
Citation: Liu, C.-S.; Kuo, C.-L.; Chang,

C.-W. Solving Least-Squares Problems

via a Double-Optimal Algorithm and

a Variant of the Karush–Kuhn–Tucker

Equation for Over-Determined

Systems. Algorithms 2024, 17, 211.

https://doi.org/10.3390/a17050211

Academic Editor: Alicia Cordero

Received: 1 April 2024

Revised: 2 May 2024

Accepted: 7 May 2024

Published: 14 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Solving Least-Squares Problems via a Double-Optimal
Algorithm and a Variant of the Karush–Kuhn–Tucker Equation
for Over-Determined Systems
Chein-Shan Liu 1 , Chung-Lun Kuo 1 and Chih-Wen Chang 2,*

1 Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan;
csliu@mail.ntou.edu.tw (C.-S.L.); eji1215@gmail.com (C.-L.K.)

2 Department of Mechanical Engineering, National United University, Miaoli 36063, Taiwan
* Correspondence: cwchang@nuu.edu.tw

Abstract: A double optimal solution (DOS) of a least-squares problem Ax = b, A ∈ Rq×n with
q ̸= n is derived in an m + 1-dimensional varying affine Krylov subspace (VAKS); two minimization
techniques exactly determine the m + 1 expansion coefficients of the solution x in the VAKS. The
minimal-norm solution can be obtained automatically regardless of whether the linear system is
consistent or inconsistent. A new double optimal algorithm (DOA) is created; it is sufficiently time
saving by inverting an m × m positive definite matrix at each iteration step, where m ≪ min(n, q).
The properties of the DOA are investigated and the estimation of residual error is provided. The
residual norms are proven to be strictly decreasing in the iterations; hence, the DOA is absolutely
convergent. Numerical tests reveal the efficiency of the DOA for solving least-squares problems.
The DOA is applicable to least-squares problems regardless of whether q < n or q > n. The Moore–
Penrose inverse matrix is also addressed by adopting the DOA; the accuracy and efficiency of the
proposed method are proven. The m + 1-dimensional VAKS is different from the traditional m-
dimensional affine Krylov subspace used in the conjugate gradient (CG)-type iterative algorithms
CGNR (or CGLS) and CGRE (or Craig method) for solving least-squares problems with q > n. We
propose a variant of the Karush–Kuhn–Tucker equation, and then we apply the partial pivoting
Gaussian elimination method to solve the variant, which is better than the original Karush–Kuhn–
Tucker equation, the CGNR and the CGNE for solving over-determined linear systems. Our main
contribution is developing a double-optimization-based iterative algorithm in a varying affine Krylov
subspace for effectively and accurately solving least-squares problems, even for a dense and ill-
conditioned matrix A with q ≪ n or q ≫ n.

Keywords: linear least-squares problems; varying affine Krylov subspace; double optimal
algorithm; minimal-norm solution; residual orthogonality; absolute convergence; Moore–Penrose
inverse; Karush–Kuhn–Tucker equation

MSC: 15A06; 65F10

1. Introduction

One of the most important numerical methods to solve linear systems is the Krylov
subspace method [1–7]; since the appearance of pioneering works in [8,9], it has been
studied extensively. A lot of Krylov subspace methods were reported in [10–16].

Many algorithms have been used to solve the least-squares problem with a minimum
norm [17,18]:

min ∥x∥ s.t. x ∈ arg min
x

∥b − Ax∥, (1)

where ∥ · ∥ denotes the Euclidean norm, x ∈ Rn is unknown, and A ∈ Rq×n and b ∈ Rq

are given.

Algorithms 2024, 17, 211. https://doi.org/10.3390/a17050211 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17050211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6366-3539
https://orcid.org/0000-0001-9846-0694
https://doi.org/10.3390/a17050211
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17050211?type=check_update&version=1

Algorithms 2024, 17, 211 2 of 27

We are concerned with a varying affine Krylov subspace (VAKS) solution and its
corresponding iterative algorithm for solving

Ax = b, (2)

which is an over-determined system when q > n and an under-determined system when
q < n.

Most results for Equation (2) are directly extendable to Equation (1), whose solution is
called the minimum-norm or pseudo-inverse solution and is given by x = A†b, where A†

denotes the pseudo-inverse of A satisfying the following Penrose equations:

AA†A = A, (3)

A†AA† = A†, (4)

(AA†)T = AA†, (5)

(A†A)T = A†A. (6)

The pseudo-inverse has been investigated and applied to solve linear least-squares
problems, and some computational methods have been developed to compute the Moore–
Penrose inverse matrix [19–24]. In terms of the Moore–Penrose inverse matrix A†, the
general solution of the least-squares problem is given by

x = A†b + (I − RA)z, (7)

RA = A†A, (8)

where z is arbitrary. Because A†b and (I − RA)z are orthogonal, it follows that x = A†b is
the unique solution of Equation (1).

QR factorization is a good method to solve Equation (2). The normalized Gram–
Schmidt process is a modification of the original Gram–Schmidt orthogonalization by
normalizing each vector after orthogonalization. Let Q denote a q × n matrix obtained by
applying the normalized Gram–Schmidt process on the column vectors of A:

Q := [q1, . . . , qn], (9)

which possesses the following orthonormal property:

QTQ = In. (10)

Hence, by QRx = b, it is easy to solve x by applying the backward substitution method to

Rx = QTb. (11)

However, the QR method is only applicable to an over-determined system with q > n. For
an under-determined system with q < n, the QR method is not applicable because R is no
longer an upper triangular matrix.

Recently, many scholars have proposed many algorithms to tackle least-squares prob-
lems, like relaxed greedy randomized coordinate descent methods [25], the parallel approx-
imate pseudo-inverse matrix technique in conjunction with the explicit preconditioned con-
jugate gradient least squares scheme [26], the new randomized Gauss–Seidel method [27],
the QR–Cholesky method, the implicit QR method, the bidiagonal implicit QR method [28],
the randomized block coordinate descent algorithm [29], an iterative pre-conditioning tech-
nique [30], splitting-based randomized iterative methods [31], the projection method [32],
the index-search-method-based inner–outer iterative algorithm [33], the greedy double
subspace coordinate descent method [34], a distributed algorithm [35], and multivalued
projections [36].

Algorithms 2024, 17, 211 3 of 27

As just mentioned, there are many algorithms for solving linear least-squares prob-
lems. For small- and medium-sized problems, one can use QR-based methods, and, if the
problem is rank-deficient or ill conditioned, singular value decomposition (SVD) can be
adopted [37,38]. For large-sized least-squares problems, Krylov subspace methods are more
efficient than direct methods if the matrix is sparse or otherwise structured. In the present
paper, we plan to develop an efficient and accurate Krylov subspace method for large-sized
least-squares problems with dense and maybe ill-conditioned matrices, not limited to sparse
matrices. It is also interesting that the proposed iterative algorithm can solve least-squares
problems with extremal cases of q ≪ n or q ≫ n. In fact, for under-determined systems,
many methods are not applicable, for instance, QR and conjugate gradient (CG)-type
methods, for which the basis vectors of the Krylov subspace are orthogonalized implicitly.

In addition to Equation (1), Liu [39] considered the following minimization

min
x

{
f =

xTATAx
(bTAx)2

}
(12)

for solving ill-posed linear systems of Equation (2) with q = n. Liu [40,41] employed the
double optimization technique to iteratively solve inverse problems. Liu [42] replaced the
Krylov subspace by the column space of A and derived an effective iterative algorithm
based on the maximal projection in Equation (12). These results are quite promising.
However, for a non-square system (2), there exists no similar method of double optimization
in the literature.

It is well known that the least-squares solution of the minimization in Equation (1) is
obtained by

ATAx = ATb. (13)

When the derivative of f in Equation (12) vs. x is equal to zero, we can obtain

ATAx =
xTATAx

bTAx
ATb. (14)

Taking the transpose of Equation (2) to xTAT = bT and inserting it into Equation (14), we
can immediately obtain

ATAx =
bTAx
bTAx

ATb, (15)

which implies Equation (13) by bTAx/bTAx = 1. Many numerical methods for least-
squares problems are based on Equation (1); no numerical methods for least-squares
problems are based on Equation (12).

To solve the least-squares problem (2), the usual approach is the Karush–Kuhn–Tucker
equation method, which sets Equation (2) to a square linear system but with a larger
dimension q + n. Let

r = b − Ax (16)

be the residual vector. By considering the enforcing constraint:

ATr = 0, (17)

which is equivalent to the normal form of Equation (2), Equations (16) and (17) constitute a
q + n-dimensional linear system:[

Iq A
AT 0

][
r
x

]
=

[
b
0

]
. (18)

The advantage of the so-called Karush–Kuhn–Tucker equation [15] is that one can employ
a linear solver to solve Equation (18) to obtain the least-squares solution of Equation (2);
however, a disadvantage is that the dimension is enlarged to q + n.

Algorithms 2024, 17, 211 4 of 27

A major novelty of the present paper is that we employ both Equations (1) and (12) to
develop a novel numerical method in a varying affine Krylov subspace. The innovative
contributions are as follows: this is the first time a new concept of varying affine Krylov
subspaces has been introduced, and a double-optimal iterative algorithm has been derived
based on the double optimization method to solve least-squares problems. A new variant
of the Karush–Kuhn–Tucker equation can significantly improve the accuracy of solving
least-squares problems by adopting the partial pivoting Gaussian elimination method.

