in steps of
0.01. This resulted in 21 data points for each of the phases that was used to train the models.
With the exception of n = 2, the circuits were simulated with 1000 · 2n shots; essentially,
samples from the probability distribution, where n is the number of qubits (ranging from
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2 to 5). The 2-qubit circuits sampled 10,000 phases, the 3-qubit circuits sampled 2500 phases,
the 4-qubit circuits sampled 5000 phases, and the 5-qubit circuits sampled 10,000 phases.

2.3. Metrics and Algorithms

The modeling effort analyzed the potential of five algorithms to predict the quantum
phase of a series of qubits: the traditional method of estimating the phase of the eigenvalue
of a unitary operator, linear regression, random forest, the ensemble XGBoost algorithm
and neural networks. Additionally, the performance of a trivial model was measured by
calculating the performance of a model that predicted the mean of the dataset.

The mean squared error (MSE) was selected as the primary performance metric due
to its widespread usage in regression problems. Overfitting is another metric used in this
work, which is defined as the MSE measured on the training dataset divided by the MSE
measured on a holdout/test dataset. A value of overfitting greater than 1 indicates the
model does not generalize well on unseen data. A small level of overfitting is tolerated but
a high level is undesirable. The performance for all algorithms is summarized in Section 3.

2.3.1. Traditional Phase Estimation

Recall that the QPE algorithm estimates the phase of the eigenvalue of a unitary
operator (i.e., the θ ∈ [0, 1) in the characteristic equation Û|u⟩ = e2πiθ

∣∣∣u〉). The traditional
method of estimation only approximates the phase to a precision limited by the number of
qubits in the quantum computer. This is performed by taking the most occurring output
(in the numerical basis ranging from 0 to 2n−1, where n is the number of qubits in the first
register) and dividing it by 2n. Thus, the traditional estimator for the phase based on a
given dataset is the mode of the dataset divided by 2n. This is the traditional method since
it can be shown that the mode of the dataset occurs with probability at least 4/π2 ≈ 0.405,
and that this is the best approximation of θ. As an example, if the most common sequence
of bits in a 4-qubit first register was 0110, the estimation for θ would be 10/16 = 0.625. This
traditional method leaves information about the phase behind in the resulting distribution
since values of θ in the range (9.5/16, 10.5/16) will all produce distinct distributions,
all with mode 0110. That is, given n bits used in the first register, the traditional, mode
estimator can only estimate θ to one part in 2−n bits of accuracy. Note that, due to the
periodic nature of the complex exponential, θ near 1 can cause the mode to occur at 0
instead of 2n − 1. For large n, this method can produce a very accurate result, but large
numbers of highly accurate qubits are not available on today’s computers. We are seeking
to compare how well the traditional method compares to machine learning methods to
predict the phase of a unitary operator. Efforts to use machine learning to estimate the
phase given the output of the algorithm would be considered successful if they achieved a
level of precision greater than that afforded by the traditional and trivial method for the
given number of qubits.

The model performance in traditional estimation was calculated on the entire dataset,
as opposed to using the test/holdout datasets that the other algorithms used. This is due to
the traditional method relying on a calculation based on the features for each row, instead
of an algorithm that learns and generalizes on the training data.

2.3.2. Linear Regression

Within Python, the sklearn ordinary least squares (OLS) linear regression algorithm
was applied as it is a common algorithm for regression problems. OLS linear regression is a
statistical method used to model the relationship between the predictors (channels) and the
dependent variable (quantum phase) by fitting a linear equation to the data. The algorithm
minimizes the sum of squared differences between the observed and predicted values of
the dependent variable. Other forms of linear regression, such as ridge regression or lasso
regression, were not used as the dataset did not suffer from multi-collinearity or have need
for feature selection [15]. Within the sklearn OLS algorithm, the default Moore–Penrose
pseudo-inverse solver was used, and all features were used without interaction terms.
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2.3.3. Tree-Based Methods

