
Citation: Sun, H.; Zhou, W.; Shao, Y.;

Cui, J.; Xing, L.; Zhao, Q.; Zhang, L. A

Linear Interpolation and Curvature-

Controlled Gradient Optimization

Strategy Based on Adam. Algorithms

2024, 17, 185. https://doi.org/

10.3390/a17050185

Academic Editor: Patrizia Beraldi

Received: 6 April 2024

Revised: 21 April 2024

Accepted: 28 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Linear Interpolation and Curvature-Controlled Gradient
Optimization Strategy Based on Adam
Haijing Sun 1, Wen Zhou 2 , Yichuan Shao 1,*, Jiaqi Cui 2, Lei Xing 3 , Qian Zhao 4 and Le Zhang 1

1 School of Intelligent Science and Engineering, Shenyang University, Shenyang 110044, China;
sunhaijing@syu.edu.cn (H.S.); zhangle@syu.edu.cn (L.Z.)

2 School of Information Engineering, Shenyang University, Shenyang 110044, China;
zhouwend@outlook.com (W.Z.); q28497187@outlook.com (J.C.)

3 School of Chemistry and Chemical Engineering, University of Surrey, Surrey GU2 7XH, UK;
l.xing@surrey.ac.uk

4 School of Science, Shenyang University of Technology, Shenyang 110044, China; qzhao@uow.edu.au
* Correspondence: shaoyichuan@syu.edu.cn

Abstract: The Adam algorithm is a widely used optimizer for neural network training due to efficient
convergence speed. The algorithm is prone to unstable learning rate and performance degradation on
some models. To solve these problems, in this paper, an improved algorithm named Linear Curvature
Momentum Adam (LCMAdam) is proposed, which introduces curvature-controlled gradient and
linear interpolation strategies. The curvature-controlled gradient can make the gradient update
smoother, and the linear interpolation technique can adaptively adjust the size of the learning rate
according to the characteristics of the curve during the training process so that it can find the exact
value faster, which improves the efficiency and robustness of training. The experimental results
show that the LCMAdam algorithm achieves 98.49% accuracy on the MNIST dataset, 75.20% on the
CIFAR10 dataset, and 76.80% on the Stomach dataset, which is more difficult to recognize medical
images. The LCMAdam optimizer achieves significant performance gains on a variety of neural
network structures and tasks, proving its effectiveness and utility in the field of deep learning.

Keywords: deep learning; Adam algorithm; curvature-controlled gradient; linear interpolation;
LCMAdam algorithm

1. Introduction

Deep learning employs multi-layer neural networks to extract features from large-
scale data and is widely used in fields such as computer vision and natural language
processing. Optimization algorithms, such as the Adam algorithm, are crucial in deep
learning. Although the algorithm performs well in many cases, there are still limitations
and challenges. In 2014, Kingma and Ba et al. [1] proposed the Adam algorithm, a stochastic
optimization method that combines first-order and second-order moment estimations of the
gradient. The algorithm provides a theoretical basis and detailed step-by-step instructions
for implementation. Chakrabarti et al. [2] proposed a control theory-based framework for
designing adaptive gradient optimizers to address the Adam algorithm’s excessive flexi-
bility. Kuangyu Ding et al. [3] introduced the Adam-family method to solve the problem
of insufficient weight decay in the Adam algorithm by studying the decoupled weight
decay term. The Adam-plus algorithm [4] addresses the performance issues of the Adam
algorithm when dealing with large-scale data and high dimensionality by adjusting the
learning rate. This adjustment improves the stability and generalization ability of the opti-
mization algorithm. Kavosh Asadi et al. [5] conducted an empirical study on resetting the
optimizer in deep reinforcement learning. They proposed a method to reset the optimizer
by improving the Adam algorithm with respect to the maladaptation of the learning rate

Algorithms 2024, 17, 185. https://doi.org/10.3390/a17050185 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17050185
https://doi.org/10.3390/a17050185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0003-6256-9104
https://orcid.org/0000-0002-0360-8025
https://doi.org/10.3390/a17050185
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17050185?type=check_update&version=1