In Section 2, the solution of Equation (2) is expanded in an m + 1-dimensional vary-
ing affine Krylov subspace (VAKS), whose m + 1 unknown coefficients are optimized in
Section 3 by two merit functions. The double optimal algorithm (DOA) is developed in
Section 4; we prove a key property of absolute convergence, and the decreasing quantity of
residual squares is derived explicitly. Examples of linear least-squares problems are given
and compared in Section 5; in addition, Moore–Penrose inverses of non-square matrices
are discussed. In Section 6, we discuss a variant of the Karush–Kuhn–Tucker equation for
solving over-determined linear systems, which is compared to conjugate-gradient-type
iterative methods. Finally, Section 7 describes the conclusions.

2. A Varying Affine Krylov Subspace Method

We consider an m + 1-dimensional varying affine Krylov subspace (VAKS) by

Km := span{ATAu0, . . . , (ATA)mu0},

K′
m := span{u0,Km}, (19)

where
u0 := ATb ∈ Rn, (20)

and K′
m is equivalent to Km+1(ATA, u0).

Then, we expand the solution x of Equation (2) in K′
m by

x = α0u0 +
m

∑
k=1

αkuk ∈ K′
m, (21)

where uk := (ATA)ku0, k = 1, . . . , m, and α0 and αk are constants to be determined. We
take m ≪ min(n, q).

Let
U := [u1, . . . , um] = [ATAu0, . . . , (ATA)mu0] (22)

be an n × m matrix. The Arnoldi process [15] as a normalized Gram–Schmidt process is
used to normalize and orthogonalize the Krylov vectors (ATA)ju0, j = 1, . . . , m, such that
the resultant vectors ui, i = 1, . . . , m satisfy uT

i uj = δij, i, j = 1, . . . , m, where δij is the
Kronecker delta symbol. Select m, give an initial v0 = ATAu0, and compute u1 = v0

∥v0∥
:

Do j = 1 : m − 1,

wj = ATAuj,

Do i = 1 : j,

hij = uT
i wj,

wj = wj − hijui,

End do of i,

hj+1,j = ∥wj∥; if hj+1,j = 0 stop,

uj+1 =
wj

hj+1,j
,

End do of j. (23)

Algorithms 2024, 17, 211 5 of 27

Hence, Equation (21) can be written as

x = α0u0 + Uα, (24)

where α := (α1, . . . , αm)T and U satisfies the orthonormal property:

UTU = Im. (25)

For a consistent system, the exact solution x∗ satisfies Ax∗ = b exactly. For an
inconsistent system, the exact solution x∗ exactly satisfies Equation (1) given by x∗ = A†b,
because the equality in Ax∗ = b no longer holds.

On this occasion, we briefly recall the m-dimensional conjugate gradient (CG)-type
iterative method with an approximation to Equation (2) with q > n. The CGNR (or CGLS)
minimizes the energy function of the error [15,43]:

f (x) = (ATA(x∗ − x), (x∗ − x)), (26)

where (a, b) denotes the inner product of vectors a and b, and x∗ is the exact solution of
Equation (2). Overall, x in the affine Krylov subspace (AKS) is:

x0 +Km(ATA, ATr0) := x0 + span{ATr0, ATAATr0, . . . , (ATA)m−1ATr0}, (27)

where r0 = b − Ax0. There is some extension of the CGNR (or CGLS) to bounded pertur-
bation resilient iterative methods [44].

Craig’s idea was to seek the solution of Equation (2) with q > n by

x = arg min
z∈Rn

∥z∥ subject to Az = b. (28)

By introducing x = ATy, we seek y in the AKS by

y0 +Km(AAT, r0), (29)

to minimize
f (y) = (AAT(y∗ − y), (y∗ − y)), (30)

where y∗ is the exact solution of AATy = b. The above statement for x∗ is also valid for y∗

with Ax∗ = b replaced by AATy∗ = b. The resulting CG iterative algorithm is known as
the CGNE (or the Craig method), which minimizes the error function [15,43].

Notice that the affine Krylov subspaces in Equations (27) and (29) are fixed AKSs upon
setting x0 and y0, while in Equation (21), the AKS is varying, denoted as a VAKS, owing to
the translation vector α0u0 not being fixed to u0:

K′
m = Km+1(ATA, ATb) = span{ATb, ATAATb, . . . , (ATA)mATb}. (31)

Upon comparing Equation (21), whose coefficient α0 before u0 is an unknown constant,
to Equations (27) and (29), whose coefficients before x0 and y0 are fixed to one, the affine
Krylov subspace in Equation (21) is a varying affine Krylov subspace (VAKS). The dimen-
sion of the VAKS is one more than that of the AKS.

3. A Double Optimal Solution

In this section, we adopt the new concept of the VKAS to derive a double optimal solu-
tion of Equation (2). The starting point is Equation (21), rather than x = u0 + ∑m

k=1 αkuk ∈
u0 +Km.

3.1. Two Minimized Functions

Let
y := Ax, (32)

Algorithms 2024, 17, 211 6 of 27

such that the approximation to b in Equation (2) is accounted by the error vector:

e := b − bT
(

y
∥y∥

)
y

∥y∥ ; (33)

the squared-norm of e reads as

∥e∥2 = ∥b∥2 − (bTy)2

∥y∥2 ≥ 0. (34)

We maximize

max
y

{
(bTy)2

∥y∥2

}
(35)

as the maximal projection of b on the direction y/∥y∥, such that ∥e∥2 is minimized.
Equation (35) is equivalent to the minimization of

min
y

{
f :=

∥y∥2

(bTy)2

}
≥ 1

∥b∥2 . (36)

Let J be
J := AU ∈ Rq×m. (37)

Then, with the aid of Equation (24), Equation (32) can be written as

y = y0 + Jα, (38)

where
y0 := α0Au0 ∈ Rq. (39)

Inserting Equation (38) for y into Equation (36) yields

min
α

{
f =

∥y∥2

(bTy)2 =
∥y0 + Jα∥2

(bTy0 + bTJα)2

}
, (40)

which is used to find α. However, α0 in y0 = α0Au0 is still an unknown value to be
determined by imposing the minimization of squared-norm of residuals, shortened to the
residual square:

min
α0

{∥r∥2 = ∥b − Ax∥2}. (41)

3.2. Mathematical Preliminaries

To determine the unknowns αj, j = 0, 1, . . . , m, the following main theorem is an
extension of [39] to a non-square system (2).

Theorem 1. Assume that m0 = rank(A) ≤ min(n, q). U satisfies Equation (25) with m < m0.
x ∈ K′

m, approximately satisfying Equation (2) derived from two minimizations (40) and (41), is a
double optimal solution (DOS), given by

x = α0(u0 − VAu0 + λ0Vb), (42)

where

u0 = ATb, J = AU, C = JTJ, D = C−1, V = UDJT, P = AV = JDJT,

λ0 =
∥Au0∥2 − uT

0 ATPAu0

bTAu0 − bTPAu0
, (43)

w = λ0Pb + Au0 − PAu0, (44)

α0 =
wTb
∥w∥2 . (45)

Algorithms 2024, 17, 211 7 of 27

To guarantee the existence of D = C−1, the dimension m of Km follows m < m0.

Proof. In view of Equation (38), we can write

bTy = bTy0 + bTJα, (46)

∥y∥2 = ∥y0∥2 + 2yT
0 Jα + αTCα (47)

for f in Equation (40), where
C := JTJ (48)

is an m × m positive definite matrix; hence, C−1 exists. For the rank deficiency matrix A,
we suppose that its rank is m0 = rank(A), where m0 < min(n, q); to guarantee that C is an
m × m positive definite matrix, m must be smaller than m0.

The minimality condition of Equation (40) is

(bTy)2∇α∥y∥2 − 2bTy∥y∥2∇α(bTy) = 0; (49)

∇α is the gradient with respect to α. Cancelling bTy in Equation (49) yields

bTyy2 − 2∥y∥2y1 = 0, (50)

where

y1 := ∇α(bTy) = JTb, (51)

y2 := ∇α∥y∥2 = 2JTy0 + 2Cα. (52)

From Equation (50), y2 is observed to be proportional to y1 in the m-dimensional space
Rm, which is supposed to be

y2 =
2∥y∥2

bTy
y1 = 2λy1, (53)

where 2λ is a proportional factor determined below. The second equality leads to

∥y∥2 = λbTy. (54)

Then, by Equations (51)–(53), we have

α = λDJTb − DJTy0, (55)

where
D := C−1 = (JTJ)−1 > 0 (56)

is an m × m matrix. It follows from Equations (46), (47) and (55) that

bTy = bTy0 + λbTPb − bTPy0, (57)

∥y∥2 = λ2bTPb + ∥y0∥2 − yT
0 Py0, (58)

where
P := JDJT (59)

is a q × q positive semi-definite matrix. P is indeed a projection operator.
From Equations (54), (57) and (58), λ is solved from

∥y0∥2 − yT
0 Py0 = λ(bTy0 − bTPy0) (60)

as follows:

λ =
∥y0∥2 − yT

0 Py0

bTy0 − bTPy0
. (61)

Algorithms 2024, 17, 211 8 of 27

Inserting this into Equation (55) generates

α =
∥y0∥2 − yT

0 Py0

bTby0 − bTPy0
DJTb − DJTy0. (62)

By inserting the above α into Equation (24) and using Equation (39) for y0, we
can obtain

x = α0(u0 − VAu0 + λ0Vb), (63)

where

V := UDJT, (64)

λ0 :=
∥Au0∥2 − uT

0 ATPAu0

bTAu0 − bTPAu0
. (65)

Upon letting
v := u0 − VAu0 + λ0Vb, (66)

x in Equation (63) can be expressed as

x = α0v, (67)

where α0 is determined by inserting Equation (67) into Equation (41):

∥b − Ax∥2 = ∥α0Av − b∥2 = α2
0∥w∥2 − 2α0wTb + ∥b∥2, (68)

where
w := Av = Au0 − AVAu0 + λ0AVb. (69)

In view of Equations (37) and (64), P in Equation (59) can be written as

P = AV, (70)

such that w can be written as

w = λ0Pb + Au0 − PAu0.