Two tree-based methods were evaluated in this work: the sklearn RandomForestRe-
gressor algorithm was evaluated as it performed well in a quantum phase transition
problem [16], and the extreme gradient boosting algorithm XGBoost was selected to inves-
tigate the performance of an ensemble algorithm, which can often rival the performance
of neural networks. Tree-based algorithms are known to overfit if the maximum depth
hyperparameter is too high [17,18], and the example in Figure 6 highlights this issue. The
right side of the figure shows the training and test dataset performance for max_depth = 30,
which overfits the training dataset by 85%. The inferior performance of the green test
dataset curve shows that the model has memorized the training data and does not perform
well on the test data. The left side of the figure shows the same chart for max_depth = 10,
where overfitting is limited to 15%. Even though the “entire dataset” metric makes it seem
the max_depth = 30 model is better, it is noteworthy that the mean “test dataset” perfor-
mance is very similar to the overfit max_depth = 30 model. The max_depth = 10 model
will generalize better on unseen data, and its performance is equivalent on unseen data.
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Figure 6. Overfitting example for the random forest algorithm and the 2-qubit datasets for a maximum
depth parameter of 10 (left) and 30 (right). For these examples, the MSE of the training dataset
(orange), test dataset (green) and entire dataset (blue) are presented for varying levels of noise.

The random forest algorithm used 200 trees, a squared error criterion, and the maxi-
mum depth parameter was swept to determine the best performance that can be obtained
with <15% overfitting. In this analysis, the maximum depth was varied from 1 to 11 for
each of the 2/3/4/5-qubit models to determine this parameter.

Figure 7 shows the evaluation process for the 2-qubit model, where a model was
created for each value of maximum depth ranging from 1–11. In Figure 7, the x-axis is
the maximum depth parameter, and the blue line shows that model MSE improves with a
higher depth parameter. The green line plots overfitting (defined in Section 2.3), showing
that the algorithm quickly overfits as the maximum depth parameter is increased. The
dashed green line shows a 15% overfitting threshold, which, in this case, is exceeded for a
value of maximum depth > 10. The maximum depth parameter where overfitting is limited
to <15% is provided in Table 1 for the 2/3/4/5-qubit models, for both the random forest
and XGBoost algorithms.

Similar to the random forest algorithm, the XGBoost maximum depth parameter was
swept to determine the highest depth parameter that can be used with <15% overfitting.
The results of the sweep are presented in Table 1 for the 2/3/4/5-qubit models, and it can
be seen that the XGBoost algorithm overfit the data at lower values of maximum depth.
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Figure 7. For the 2-qubit dataset, model MSE as measured on the test dataset (blue line, right axis),
overfitting ratio (green line, left axis) and 15% overfitting threshold (dashed green line), for varying
levels of the maximum depth parameter.

Table 1. Threshold for maximum depth to achieve <15% overfitting on the test/holdout dataset.

Algorithm 2 Qubit 3 Qubit 4 Qubit 5 Qubit

Random Forest 10 7 6 7
XGBoost 4 2 2 3

2.3.4. Neural Network

The Python keras framework was used to create neural network models using a se-
quential architecture, with a baseline model and hyperparameter-tuned model created
for each dataset. The baseline model consisted of four layers: a TensorFlow preprocessing
normalization layer to standardize the inputs, two hidden dense layers of ReLU neurons
with L2 = 0.001 regularization, and an output dense layer consisting of a single linear
neuron signifying a regression problem. An adaptive moment estimation (Adam) op-
timizer was selected as the optimizer, and the model was trained for 240 epochs at an
initial learning rate of 0.2. To aid in training, a callback halved the learning rate every
30 epochs. A 5–100 neurons sweep was conducted to establish a starting point for the
multi-dimensional hyperparameter optimization.

The baseline neural network size was informed by Widrow’s rule of thumb, which
relates the number of neurons to the number of data points P, the number of weights
(neurons × (inputs + 1)), and the desired error level according to Equation (10) [19].

P =
neurons × (inputs + 1)

error
(10)

The maximum recommended neuron count for the 2/3/4/5-qubit models was then
calculated as 1250/175/185/190 neurons (respectively) by solving Equation (10) for neurons.
The inputs to the equation were the average 3% error level in this work, 4/8/16/32 inputs,
and the 210,000/52,500/105,000/210,000 row dataset size. The 2-qubit recommendation
was much larger than the others due to possessing only four inputs and having 210,000 rows
of data. Maximum neuron counts in the hyperparameter sweeps were limited to within 3x
of the Widrow recommendations.