This is just w in Equation (44).
Set the differential of Equation (68) vs. α0 to zero, obtaining

α0 =
wTb
∥w∥2 ; (71)

hence, the proof of Equation (42) in Theorem 1 is complete.

In the proof of Theorem 1, we have used the minimality condition of Equation (40) to
determine α in Equation (62), and then the minimality condition of Equation (41) was used
to determine α0 in Equation (71). Two optimizations were used to derive x in Equation (42),
which is thus named a double optimal solution (DOS).

Theorem 2. The two factors λ0 in Equation (43) and α0 in Equation (45) satisfy

α0λ0 = 1. (72)

Proof. It follows from Equations (59) and (56) that

P2 = P; (73)

hence, P is a projection operator.

Algorithms 2024, 17, 211 9 of 27

In Equation (44), w can be written as

w = λ0Pb + (Iq − P)Au0. (74)

Utilizing Equation (73), PT = P, and (Iq − P)2 = Iq − P, it follows that

∥w∥2 = λ2
0bTPb + uT

0 ATAu0 − uT
0 ATPAu0, (75)

bTw = λ0bTPb + bTAu0 − bTPAu0. (76)

With the aid of Equation (65), Equation (76) is further reduced to

bTw = λ0bTPb +
1

λ0
(uT

0 ATAu0 − uT
0 ATPAu0). (77)

Now, after inserting Equation (77) into Equation (71), we can obtain

α0λ0∥w∥2 = λ2
0bTPb + uT

0 ATAu0 − uT
0 ATPAu0, (78)

which is just equal to ∥w∥2 by Equation (75). Hence, we obtain Equation (72) readily. The
proof of α0λ0 = 1 is complete.

Remark 1. The DOS is derived in the VAKS K′
m in a way to stick onto Equation (21). If one takes

α0 = 1 in Equation (21), K′
m reduces to the usual affine Krylov subspace u0 +Km. However, in

this situation, Theorem 1 no longer holds. If one takes u0 = 0 and works directly in the (m + 1)-
dimensional Krylov Km+1 by expanding α in an (m + 1)-dimensional subspace, it would result
in failure, because after inserting y0 = Au0 = 0 into Equation (62), α cannot be defined. We can
conclude that the DOS directly benefits from the VAKS.

The following corollaries are proven to help us understand the properties of DOS
whose bases appeared in Theorems 1 and 2 and equations appeared in the proof of
Theorem 1.

Corollary 1. The multiplier λ defined by Equation (61) satisfies

λ = 1, (79)

and the double optimal solution (42) can be written as

x = α0u0 − α0VAu0 + Vb. (80)

Proof. Inserting Equation (39) for y0 into Equation (61), we have

λ = α0
∥Au0∥2 − uT

0 ATPAu0

bTAu0 − bTPAu0
, (81)

in view of Equation (65), which can be written as

λ = α0λ0. (82)

Hence, λ = 1 follows immediately from Equation (72). Then, using Equations (72) and (42)
proves Equation (80).

Remark 2. Inserting Equation (20) for u0 into Equation (80) yields

x = [V + α0AT − α0VAAT]b,

which is a pseudo-inverse solution obtained from the DOS.

Algorithms 2024, 17, 211 10 of 27

Corollary 2. If m = n < q and ATA is non-singular, then the double optimal solution x of
Equation (2) is the Penrose solution, given by

x = A†b, (83)

where A† is the Moore–Penrose pseudo-inverse of A.

Proof. If m = n, then J = AU defined by Equation (37) is a q × n matrix. Meanwhile, U
defined by Equation (22) is a rank n orthogonal matrix due to Equation (25):

UTU = UUT = In. (84)

From Equations (56) and (84), it follows that

D = UT(ATA)−1U. (85)

Inserting J = AU, V = UDJT and Equation (85) into Equation (80), we have

x = α0u0 + UUT(ATA)−1UUTATb − α0UUT(ATA)−1UUTATAu0. (86)

By using Equation (84), we can derive

x = (ATA)−1ATb, (87)

which is a Penrose solution of Equation (2).

Corollary 2 reveals that the DOS can give the pseudo-inverse solution. SVD can offer
a pseudo-inverse solution as follows [37]. In SVD, the matrix A is decomposed by

A = UDVT, (88)

where U is a q × q orthonormal matrix, V is an n × n orthonormal matrix, and D is a
q × n pseudo-diagonal matrix with non-zero singular values on the diagonal and all other
elements are zero. Suppose that ATA is non-singular. Then, Equation (87) is a pseudo-
inverse solution, which in terms of SVD can be derived as follows:

x = V(DTD)−1DTUTb = VD†UTb; (89)

letting
A† = VD†UT, (90)

we can derive Equation (83) in Corollary 2. Mathematically, the DOS is equivalent to the
SVD solution in Equation (89), even though they are different approaches to the least-
squares problem.

3.3. Estimation of Residual Error

Equation (80) is written as

x = α0(u0 − VAu0) + Vb, (91)

where

α0 =
1

λ0
=

bTAu0 − bTPAu0

∥Au0∥2 − uT
0 ATPAu0

, (92)

by using Equations (65) and (72).
Let us investigate the residual square:

∥b − Ax∥2 = ∥y − b∥2 = ∥y∥2 − 2bTy + ∥b∥2, (93)

Algorithms 2024, 17, 211 11 of 27

where
y = Ax = α0Au0 − α0PAu0 + Pb. (94)

is obtained from Equation (91) by using Equation (70).
From Equation (94), it follows that

∥y∥2 = α2
0(u

T
0 ATAu0 − uT

0 ATPAu0) + bTPb, (95)

bTy = α0bTAu0 − α0bTPAu0 + bTPb. (96)

In the first equation, we take Equation (73) into account. Inserting them into Equation (93)
leads to

∥b − Ax∥2 = α2
0(u

T
0 ATAu0 − uT

0 ATPAu0) + 2α0(bTPAu0 − bTAu0) + ∥b∥2 − bTPb. (97)

Finally, inserting Equation (92) for α0 into the above equation yields

∥b − Ax∥2 = ∥b∥2 − bTPb − (bTAu0 − bTPAu0)
2

uT
0 ATAu0 − uT

0 ATPAu0
. (98)

If P ≈ Iq, the value of ∥b − Ax∥2 in Equation (98) is made as small as possible:

∥b − Ax∥2 ≈ 0. (99)

Theorem 3. For the double optimal solution x ∈ K′
m derived in Equation (42) of the least-squares

problem (2), the squared-norm of the error vector e:

∥e∥2 = ∥b∥2 − (bTAx)2

∥Ax∥2 , (100)

and the squared-norm of the residual vector r = b − Ax are equal, i.e.,

∥e∥2 = ∥b − Ax∥2. (101)

Moreover,
∥r∥ < ∥b∥. (102)

Proof. Inserting Equation (92) for α0 into Equations (95) and (96), we can obtain

∥y∥2 =
(bTAu0 − bTPAu0)

2

uT
0 ATAu0 − uT

0 ATPAu0
+ bTPb, (103)

bTy =
(bTAu0 − bTPAu0)

2

uT
0 ATAu0 − uT

0 ATPAu0
+ bTPb. (104)

Consequently, we have
∥y∥2 = bTy. (105)

It follows from Equations (98) and (103) that

∥b − Ax∥2 = ∥b∥2 − ∥y∥2. (106)

By Equations (105) and (34),
∥e∥2 = ∥b∥2 − ∥y∥2. (107)

Equation (101) was proven upon comparing Equations (106) and (107).
Using r = b − Ax and Equations (101) and (107) leads to

∥r∥2 = ∥e∥2 = ∥b∥2 − ∥y∥2. (108)

Algorithms 2024, 17, 211 12 of 27

Due to ∥y∥2 > 0, Equation (102) follows readily.

4. A Numerical Algorithm

In this section, we develop an iterative algorithm to solve the least-squares problem,
starting from an initial guess x0. We assume that the value of xk at the kth step is already
known, and xk+1 is computed at the next step via the iterative algorithm. According to the
value xk, the kth step residual rk = b − Axk can be computed.

When the initial guess x0 is given, an initial residual is written as follows:

r0 = b − Ax0. (109)

Upon letting
z = x − x0, (110)

Equation (2) is equivalent to solving z from

Az = r0, (111)

which is deduced by
Az = Ax − Ax0 = b − Ax0 = r0.

For system (111), we seek z in the VAKS by

z = α0u0 +
m

∑
k=1

αkuk = α0u0 + Uα ∈ K′
m, (112)

where
u0 = ATr0, (113)

and uk := (ATA)ku0, k = 1, . . . , m. The constants αk, k = 1, . . . , m and α0 are determined
by the following two minimizations:

min
z

{
f =

∥Az∥2

(rT
0 Az)2

}
, (114)

min
z

r = ∥r0 − Az∥2. (115)

After inserting Equation (112) for z, the first minimization can derive α, while the second
minimization can derive α0.

Since two minimizations in Equations (114) and (115) are adopted to determine the
descent vector z in Equation (112), the resulting iterative algorithm to solve the least-square
problem might be labeled as a double optimal algorithm (DOA).

To treat the rank deficient least-squares problem, the dimension m of the VAKS must
be m < m0 = rank(A), such that rank(Jk) = m and Ck = JT

k Jk > 0 is an m × m invertible
matrix. Consequently, the DOA is depicted by (i), giving A, b, m < m0, an initial value x0
and the convergence criterion ε and (ii) doing k = 0, 1, . . .,

Algorithms 2024, 17, 211 13 of 27

rk = b − Axk,

uk
0 = ATrk,

uk
j = (ATA)juk

0, j = 1, . . . , m,

Uk = [uk
1, . . . , uk

m] (By Arnoldi procedure),

Jk = AUk,

Ck = JT
k Jk,

Dk = C−1
k ,

Vk = UkDkJT
k ,

Pk = AVk,

λk =
∥Auk

0∥2 − (uk
0)

TATPkAuk
0

rT
k Auk

0 − rT
k PkAuk

0
,

zk = Vkrk +
1

λk
(uk

0 − VkAuk
0),

xk+1 = xk + zk, (116)

until the convergence with ∥xk+1 − xk∥ < ε or ∥rk+1∥ < ε. We call ∥xk+1 − xk∥ the
relative residual.

In the above, Uk is n × m matrix, Jk is a q × m matrix, Ck and Dk are m × m matrices,
Vk is an n × q matrix and Pk is a q × q matrix. The computational cost is expanded to
compute Dk, which is however quite time-saving because m is a small number. ATA is
an n × n fixed matrix computed once and used in the construction of Uk, which requires
mn operations. Jk requires mnq operations; Ck requires m2q operations; Dk requires m2q
operations; Vk requires nm2q operations; and Pk requires nq2 operations. In each iteration,
there are mn + mnq + 2m2q + nm2q + nq2 operations. Denote the number of iterations by
NI. The computational complexity is in total NI×[mn + mnq + 2m2q + nm2q + nq2].

It is known that m is a key parameter in the Krylov subspace. A proper choice of m can
significantly enhance the convergence speed and accuracy. For ill-posed linear least-squares
problems, there exists the best value of m, but for well-posed linear least-squares problems,
small values of m may slow down convergence. When m is increased, both the convergence
speed and accuracy are increased. However, when m is increased, more computational
power is required in the construction of the projection operator P and the inversion matrix
C−1.

We make some comments about the initial value of x0. For under-determined systems,
there are many solutions; hence, different choices of x0 would generate different solutions.
In general, as required in Equation (1), the minimal-norm solution can be obtained by
setting x0 = 0, whose norm is zero ∥x0∥ = 0. For over-determined systems, we take x0 = 0
such that the initial residual is a non zero vector r0 = b and the DOA based on the residual
rk is solvable. Indeed, the DOA is not sensitive to the initial value of x0; we will take x0 = 0
for most problems unless otherwise specified.

The following corollaries help the clarification of the DOA and are based on the DOS
used in the residual Equation (111).

Corollary 3. rk+1 is orthogonal to Azk in Equation (111) and rk+1 − rk, i.e.,

rT
k+1(Azk) = 0, (117)

rT
k+1(rk+1 − rk) = 0. (118)

Proof. By Equation (111), the next rk+1 is given by

rk+1 = rk − yk, (119)

Algorithms 2024, 17, 211 14 of 27

where yk = Azk. By Equation (116), we can also derive Equation (119) as follows:

b − Axk+1 = b − Axk − Azk.

For Equation (111), Equation (105) is written as

rT
k yk − ∥yk∥2 = 0; (120)

and taking the yk inner product to Equation (119), we have

rT
k+1yk = rT

k+1(Azk) = rT
k yk − ∥yk∥2 = 0. (121)

Inserting Azk = rk − rk+1 into Equation (117), we can prove Equation (118). The DOA is a
good approximation of Equation (2) with a better descent direction zk in the VAKS.

Corollary 4. For the DOA, the convergence rate is

∥rk∥
∥rk+1∥

=
1

sin θ
> 1, θ ̸= π

2
. (122)

Proof. It follows from Equations (119) and (120) that

∥rk+1∥2 = ∥rk∥2 − ∥rk∥∥yk∥ cos θ, (123)

where θ is the intersection angle between rk and yk = Azk. With help from
Equation (120), we have

cos θ =
∥yk∥
∥rk∥

. (124)

Obviously, θ ̸= π/2 because ∥yk∥ > 0. Then, Equation (123) can be further reduced to

∥rk+1∥2 = ∥rk∥2[1 − cos2 θ] = ∥rk∥2 sin2 θ. (125)

Dividing both sides by ∥rk+1∥2 and taking the square-roots of both sides, we can obtain
Equation (122).

Corollary 5. The residual is decreased step by step,

∥rk+1∥2 = ∥rk∥2 − ∥Azk∥2 ⇒ ∥rk+1∥ < ∥rk∥, (126)

Proof. Taking the squared norms of Equation (119) and using Equation (120) generates

∥rk+1∥2 = ∥rk∥2 − ∥yk∥2; (127)

and after inserting yk = Azk, Equation (126) is proven. Corollary 5 is easily deduced by
noting ∥Azk∥2 > 0.

The property in Equation (126) is very important, which guarantees that the DOA is
absolutely convergent at each iteration.

Remark 3. At the very beginning, the DOS and DOA are developed in the VAKS K′
m similar

to those in Equation (21). If one takes α0 = 1 in Equation (21), K′
m reduces to the usual affine

Krylov subspace u0 +Km. However, in this situation, several good properties similar to those in
Theorem 3 and Corollaries 3–5 will be lost; convergence cannot be guaranteed in the resulting
iterative algorithm. On the other hand, if we take u0 = 0 and directly work in the (m + 1)-
dimensional Krylov subspace Km+1, by extending α to an (m + 1)-dimensional vector, this would
result in failure because after inserting y0 = Au0 = 0 into Equation (62), α cannot be defined.

Algorithms 2024, 17, 211 15 of 27

Corollary 6. In the iterative algorithm (116), we may encounter a slowly varying point:

xk+1 ≈ xk, (128)

when x0 is given such that r0 = b − Ax0 satisfies ATAr0 = c0r0 for some c0 ≫ 1.

Proof. Inserting b = r0 and
u0 = ATr0

into Equation (92) yields

α0 =
1
c0

.

when c0 ≫ 1, α0 ≈ 0, and xk+1 ≈ xk by Equation (116).

5. Numerical Examples

To demonstrate the efficiency and accuracy of the present iterative DOA, several
examples are presented. All the numerical computations were carried out in Microsoft
Developer Studio with an Intel Core I7-3770, CPU 2.80 GHz and 8 GB memory. The
precision is 10−16.

5.1. Example 1

In this example, we find a minimal-norm and least-squares solution of the following
consistent equation:  1 2 3 −1

3 2 1 −1
2 3 1 1




x1
x2
x3
x4

 =

 1
1
1

. (129)

Although Example 1 is simple, we use it to test the DOS and DOA for finding the
minimal-norm solution for a consistent system.

First we apply the DOS with m = 2 to solve this problem, where we can find a
quite accurate solution of x1 = 1.48176 × 10−1, x2 = 1.92567 × 10−1, x3 = 1.48141 × 10−1,
and x4 = −2.22689 × 10−2, for which the three residual errors are r1 = 2.012 × 10−6,
r2 = 7.125 × 10−5 and r3 = −7.51756 × 10−5, respectively.

Although the DOS is an accurate solution with an error on the order of 10−5, the
accuracy can be improved by the DOA. In the application of the iterative DOA, initial
guesses are given by x0

1 = x0
2 = x0

3 = x0
4 = c0 for some constant. Then, the DOA with m = 1

solves this problem with c0 = 0 and ε = 10−12. As shown in Figure 1a, the DOA converges
very fast in only seven steps. Furthermore, we can find very accurate solutions of x1 =
1.48148 × 10−1, x2 = 1.925926 × 10−1, x3 = 1.48148 × 10−1, and x4 = −2.22222 × 10−2;
the norm of x is ∥x∥ = 0.28545. The three residual errors are r1 = −5.63993 × 10−14,
r2 = −5.61773 × 10−14 and r3 = −5.63993 × 10−14, respectively.

On the other hand, if we take c0 = 1, r1 = 5.6 × 10−13, r2 = 5.59 × 10−13 and
r3 = 8.47 × 10−13 are obtained, which show that the solution (x1, x2, x3, x4) =
(0.4815,−0.2741, 0.4815, 0.3778) is accurate. However, the norm ∥x∥ = 0.82552 is not
the minimal one. Therefore, the correct one for the minimal-norm solution is c0 = 0.
Unless otherwise specified, we will take the initial guess by x0 = 0 for most problems
computed below.

Algorithms 2024, 17, 211 16 of 27

Figure 1. Examples 1 and 2, showing the relative residuals with respect to the number of iterations;
the latter is compared with [20].

5.2. Example 2

A minimal norm and least-squares solution is sought for of the following inconsistent
equation: 

1 1 0
1 0 1
−1 0 0
1 1 1


 x1

x2
x3

 =


0
0
1
2

. (130)

Although Example 2 is simple, we use it to test the DOS and DOA for finding the
minimal-norm solution for an inconsistent system.