Within Python, the neural network model’s hyperparameters were tuned using the
Adaptive Experimentation Platform (Ax) library. Ax uses Bayesian optimization for nu-
meric hyperparameters, which include the initial learning rate, number of hidden layers,
neurons per layer and batch size. Bandit optimization was used to tune the categorical
optimizer hyperparameter. The training dataset was split into training and validation, and
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the hyperparameters were tuned using the validation dataset. After tuning to find the
optimal set of hyperparameters, the final metrics were calculated using the test/holdout
dataset. The optimal hyperparameters are presented in Section 3.5 for each model.

2.4. Speed Analysis and Validation on an IBM Device

If a research application were to require a fast prediction time, the time to execute
model.predict() on each dataset was recorded within Python for each algorithm in order to
provide this for a researcher’s consideration. A 2-qubit datapoint was obtained from an
IBMQ quantum computer by running qiskit_ibm_runtime [20]. The quantum computer was
IBMQ_perth, whose qubit layout is shown in Figure 8. This quantum computer is no longer
available for use but the following specifications have been reported for this device in the
literature [21,22] and information about the job is retrievable [23]. It is a 7 superconducting
transmon qubit quantum computer with a quantum volume of 32. The basis gates are the
CNOT, I, RX, SX, and X gates. The T1 time = 168.85 msec and the T2 time = 132.51 msec.
The median CNOT error rate = 8.690 × 10−3 and the median SX error rate = 2.8060 × 10−4.
The median readout error = 2.930 × 10−2.
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individual transmon qubits.

There was no use of any error mitigation from qiskit_ibm_runtime for these data.
The phase and channels were 1/3 and [0.092, 0.58175, 0.181, 0.14525], respectively. This
data point used for validation was directly extracted from the IBM Quantum jobs page
on the date of the experiment. The best 2-qubit model was then used to predict this
datapoint, and the prediction was compared to the actual phase and the traditional method
of phase estimation.

3. Results

In this section, the model accuracy, prediction speed, overfitting level and variation in
accuracy with noise level for five quantum phase estimation algorithms are presented in
Table 2. Additionally, the performance of the trivial mean-predicting model is shown in the
top row. Notable aspects of modeling using each of the algorithms are discussed below
the table.

Table 2. Test/holdout MSE for each algorithm and dataset. The speed column contains the prediction
speed as measured on a large batch of the dataset.

Algorithm 2 Qubit
MSE

3 Qubit
MSE

4 Qubit
MSE

5 Qubit
MSE

Average Execution
Speed (Records/s) Overfit Notes

Trivial 0.0839 0.0816 0.0843 0.0828 N/A -- Mean-predicting model

Traditional 0.1200 0.0160 0.0190 0.0180 10,000 -- Mostly level noise profile

Linear
Regression 0.0500 0.0240 0.0330 0.0330 51,800,000 <1%

No interaction terms used.
Highly varying noise
profile

Random Forest 0.0080 0.0070 0.0060 0.0035 228,000 <15% Moderately varying noise
profile

XGBoost 0.0090 0.0065 0.0035 0.0015 798,000 <15% Low varying noise profile

Ax-tuned NN 0.0069 0.0027 0.0011 0.0005 13,100 <10% Low varying noise profile
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3.1. Traditional Phase Estimation

The performance of the traditional, highest-peak estimator is shown in Figure 9 for
all four datasets and the 21 levels of noise present in each dataset. The 2-qubit dataset is
shown in blue and has notably worse performance than the other datasets. This is due to
the fact that the error of this method goes as 2−n, where n is the number of qubits. Thus,
the jump in error from 2 to 3 qubits is larger than the jump from 3 to 4 and from 4 to 5.
The similarity in error for the 3/4/5 qubit datasets is due to the dominant contribution of
phases near 0 and 1, where phases in the interval

(
2−n−1, 1

)
will generate a prediction of 0

using the traditional method. This is because, as was covered in Section 2.3.1, the highest
peak of the distribution occurs at the integer closest to 2nθ, though this is periodic. For
θ ∈