We first apply the DOS with m = 1, where we obtain a very accurate solution with
x1 = −1.25, x2 = 1.5, and x3 = 1.5. The residuals are (r1, r2, r3, r4) = (0.25, 0.25, 0.25,−0.25)
with the residual norm being 0.5.

Then, the DOA with m = 1 and ε = 10−12 solves this problem. Starting from the initial
guesses x0

1 = x0
2 = x0

3 = 0, as shown in Figure 1b, the DOA converges very fast in only two
steps, where we obtain a very accurate solution with x1 = −1.25, x2 = 1.5, and x3 = 1.5.
The residuals are (r1, r2, r3, r4) = (0.25, 0.25, 0.25,−0.25), with the residual norm being 0.5.
For the inconsistent system, the equality in Equation (130) no longer holds, such that the
residual is not a zero vector.

The Moore–Penrose inverse of the coefficient matrix A in Equation (130) has an exact
solution:

A† =


1
4

1
4 − 3

4 − 1
4

1
2 − 1

2
1
2

1
2

− 1
2

1
2

1
2

1
2

. (131)

Then, we find that the exact solution of Equation (130) is given by x = A†b, as just
(x1, x2, x3) = (−1.25, 1.5, 1.5) mentioned above.

We apply the iterative method developed by Petkovic and Stanimirovic [20] to find
the Moore–Penrose inverse, which has a simpler form:

Xk+1 = (1 + β)Xk − βXkAXk, X0 = βAT, (132)

Algorithms 2024, 17, 211 17 of 27

based on the Penrose Equations (4) and (6). Under the same convergence criterion, this
iteration process is convergent in 130 steps, as shown in Figure 1b by a dashed line.

Note that the DOA can be also used to find the Moore–Penrose inverse A† by taking
the right-hand side b to be a zero vector and the k-th element to be one, of which the
corresponding solution of x denoted by xk constitutes the kth column of A†. Then, we can
run the DOA q times from k = 1, . . . , q to obtain

A† =



x1
1 . . . xq

1

x1
2 . . . xq

2

...

x1
n . . . xq

n

. (133)

The dimension of A† is n× q. By applying the DOA with m = 1 under the same convergence
criterion ε = 10−12, we can find a very accurate solution of A†, as shown in Equation (131)
with the maximum error of all elements being 10−14, which is achieved in a total of 26 steps
and converges faster than the method developed by Petkovic and Stanimirovic [20].

5.3. Example 3

We consider an over-determined Hilbert linear problem:

Aij =
1

i + j − 1
, 1 ≤ i ≤ q, 1 ≤ j ≤ n,

bi =
n

∑
j=1

1
i + j − 1

xj, 1 ≤ i ≤ q, (134)

where we fix q = 6 and n = 5, and the exact solutions xj = 1/j, 1 ≤ j ≤ n are given.
The DOA with m = 4 and ε = 10−13 can solve this problem very fast, starting from

the initial guesses x0
1 = x0

2 = x0
3 = x0

4 = x0
5 = 0, in only four steps, as shown in Figure 2a.

Furthermore, we can find a very accurate solution, as shown in Figure 2b with the maximum
error (ME) being 8.91 × 10−12. If we consider an under-determined system with q = 5 and
n = 6, the DOA with m = 3 is still workable with ME = 2.22 × 10−8.

For least-squares problems, QR is a famous method to directly solve Equation (2).
This process is shown in Equations (9)–(11). However, we find that ME = 1.05 × 10−6

obtained by QR is less accurate than that obtained via the DOA in the Hilbert least-squares
problem with q = 6 and n = 5. We have checked the accuracy of the orthogonality in
Equation (10) by

∥QTQ − In∥,

which is on the order of 8.65 × 10−12.
The Hilbert matrix is known as a notorious example of a highly ill-conditioned ma-

trix. For this problem, the condition number is 2.5 × 105. Then, in the floating point,
b has a rounding error on the the order of 10−16. The algorithm introduces further
floating point errors which are of the same order of magnitude. Perturbation theory
for the least-squares problem [38] shows that one can only expect to find a solution
that is approximately within 2 × 10(5−16) = 2 × 10−11 of the exact solution. The error
∥QTQ − In∥ = 8.65 × 10−12 is within this range; however, the ME = 1.05 × 10−6 obtained
by QR is not within this range. The reason for this is that when we use Equation (11) to find
the solution in the QR method, very small singular values appearing in the denominator will
enlarge the rounding error and the error from Q; for example, the last two singular values
4.803× 10−4 and 1.734× 10−5, upon dividing by those two small values sequentially, lead to
ME = 1.05 × 10−6, which is not within the range of 2 × 10−11. In contrast, the proposed
DOA method with an error of 8.91 × 10−12 is within this range. For highly ill-conditioned

Algorithms 2024, 17, 211 18 of 27

least-squares problems, the QR method loses some accuracy, and even Q well satisfies
Equation (10) within the range of 2 × 10−11.

Figure 2. An over-determined Hilbert linear problem solved by the DOA: (a) relative residual, and
(b) numerical error.

We raise q to 10, and Table 1 lists the computed ME for different values of n. We also
list the error ∥QTQ − In∥ for the QR method, which is worse when n is increased. Based
on Equations (88)–(90), this problem is solved by SVD. The DOA is competitive with SVD,
and for all cases, it is slightly more accurate than SVD.

Table 1. Example 3: ME obtained by the DOA and QR for different n and a fixed q = 10.

n 2 3 4 5

∥QTQ − In∥ 1.63 × 10−15 2.48 × 10−14 3.11 × 10−13 5.24 × 10−12

QR 8.33 × 10−15 3.55 × 10−12 6.77 × 10−10 2.27 × 10−7

SVD 5.55 × 10−16 1.60 × 10−14 1.89 × 10−13 9.09 × 10−13

DOA 1.11 × 10−16 3.55 × 10−15 9.09 × 10−14 7.81 × 10−13

To investigate the influence of m on the DOA, Table 2 compares the ME and the
iteration number (IN). For ill-posed Hilbert problems, there exists the best value m = 3.

Table 2. Example 3: the ME and NI obtained by the DOA for different m, where (q, n) = (20, 8) and
ε = 10−8.

m 2 3 4 5 6

ME 4.94 × 10−6 5.30 × 10−8 1.34 × 10−6 2.90 × 10−6 6.28 × 10−6

IN 14 4 4 4 5

Algorithms 2024, 17, 211 19 of 27

5.4. Example 4

We find the Moore–Penrose inverse of the following rank deficient matrix [45]:

A =



−1 0 1 2
−1 1 0 −1
0 −1 1 3
0 1 −1 −3
1 −1 0 1
1 0 −1 −2

. (135)

We apply the iterative method of the DOA as demonstrated in Section 5.2 to find the
Moore–Penrose inverse, which has an exact solution:

A† =
1

102


−15 −18 3 −3 18 15

8 13 −5 5 −13 −8
7 5 2 −2 −5 −7
6 −3 9 −9 3 −6

. (136)

Under the same convergence criterion ε = 10−9 as used by Xia et al. [45], the iteration
process of the DOA with m = 1 converges very fast in a total of 12 steps, as shown in
Figure 3. In Table 3, we compare the DOA with other numerical methods specified by Xia
et al. [45] and Petkovic and Stanimirovic [20] to asses the performance of the DOA measured
by four numerical errors of the Penrose Equations (3)–(6) and the iteration number (IN).

Table 3. Computed results of a rank-deficient matrix in Example 4.

Alg. IP ∥AA†A − A∥2 ∥A†AA† − A†∥2 ∥(AA†)T − AA†∥2 ∥(A†A)T − A†A∥2 IN

[45] 10−5AT 8.92 × 10−16 3.36 × 10−16 7.85 × 10−17 1.97 × 10−15 50

[45] 0.1AT 9.17 × 10−20 6.99 × 10−16 7.85 × 10−17 2.86 × 10−15 60

[20] 0.1AT 1.53 × 10−14 9.21 × 10−17 4.13 × 10−31 1.17 × 10−30 165

DOA x0 = 10−161 5.21 × 10−27 2.57 × 10−29 3.82 × 10−27 1.61 × 10−27 12

In the above, Alg. is the shorthand of algorithm, IP is the shorthand of initial point
and IN is the shorthand of “iteration number”. 1 = (1, . . . , 1)T. The first two algorithms
were reported by Xia et al. [45]. It can be seen that the DOA converges much faster and is
more accurate than the other algorithms.

Figure 3. A computation of the Moore–Penrose inverse by the DOA, showing the relative residuals in
the computation of each column of the Moore–Penrose inverse matrix.

Algorithms 2024, 17, 211 20 of 27

In the computation of the pseudo-inverse, the last two singular values close to zero
can be avoided to appear in the matrix C ∈ Rm×m if we take m small enough. For example,
we take m = 1 in Table 3, such that D = C−1 can be computed accurately without inducing
a zero singular value to appear in the denominator to increase the rounding error.

5.5. Example 5

In this example, we find the Moore–Penrose inverse of the Hilbert matrix in
Equation (134), which is more difficult than the previous example. Here, we fix q = 3,
n = 50, and q = 50, n = 3. The numerical errors of the Penrose Equations (3)–(6) are
compared in Tables 4 and 5, respectively.

Table 4. Computed results of the Hilbert matrix q = 3, n = 50 in Example 5.

Alg. IP ∥AA†A − A∥2 ∥A†AA† − A†∥2 ∥(AA†)T − AA†∥2 ∥(A†A)T − A†A∥2 IN

[20] 0.8AT 1.4 × 10−28 3.7 × 10−21 4.1 × 10−30 3.5 × 10−27 34

DOA x0 = 0 9.8 × 10−28 2 × 10−20 4.1 × 10−24 9.3 × 10−28 3

Table 5. Computed results of the Hilbert matrix q = 50, n = 3 in Example 5.

Alg. IP ∥AA†A − A∥2 ∥A†AA† − A†∥2 ∥(AA†)T − AA†∥2 ∥(A†A)T − A†A∥2 IN

[20] 0.8AT 1.2 × 10−28 3.7 × 10−21 3.3 × 10−27 6.3 × 10−28 34

DOA x0 = 0 9 × 10−29 2.6 × 10−22 3.2 × 10−23 5.5 × 10−29 3

5.6. Example 6

In this example, we consider a non-harmonic boundary value problem on an amoeba-
like boundary:

∆u = uxx + uyy = 0, (x, y) ∈ Ω, (137)

u(x, y) = f (x, y) = x2y3, (x, y) ∈ Γ, (138)

Γ := {ρ(θ) cos θ, ρ(θ) sin θ, 0 ≤ θ ≤ 2π},

ρ = exp(sin θ) sin2(2θ) + exp(cos θ) cos2(2θ), (139)

where ∆ f (x, y) = 2y3 + 6x2y ̸= 0, and the contour is displayed in Figure 4a by a solid
black line. Feng et al. [46] have pointed out that “non-harmonic boundary data” mean
that the solution does not have a harmonic extension to the whole plane and a solution is
very difficult to achieve.

Let
v(x, y) = u(x, y)− f (x, y) (140)

be a new variable, and then we come to a Poisson equation under a homogeneous boundary
condition:

Poisson equation :
{

∆v = F(x, y) = −∆ f (x, y),
v(x, y)|(x,y)∈Γ = 0, (141)

where F(x, y) ̸= 0, because f (x, y) is a non-harmonic boundary function. When v(x, y) is
solved, we can find u(x, y) = v(x, y) + f (x, y).

In order to obtain an accurate solution of v(x, y), we use the multiple-scale Pascal
triangle polynomial expansion method developed by Liu and Kuo [47]:

v(x, y) =
m0

∑
i=1

i

∑
j=1

cijsij

(
x

R0

)i−j(y
R0

)j−1
. (142)

Algorithms 2024, 17, 211 21 of 27

After collocating q points to satisfy the governing equation and boundary condition (141),
we have a non-square linear system (2), where the scales sij are determined such that each
column of the coefficient matrix A has the same norm.

Figure 4. An amoeba-like boundary under a non-harmonic boundary function solved by the DOA:
(a) the contour and distribution of collocation points, and (b) the convergence rate.

By using the DOA, we take m = 4, q = 200, m0 = 5, R0 = 1000 and c0
ij = 0. Hence,

the dimension of A is 200 × 15, for which system (2) is an over-determined system. The
distribution of collocation points is shown in Figure 4a, while the convergence rate is shown
in Figure 4b. It is amazing that the DOA converges with nine steps even under a stringent
convergence criterion ε = 10−10. In Figure 5a, we compare the recovered boundary function
with the exact function at 1000 points along the boundary. They are almost coincident,
and thus we plot the absolute error in Figure 5b, whose ME = 2.95 × 10−12 and the root
mean square error (RMSE) = 1.2 × 10−12. This result is much better than that computed by
Feng et al. [46].

Figure 5. An amoeba-like boundary under a non-harmonic boundary function solved by the DOA:
(a) comparison of numerical and exact boundary conditions, and (b) the numerical error.

Algorithms 2024, 17, 211 22 of 27

5.7. Example 7

The method of fundamental solutions (MFS) is adopted to solve Equation (137)
by using

u(z) =
n

∑
j=1

cj ln ∥z − sj∥, z ∈ Ω, sj ∈ Ω̄c, (143)

where Ω̄c is the complementary set of Ω̄, and

sj = (R cos θj, R sin θj)
T, θj =

2jπ
n

(144)

are source points, in which R > 0 is a parameter of the circle on which are the source points
placed on.

We consider an exact solution u(x, y) = x2 − y2 and specify the Dirichlet boundary
condition on the boundary given by Equation (139). In Equation (144), we fix R = 5. By
using the DOA, we take m = 11 and c0

j = 0.
Table 6 lists the computed ME for different values of (n, q) obtained by the DOA. It

can be seen that the DOA is applicable to least-squares problems regardless of whether
q < n or q > n.

Table 6. For the MFS on the 2D Laplace equation, ME with different (n, q) obtained by the DOA.

(n, q) (100,80) (100,90) (100,110) (100,120) (100,150)

ME 1.88 × 10−8 7.25 × 10−9 7.67 × 10−8 2.13 × 10−8 4.45 × 10−8

When we apply the QR to solve this problem with n = 100 and q = 150, ME = 42.81 is
obtained. When we take n = 150 and q = 400, ME = 2.11 is obtained. Obviously, the QR is
not applicable to this problem.

5.8. Example 8

In this example, we consider Equation (2) with a cyclic matrix, whose first row is given
by (1, . . . , n). The coefficient matrix can be generated by the following procedure:

Do i = 1 : n,

Do j = 1 : n,

If i = 1, then Bi,j = j; otherwise,

Bi,j = Bi−1,j + 1,

If Bi,j > n, then Bi,j = Bi,j − n,

Enddo. (145)

The exact solution is xi = 1, i = 1, . . . , n. The non-square matrix A is obtained by taking
the first q rows from B.

Since the right-hand side vector b is obtained from Equation (2) after inserting A and
x = 1 = (1, . . . , 1)T, the non-square system is consistent. Therefore, we can compute the
maximal error (ME) by

ME := max
i=1,...,n

|xe
i − xn

i |,

where xe
i = 1, i = 1, . . . , n are the exact solutions and xn

i are numerical solutions.
For a large matrix of A with n = 2000 and q = 100, Table 7 lists the computed ME for

different values of m and the INs under ε = 10−5 with the initial guesses x0
i = 1 + 0.1i, i =

1, . . . , n. If we take the initial guesses to be x0
i = 0, i = 1, . . . , n, the accuracy is poor with

ME = 0.961 and the convergence is very slow. As shown in Corollary 6, for the zero initial
value, we have r0 = b and for the cyclic matrix, we have r0 = b = c1, where c1 = ∑n

j=1 j.
Thus, ATAr0 = c2

0c2r0, where c2 = ∑
q
j=1 j. Hence, c0 = 20010002 × 5050 is a huge value,

Algorithms 2024, 17, 211 23 of 27

which causes the failure of the DOA with a zero initial value for this problem. The same
situation happens for the constant initial guesses x0

i = c, i = 1, . . . , n. It is apparent that
the DOA is quite accurate and converges faster. It is interesting that a small m is enough
to achieve accurate solutions; when m is smaller, the accuracy is better, but it converges
slower. In contrast, when m is larger, the accuracy is worse but it converges faster.

Table 7. Example 8 with n = 2000 and q = 100: ME obtained by the DOA and INs for different m.

m 5 8 10 12 15

ME 7.24 × 10−5 1.73 × 10−4 2.95 × 10−4 1.02 × 10−3 4.99 × 10−3

IN 174 42 23 16 10

Next, we construct a large-sized matrix B from Equation (145) with n replaced by nq.
The non-square matrix A is obtained by taking the first n columns from B. With n = 500 and
q = 2000, Table 8 lists the computed ME for different values of m, and IN under ε = 10−5

with the initial guesses x0
i = 1 + 0.1i, i = 1, . . . , n. It is apparent that the DOA is quite

accurate and converges faster. When m is increased, the accuracy is better and convergence
is faster.

Table 8. Example 8 with n = 500 and q = 2000: ME obtained by the DOA and INs for different m.

m 10 12 15 18 20

ME 1.39 × 10−4 6.82 × 10−5 3.20 × 10−5 1.70 × 10−5 1.26 × 10−5

IN 123 72 41 25 19

As mentioned, the QR is not applicable to the least-squares problem with q < n;
however, for q > n, the QR is applicable. Table 9 lists the computed ME for different values
of (q, n). In the DOA, we take m = 30, ε = 10−12, and x0

i = 1 + 0.1i, i = 1, . . . , n. The DOA
converges within 25 iterations for the first four cases, and 79 iterations for the last case. The
DOA can improve the accuracy by about three and four orders compared to the QR. We
also list the error ∥QTQ − In∥ for the QR method, which is very accurate.

Table 9. Example 8 with different (q, n), q > n: ME obtained by QR and the DOA.

(q, n) (1000,500) (1500,500) (1500,1000) (2000,500) (2500,1000)

∥QTQ − In∥ 1.81 × 10−12 2.55 × 10−12 8.99 × 10−12 2.20 × 10−12 1.14 × 10−11

QR 3.18 × 10−10 6.91 × 10−10 1.73 × 10−9 1.61 × 10−9 4.56 × 10−9

DOA 2.49 × 10−13 2.66 × 10−13 2.46 × 10−13 1.77 × 10−13 1.24 × 10−13

If we take α0 = 1 in Equation (21), K′
m reduces to the usual affine Krylov subspace

u0 +Km. Equation (80) becomes

x = u0 + λ0Vb − VAu0.

As shown in Table 10, the DOA is more accurate than the DOA with α0 = 1.