(
2−n−1, 1

)
, this integer is 0 and not 2n − 1, causing a peak at 0 and a large contribution

to MSE. In fact, the 3/4/5-qubit datasets all have similar performance near MSE = 0.02. The
traditional method exhibits mostly level performance across various noise levels, which is
desirable. However, this method had the poorest performance of all algorithms tested, and
on the 2-qubit dataset it performed worse than the trivial mean-predicting model.
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3.2. Linear Regression

The performance of the 3-qubit and 5-qubit linear regression models is shown in
Figure 10, and the 2-qubit and 4-qubit datasets possessed similar attributes. In each figure
panel, the MSE is calculated for the training dataset (orange) test dataset (green) and
the entire dataset (blue) for the 21 values of noise. As is visible in the figure, the linear
regression algorithm had a very low level of overfitting, calculated as <1% by comparing
the performance of the training and test datasets. An undesirable characteristic of the linear
regression algorithm is that the model performance on all datasets had a high degree of
MSE variation with noise level.
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3.3. Tree-Based Algorithms

Figure 11 presents the model performance on the test/holdout split for the random
forest (left) and XGBoost (right) tree-based algorithms for all datasets. The unique value
of max_depth from Table 1 was used to limit overfitting to <15% for each dataset and
algorithm, and that value of max_depth is visible in the legend of each panel. The two algo-
rithms possessed substantially improved performance when compared to linear regression,
and similar performance when compared to each other. The figure shows that the variation
in MSE with noise was less for the XGBoost algorithm.
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3.4. Neural Networks

Two approaches to NN were studied: a baseline 1D hyperparameter sweep using
neuron count, and a multi-dimension hyperparameter sweep using Ax. For the 1D sweep,
the optimal neuron count for the 2/3/4/5-qubit models was found to be two hidden layers
of 200/50/35/50 neurons, respectively.

The Adaptive Experimentation Platform (Ax) library was used to tune the neural
network model’s hyperparameters, and Ax converged on a solution within 30 optimization
loops. Table 3 presents a summary of the multi-dimensional hyperparameter tuning using
Ax, including the hyperparameters tuned, their search range, the best set of hyperpa-
rameters for each dataset, and the performance achieved on the test/holdout potion of
each dataset.

Table 3. Ax-optimized neural network hyperparameter sweep range, and the optimal set of hyperpa-
rameter selected for each model. The performance is calculated on the test/holdout dataset. SGD:
stochastic gradient descent; RMSprop: root mean square propagation.

Hyperparameter Range 2 Qubit 3 Qubit 4 Qubit 5 Qubit

Initial learning rate 0.1–0.3 0.3 0.25 0.28 0.19
Number of

hidden layers 1–4 3 3 4 3

Neurons/layer 5–100 88 74 94 47
Batch size 128–4096 128 522 128 307

Optimizer Adam, SGD,
RMSprop SGD SGD SGD SGD

Test MSE -- 0.0069 0.0027 0.0011 0.0005
Overfit % -- −2.1% 10% 1.6% 5.6%

For the 2-qubit model the NN training curves and model performance on varying
levels of noise are presented in Figure 12. The left side of the figure shows the impact of
the decreasing learning rate, which enables small improvements in performance every
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30 epochs of training. The right side of the figure shows relatively level performance across
a range of noise values, which is desirable. For the 3/4/5-qubit datasets, the training curves
and noise-varying model performance of the Ax-optimized NNs showed similar attributes
to those in Figure 12.
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3.5. Quantum Experiment

The [0.092, 0.58175, 0.181, 0.14525] 2-qubit datapoint from the IBMQ quantum com-
puter Perth possessed a phase of 1/3 [20]. The traditional highest-peak method output a
phase of 0.25, which had a 25% error when compared to the actual phase. The best 2-qubit
model predicted a phase of 0.3394, yielding an error of 0.006.