Algorithms 2024, 17, 211 24 of 27

Table 10. Example 8 with n = 500, nq = 2000, ε = 10−12, ME1 and IN1 obtained by taking α0 = 1 in
the DOA and ME2 and IN2 obtained by the DOA for different m.

m 20 22 25 28 30 35

ME1 1.13 × 10−12 8.50 × 10−13 3.33 × 10−13 2.0 × 10−3 1.88 × 10−13 2.15 × 10−13

IN1 62 48 34 25 21 15

ME2 9.15 × 10−13 8.59 × 10−13 3.94 × 10−13 2.71 × 10−13 1.77 × 10−13 1.41 × 10−13

IN2 64 48 33 25 21 16

6. A Variant of the Karush–Kuhn–Tucker Equation

In many meshless collocation methods to solve linear partial differential equations,
we may collocate more q points than the number of coefficients n in the expansion of the
solution, which results in an over-determined system in Equation (2) with q > n. The
residual vector r = b − Ax together with Equation (2) can be written as[

Iq A
AT 0

][
r
x

]
=

[
b
0

]
. (146)

This is called the Karush–Kuhn–Tucker equation [15].
Instead of Equation (146), we may consider a permutation of the Karush–Kuhn–Tucker

equation: [
A Iq
0 AT

][
x
r

]
=

[
b
0

]
, (147)

which is a (q + n)× (q + n) system. Equation (147) is a variant of the Karush–Kuhn–Tucker
Equation (146) by re-ordering the unknown vector from (r, x) to (x, r). When the dimension
q + n is a moderate value, we can apply the partial pivoting Gaussian elimination method
(GEM) to solve Equations (146) and (147). We name the first partial pivoting Gaussian
elimination method on Equation (146) as GEM1, and on Equation (147) as GEM2. It would
be convincing if medium-size least-squares problems shown below the partial pivoting
Gaussian elimination method can be an effective and accurate method. Moreover, the
variant of the Karush–Kuhn–Tucker equation is more accurate than the original Karush–
Kuhn–Tucker equation, even they have the same condition numbers.

6.1. Example 9

We consider Example 7 again, which is now solved by the above four methods.
Table 11 lists the computed ME for different values of (n, q) obtained by GEM1 and GEM2.
Here, CGNR is the conjugate gradient method applied to the normal equation with minimal
residuals, while CGNE is the conjugate gradient method applied to the normal equation
with minimal errors [15]. CGNR is also known as the CGLS (least-squares), and CGNE is
Craig’s method. In this test, we find that when the partial pivoting Gaussian elimination
method is applied to Equation (147) as GEM2, the accuracy is the best.

Table 11. The MFS on a 2D Laplace equation: ME with different (n, q) obtained by different
methods.

(n, q) (100,120) (100,150) (100,170) (100,200) (150,180)

GEM1 7.76 × 10−6 1.81 × 10−6 6.12 × 10−7 2.99 × 10−6 5.73 × 10−6

GEM2 2.17 × 10−11 3.82 × 10−14 2.24 × 10−14 1.99 × 10−14 3.52 × 10−14

CGNR 8.33 × 10−11 8.23 × 10−11 7.18 × 10−10 6.62 × 10−9 7.98 × 10−10

CGNE 1.84 × 10−11 4.78 × 10−7 5.44 × 10−6 6.46 × 10−10 2.58 × 10−6

Algorithms 2024, 17, 211 25 of 27

6.2. Example 10

We consider Example 3 again, which is now solved by the above four methods, the
QR method and the DOA with ε = 10−14. Based on Equations (88)–(90), this problem is
solved via SVD. As shown in Table 12, the GEM2, DOA and SVD are competitive and are
more accurate than other methods.

We also list the errors ∥QTQ − In∥ for the QR method in Table 12, which is very accu-
rate. However, since quite small singular values are present for the highly ill-conditioned
Hilbert matrix, the QR method gradually deteriorates when the condition number is in-
creased from 7.04 × 104 to 2.1 × 107.

Table 12. Example 10: ME with different (n, q) obtained by GEM1, GEM2, CGNR, CGNE, the DOA
and QR.

(n, q) (5,6) (5,8) (5,10) (7,25) (8,25)

GEM1 1.80 × 10−6 5.18 × 10−7 4.57 × 10−7 2.20 × 10−3 1.55 × 10−3

GEM2 3.15 × 10−12 2.27 × 10−13 1.02 × 10−12 1.29 × 10−10 4.70 × 10−9

CGNR 4.98 × 10−8 1.62 × 10−7 3.05 × 10−7 4.83 × 10−8 7.64 × 10−8

CGNE 3.52 × 10−12 1.64 × 10−12 1.88 × 10−12 4.83 × 10−8 7.64 × 10−8

DOA 1.88 × 10−13 2.55 × 10−12 7.81 × 10−13 2.72 × 10−9 1.48 × 10−9

SVD 4.85 × 10−12 1.52 × 10−12 9.09 × 10−13 3.08 × 10−10 1.52 × 10−8

∥QTQ − In∥ 8.65 × 10−12 4.57 × 10−12 5.24 × 10−12 5.66 × 10−10 1.89 × 10−8

QR 1.05 × 10−6 3.50 × 10−7 2.27 × 10−7 2.46 × 10−3 5.68 × 10−1

7. Conclusions

Least-squares problems arise in a lot of applications, and many iterative algorithms
are already available to seek their solutions. In this paper, a new concept of a varying affine
Krylov subspace was introduced, which is different to the fixed-type affine Krylov subspace
used in the CG-type numerical solution of over-determined least-squares problems. In the
m + 1-dimensional varying affine Krylov subspace, a closed-form double optimal solution
in a simple form in Equation (42) was derived and further reduced to Equation (80),
which was obtained by two minimizations in Equations (40) and (41). We analyzed a key
equation (72) to link these two optimizations together. The double optimal solution is an
excellent approximation, as verified for least-squares problems. The iterative DOA was
developed, which leads to step-by-step absolute convergence. In each iterative step, by
merely inverting an m × m matrix with a small value of m, the computational cost of the
DOA is very low, lower than other methods. The Moore–Penrose inverses of non-square
matrices were also derived by using the varying affine Krylov subspace method. For over-
determined least-squares problems, we proposed a variant of the Karush–Kuhn–Tucker
equation, which uses the partial pivoting Gaussian elimination method and is better than
the original Karush–Kuhn–Tucker equation and CG-type numerical methods of CGNR
(CGLS) and CGNE (Craig’s method). It is very important that the DOA can be applied to
both rectangular systems with q > n or q < n.

The novelties involved in this paper are as follows:

• A double-optimization-based iterative algorithm for least-squares problems was de-
veloped in a varying affine Krylov subspace.

• For dense large-size least-squares problems, the proposed iterative DOA is efficient
and accurate.

• The DOA can be applied to both rectangular systems with extremal cases of q ≪ n or
q ≫ n.

• A variant of the Karush–Kuhn–Tucker equation was presented, which is an improved
version of the original Karush–Kuhn–Tucker equation.

Algorithms 2024, 17, 211 26 of 27

The idea of varying the affine Krylov subspace is useful to find a better solution of
linear algebraic equations based on the mechanism of double optimization. In the future,
we may extend the new methods of DOSs and the DOA to other linear matrix equations.
The limitations are that there are several matrix multiplications needed to construct the
projection operator P in the Krylov subspace and the high computational cost for inversion
of the matrix C−1 with dimension m.

Author Contributions: Conceptualization, C.-S.L. and C.-W.C.; Methodology, C.-S.L. and C.-W.C.;
Software, C.-S.L., C.-W.C. and C.-L.K.; Validation, C.-S.L., C.-W.C. and C.-L.K.; Formal analysis, C.-S.L.
and C.-W.C.; Investigation, C.-S.L., C.-W.C. and C.-L.K.; Resources, C.-S.L. and C.-W.C.; Data curation,
C.-S.L., C.-W.C. and C.-L.K.; Writing—original draft, C.-S.L.; Writing—review & editing, C.-W.C.;
Visualization, C.-S.L., C.-W.C. and C.-L.K.; Supervision, C.-S.L. and C.-W.C.; Project administration,
C.-W.C.; Funding acquisition, C.-W.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Acknowledgments: The authors would like to express their thanks to the reviewers, who supplied
valuable opinions to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Liu, C.S. An optimal multi-vector iterative algorithm in a Krylov subspace for solving the ill-posed linear inverse problems.

Comput. Mater. Contin. 2013, 33, 175–198.
2. Dongarra, J.; Sullivan, F. Guest editors’ introduction to the top 10 algorithms. Comput. Sci. Eng. 2000, 2, 22–23. [CrossRef]
3. Simoncini, V.; Szyld, D.B. Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Alg.

Appl. 2007, 14, 1–59. [CrossRef]
4. Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci.

Stat. Comput. 1986, 7, 856–869. [CrossRef]
5. Saad, Y. Krylov subspace methods for solving large unsymmetric linear systems. Math. Comput. 1981, 37, 105–126. [CrossRef]
6. Freund, R.W.; Nachtigal, N.M. QMR: A quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 1991, 60,

315–339. [CrossRef]
7. van Den Eshof, J.; Sleijpen, G.L.G. Inexact Krylov subspace methods for linear systems. SIAM J. Matrix Ana. Appl. 2004, 26, 125–153.

[CrossRef]
8. Hestenes, M.R.; Stiefel, E.L. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 1952, 49, 409–436.

[CrossRef]
9. Lanczos, C. Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bur. Stand. 1952, 49, 33–53. [CrossRef]
10. Paige, C.C.; Saunders, M.A. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 1975, 12, 617–629.