4. Discussion

An ideal QPE post-processing algorithm would predict the phase accurately in the
presence of noise, have non-varying performance across a variety of noise levels, possess
minimal overfitting, and have a rapid prediction time so that lag is not induced into any
quantum computing applications where QPE is an intermediate step. No algorithm was a
clear winner when considering these four criteria, as the lowest-error model (Ax-tuned NN)
was also the slowest predictor; the algorithm with the lowest overfitting (linear regression)
and fastest prediction time had the highest error level and a high degree of variation of
error with noise. The XGBoost ensemble method was judged to be the best tradeoff between
these criteria, as it had the second-best error level, second-best prediction time and low
variation of error with noise. It is worth noting that this is not necessarily a negative result,
as not all applications require speed or maximum accuracy.

A residual analysis for the 5-qubit XGBoost algorithm is shown in Figure 13, and it
can be seen that the model struggles to predict the boundary phases near 0 and near 1 since
the phase is an angular measurement that passes continuously between 0 and 1.

The second-best algorithm was the Ax-tuned NN models as they had the lowest error
level and variation of error with noise. Of the three optimizers compared, the stochastic
gradient descent (SGD) optimizer was best for all datasets. Other generalizations noted
across all datasets were that the best performance was achieved with high initial learning
rates, three or four hidden layers, and batch sizes (128–522) that were low in comparison to
the 52,500–210,000 row dataset size.
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Limitations and Drawbacks

There are a few limitations of this method of enhancing QPE that are important to con-
sider. First, this method requires the simulation of large datasets, which is computationally
expensive for small qubit systems (like those considered here) and nearly impossible for
many qubit systems since the computational difficulty is exponential. Since the accuracy of
the traditional method increases exponentially with the number of qubits as well, a QPE
system of several qubits free of noise would be better than the best performance of our
method. Therefore, the useful application for this type of improvement to the standard
QPE approach lies in circumstances where only a few qubits are available in the first reg-
ister. This is, however, the circumstance in which the field of quantum computing finds
itself now.

More specific limitations in this experiment include the fact that only one type of error
was examined in the simulated circuits. For a more complete picture, Pauli measurement,
depolarizing, thermal relaxation, and reset errors (among many others) would need to be
inserted into the simulations, though this would require more simulation for every type
of noise that is modeled. Furthermore, only one phase was present in the distributions.
For general applications, the state of the second register may not be an eigenstate of the
unitary operator, which leads to multiple phases affecting the probability distribution from
which we sample. Our models are not applicable to these scenarios. Simulations of more
general situations with multiple types of error and multiple phases are underway in order
to train more advanced machine learning models. Finally, this experiment only measured

performance with absolute error in phase, not the periodic error for the phase,
∼
θ , given by

min
{∣∣∣∣∼θ − θ

∣∣∣∣, 1 −
∣∣∣∣∼θ − θ

∣∣∣∣}. It is possible to train models and perform analysis with this

periodic error, and having both sets of models may be desired by some researchers. This is,
again, an opportunity for further work.

5. Conclusions

In this work, QPE using machine learning was shown to offer significant potential to
improve phase estimation in the presence of depolarizing noise. In this work, simulated
quantum datasets were generated for 2/3/4/5-qubit systems, and each row of each dataset
contained the quantum register, the phase to be predicted, and 21 different levels of
depolarizing noise that were added to the phase. The phase was transformed to range
from 0–1, and the noise level ranged from 0–0.2. The mean squared error was used as the
primary model performance metric, and a 6x–36x improvement in model performance was
noted, depending on the dataset, when comparing the Ax-tuned neural network to the
highest-peak estimator.
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The model prediction speed, overfitting level and variation in accuracy with noise
level was determined for five machine learning algorithms. The prediction speed ranged
from 10,000–51,800,000 records per second, which could constrain the applications of the
slowest algorithms. Overfitting ranged from 1–15%, and the MSE for the neural networks
ranged from 0.0069–0.0005. While the XGBoost ensemble algorithm did not possess the
lowest error level, it was judged to be the best tradeoff between the four criteria due to
its error level, prediction time and low variation of error with noise. The lowest-error
model (neural network) was also the slowest predictor; the algorithm with the lowest
overfitting and fastest prediction time (linear regression) had the highest error level and a
high degree of variation of error with noise. A machine learning prediction was made on a
2-qubit datapoint obtained from an IBMQ 2-qubit quantum computer, and it demonstrated
a significant improvement over the traditional method. The models and experiment possess
the potential to increase the QPE accuracy for emerging quantum computers.
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