[CrossRef]
11. Fletcher, R. Conjugate Gradient Methods for Indefinite Systems; Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 1976;

Volume 506, pp. 73–89.
12. Sonneveld, P. CGS: A fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1989, 10, 36–52.

[CrossRef]
13. van der Vorst, H.A. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems.

SIAM J. Sci. Stat. Comput. 1992, 13, 631–644. [CrossRef]
14. Saad, Y.; van der Vorst, H.A. Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 2000, 123, 1–33.

[CrossRef]
15. Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Philadelphia, PA, USA, 2003.
16. van der Vorst, H.A. Iterative Krylov Methods for Large Linear Systems; Cambridge University Press: New York, NY, USA, 2003.
17. Golub, G. Numerical methods for solving linear least squares problems. Numer. Math. 1965, 7, 206–216. [CrossRef]
18. Choi, S.C.; Paige, C.C.; Saunders, M.A. MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems.

SIAM J. Sci. Comput. 2011, 33, 1810–1836. [CrossRef]
19. Petkovic, M.D.; Stanimirovic, P.S. Iterative method for computing Moore-Penrose inverse based on Penrose equations. J. Comput.

Appl. Math. 2011, 235, 1604–1613. [CrossRef]
20. Petkovic, M.D.; Stanimirovic, P.S. Two improvements of the iterative method for computing Moore-Penrose inverse based on

Penrose equations. J. Comput. Appl. Math. 2014, 267, 61–71. [CrossRef]

http://doi.org/10.1109/MCISE.2000.814652
http://dx.doi.org/10.1002/nla.499
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1090/S0025-5718-1981-0616364-6
http://dx.doi.org/10.1007/BF01385726
http://dx.doi.org/10.1137/S0895479802403459
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.6028/jres.049.006
http://dx.doi.org/10.1137/0712047
http://dx.doi.org/10.1137/0910004
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1016/S0377-0427(00)00412-X
http://dx.doi.org/10.1007/BF01436075
http://dx.doi.org/10.1137/100787921
http://dx.doi.org/10.1016/j.cam.2010.08.042
http://dx.doi.org/10.1016/j.cam.2014.01.034

Algorithms 2024, 17, 211 27 of 27

21. Katsikis, V.N.; Pappas, D.; Petralias, A. An improved method for the computation of the Moore-Penrose inverse matrix. Appl.
Math. Comput. 2011, 217, 9828–9834. [CrossRef]

22. Stanimirovic, I.; Tasic, M. Computation of generalized inverse by using the LDL* decomposition. Appl. Math. Lett. 2012, 25,
526–531. [CrossRef]

23. Sheng, X.; Wang, T. An iterative method to compute Moore-Penrose inverse based on gradient maximal convergence rate. Filomat
2013, 27, 1269–1276. [CrossRef]

24. Toutounian, F.; Ataei, A. A new method for computing Moore-Penrose inverse matrices. J. Comput. Appl. Math. 2009, 228, 412–417.
[CrossRef]

25. Zhang, J.; Guo, J. On relaxed greedy randomized coordinate descent methods for solving large linear least-squares problems. Appl.
Numer. Math. 2020, 157, 372–384. [CrossRef]

26. Lipitakis, A.-D.; Filelis-Papadopoulos, C.K.; Gravvanis, G.A.; Anagnostopoulos, D. A note on parallel approximate pseudoinverse
matrix techniques for solving linear least squares problems. J. Comput. Sci. 2020, 41, 101092. [CrossRef]

27. Niu, Y.-Q.; Zhang, B. A new randomized Gauss–Seidel method for solving linear least-squares problems. Appl. Math. Lett. 2021,
116, 107057. [CrossRef]

28. Bojanczyk, A.W. Algorithms for indefinite linear least squares problems. Linear Algebra Appli. 2021, 623, 104–127. [CrossRef]
29. Du, K.; Ruan, C.-C.; Sun, X.-H. On the convergence of a randomized block coordinate descent algorithm for a matrix least squares

problem. Appl. Math. Lett. 2022, 124, 107689. [CrossRef]
30. Chakrabarti, K.; Gupta, N.; Chopra, N. Iterative pre-conditioning for expediting the distributed gradient-descent method: The

case of linear least-squares problem. Automatica 2022, 137, 110095. [CrossRef]
31. Zhang, Y.; Li, H. Splitting-based randomized iterative methods for solving indefinite least squares problem. Appl. Math. Comput.

2023, 446, 127892. [CrossRef]
32. Pes, F.; Rodriguez, G. A projection method for general form linear least-squares problems. Appl. Math. Lett. 2023, 145, 108780.

[CrossRef]
33. Kuo, Y.-C.; Liu, C.-S. An index search method based inner-outer iterative algorithm for solving nonnegative least squares problems.

J. Comput. Appl. Math. 2023, 424, 114954. [CrossRef]
34. Jin, L.-L.; Li, H.B. Greedy double subspaces coordinate descent method for solving linear least-squares problems. J. Comput. Sci.

2023, 70, 102029. [CrossRef]
35. Jahvani, M.; Guay, M. Solving least-squares problems in directed networks: A distributed approach. Comput. Chem. Eng. 2024, 185,

108654. [CrossRef]
36. Laura Arias, M.; Contino, M.; Maestripieri, A.; Marcantognini, S. Matrix representations of multivalued projections and least

squares problems. J. Math. Anal. Appl. 2024, 530, 127631. [CrossRef]
37. Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. Numer. Math. 1970, 14, 403–420. [CrossRef]
38. Björck, A. Numerical Methods for Least Squares Problems; SIAM Publisher: Philadelphia, PA, USA, 1996.
39. Liu, C.S. A doubly optimized solution of linear equations system expressed in an affine Krylov subspace. J. Comput. Appl. Math.

2014, 260, 375–394. [CrossRef]
40. Liu, C.S. Optimal algorithms in a Krylov subspace for solving linear inverse problems by MFS. Eng. Anal. Bound. Elem. 2014, 44,

64–75. [CrossRef]
41. Liu, C.S. A double optimal descent algorithm for iteratively solving ill-posed linear inverse problems. Inv. Prob. Sci. Eng. 2015, 23,

38–66. [CrossRef]
42. Liu, C.S. A maximal projection solution of ill-posed linear system in a column subspace, better than the least squares solution.

Comput. Math. Appl. 2014, 67, 1998–2014. [CrossRef]
43. Papez, J.; Tichy, P. Estimating error norms in CG-like algorithms for least-squares and least-norm problems. Numer. Algorithms

2024 , 1–28. [CrossRef]
44. Abbasi, M.; Nikazad, T. Bounded perturbations resilient iterative methods for linear systems and least squares problems: Operator-

based approaches, analysis, and performance evaluation. BIT Numer. Math. 2024, 64, 15. [CrossRef]
45. Xia, Y.; Chen, T.; Shan, J. A novel iterative method for computing generalized inverse. Neural Comput. 2014, 26, 449–465. [CrossRef]

[PubMed]
46. Feng, G.; Li, M.; Chen, C.S. On the ill-conditioning of the MFS for irregular boundary data with sufficient regularity. Eng. Anal.

Bound. Elem. 2014, 41, 98–102. [CrossRef]
47. Liu, C.S.; Kuo, C.L. A multiple-scale Pascal polynomial triangle solving elliptic equations and inverse Cauchy problems. Eng.

Anal. Bound. Elem. 2016, 62, 35–43. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.amc.2011.04.080
http://dx.doi.org/10.1016/j.aml.2011.09.051
http://dx.doi.org/10.2298/FIL1307269S
http://dx.doi.org/10.1016/j.cam.2008.10.008
http://dx.doi.org/10.1016/j.apnum.2020.06.014
http://dx.doi.org/10.1016/j.jocs.2020.101092
http://dx.doi.org/10.1016/j.aml.2021.107057
http://dx.doi.org/10.1016/j.laa.2020.09.006
http://dx.doi.org/10.1016/j.aml.2021.107689
http://dx.doi.org/10.1016/j.automatica.2021.110095
http://dx.doi.org/10.1016/j.amc.2023.127892
http://dx.doi.org/10.1016/j.aml.2023.108780
http://dx.doi.org/10.1016/j.cam.2022.114954
http://dx.doi.org/10.1016/j.jocs.2023.102029
http://dx.doi.org/10.1016/j.compchemeng.2024.108654
http://dx.doi.org/10.1016/j.jmaa.2023.127631
http://dx.doi.org/10.1007/BF02163027
http://dx.doi.org/10.1016/j.cam.2013.10.013
http://dx.doi.org/10.1016/j.enganabound.2014.04.017
http://dx.doi.org/10.1080/17415977.2014.880905
http://dx.doi.org/10.1016/j.camwa.2014.04.011
http://dx.doi.org/10.1007/s11075-023-01691-x
http://dx.doi.org/10.1007/s10543-024-01015-y
http://dx.doi.org/10.1162/NECO_a_00549
http://www.ncbi.nlm.nih.gov/pubmed/24206382
http://dx.doi.org/10.1016/j.enganabound.2014.01.011
http://dx.doi.org/10.1016/j.enganabound.2015.09.003

	Introduction
	A Varying Affine Krylov Subspace Method
	 A Double Optimal Solution
	Two Minimized Functions
	Mathematical Preliminaries
	Estimation of Residual Error

	A Numerical Algorithm
	Numerical Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	A Variant of the Karush–Kuhn–Tucker Equation
	Example 9
	Example 10

	Conclusions
	References