Algorithms 2024, 17, 185 2 of 14

in the Adam algorithm. Abel C. H. Chen [6] explored the optimized values of each hyper-
parameter in various gradient descent algorithms to provide a deeper understanding and
guidance for tuning the parameters of optimization algorithms. The study on the EAdam
algorithm [7] addressed the effect of the parameter on performance in the Adam optimizer
and improved the Adam algorithm’s performance to some extent in some cases. Lu Xia
et al. [8] proposed a fast adaptive gradient method called the AdamL algorithm to solve the
global problem of learning rate in the Adam algorithm. Ran Tian and Ankur P. Parikh [9]
proposed Amos, an optimizer with adaptive weight decay that addresses the deficiency
of the Adam optimizer in terms of model size. Byeongho Heo et al. [10] proposed an
improved version of the AdamP optimizer, which effectively mitigates the shortcomings of
the Adam algorithm in high-dimensional optimization problems. The aim is to address the
performance degradation of the Adam algorithm on scale-invariant weights. T. Dozat [11]
attempted to address the issue of the Adam algorithm’s potential poor performance in non-
convex optimization problems by integrating the Nesterov momentum approach into the
methodology of the Adam optimization algorithm to compensate for its limitations when
dealing with highly non-uniform loss function surfaces. Zhang et al. [12] proposed the
WuC-Adam algorithm to address the instability of the learning rate and slow convergence
speed in the Adam algorithm. Building on this work, Yiming Jiang et al. [13] proposed
UAdam to solve the performance issues of the Adam algorithm in non-convex optimization,
providing a more general and flexible optimization method. Yan Pan and Yuanzhi Li [14]
investigated why Adam converges faster than SGD in the Transformer model. Yichuan
Shao et al. [15] improved the Adam algorithm to address the issue of unstable conver-
gence speed in deep learning. They proposed a multi-scale lightweight neural network
for detecting steel surface defects and later developed a new PyTorch-based method for
detecting dust on the surface of photovoltaic panels [16]. Liu Hailiang [17] proposed an
adaptive gradient method based on energy and momentum, which offers a new approach
for optimizing the algorithm. Sedjro S. Hotegni et al. [18] investigated the multi-objective
optimization problem in sparse deep multi-task learning and proposed new perspectives
and methods for optimization in multi-task learning. The StochGradAdam algorithm [19]
improved the Adam algorithm by introducing stochastic gradient sampling to enhance the
training speed and generalization ability, particularly when dealing with large-scale data.
In recent years, deep learning techniques have been widely used in healthcare. Hussam
N Fakhouri et al. [20] introduced a cognitive DL retinal vascular splitting hybrid model
after synergistically combining the deep learning capabilities of the U-Net architecture
with a range of advanced image processing techniques to address the complexity of retinal
images. Zhipeng Liu et al. [21] utilized dendritic neurons to address the challenges of
medical imaging segmentation. Bujny et al. [22] proposed a deep learning algorithm for
accurately localizing coronary arteries in cardiac non-contrast CT images, addressing a gap
in the field of coronary artery segmentation.

This study provides insights into the convergence challenges of the Adam algorithm.
The research found that, although the Adam algorithm performs well in most cases, its
performance may suffer in certain situations, such as when the dataset is highly correlated
or when the learning rate decays inappropriately. To address this challenge, two key
techniques, the curvature-controlled gradient technique and linear interpolation technique,
have been investigated and proposed. LCMAdam algorithm relates the values of second-
order moment estimation and first-order moment estimation to the degree of change in
the gradient, which reflects the curvature of the parameter space. This strategy can be
considered a measure of the curvature of the gradient, hence its name: curvature-controlled
gradient. During gradient updates, the rate of the update is controlled by adjusting the size
of the gradient based on the curvature of the current gradient. By adjusting the variation in
the curvature size, the optimizer can effectively avoid drastic fluctuations in the gradient,
thus stabilizing the model training process. Smoothing the gradient update has the effect of
allowing the optimizer to search through the parameter space more efficiently and converge
to a locally optimal solution faster. Also, linear interpolation is used to fine-tune the learning

Algorithms 2024, 17, 185 3 of 14

rate based on predefined hyperparameters. This modification enables the model to adjust
more flexibly to the changes in data distribution, enhancing the model’s robustness and
effectiveness during the training process. As a result, the model’s performance and stability
during training are improved.

2. LCMAdam Algorithm Design
2.1. Adam Optimization Algorithm

The Adam algorithm is an optimization algorithm that adapts the learning rate using
first-order and second-order moment estimations of the gradient. The first-order moment
estimates the gradient direction, while the second-order moment estimates the gradient
magnitude. By combining these two estimators, the Adam algorithm can dynamically
adjust the learning rate’s size to better accommodate changes in different parameters. The
algorithm introduces a bias correction mechanism to solve the problem caused by a too-high
learning rate at the initial time. Also, the parameters used for both are defined as first-order
moments, mt, and second-order moments, vt, respectively. The moment estimation vectors
for the gradient in step t are shown in Equations (1) and (2):

mt = β1mt−1 + (1 − β1)gt (1)

vt = β2vt−1 + (1 − β2)g2
t (2)

where β1 and β2 are the exponential decay rates of the first-order and second-order mo-
ments, respectively, and gt is the gradient of the step, t. The formula is shown in (3):

gt = ∇θ ft(θt) (3)

The parameter values updated by the neural network model at the t-th iteration are
denoted by θt, the usage loss function computed by the neural network model at the t-th
iteration is denoted by ft, and the rate of change in the neural network model to the loss
function relative to the parameters at the t-th iteration is denoted by ∇θ ft(θt).

To address bias in estimating first- and second-order moments when the decay rate
is very small in the initial stage, the Adam algorithm corrects these moments to optimize
parameter updates more efficiently. The formulas are shown in (4) and (5):

m̂t = m/(1 − βt
1) (4)

v̂t = v/(1 − βt
2) (5)

After each iteration, Equation (6) is used to calculate the update of parameter θ.

θt+1 = θt −
α√

v̂ + ε
m̂t (6)

where θ represents the value of the learning rate and ε represents a sufficiently small but
greater-than-zero value that prevents a denominator of zero.

Although the Adam algorithm performs well in many cases, this algorithm is very sen-
sitive to the learning rate setting, which requires fine-tuning its hyperparameters. In some
cases, these hyperparameter settings may cause the algorithm to fail to reach the globally
optimal solution, especially when dealing with certain non-convex optimization problems.

2.2. Curvature-Controlled Gradient Strategy

Controlling and adjusting the difference between the squares of the second-order
moment estimates and the first-order moment estimates indirectly reflects information
about the curvature of the gradient in the parameter space. This allows optimization
algorithms to better adjust the magnitude and direction of the gradient, updating the
parameters more efficiently and avoiding the possibility of converging to a locally optimal
solution. The stability of the optimization process can be improved by using the minimum

Algorithms 2024, 17, 185 4 of 14

value to adjust the size of the gradient, which helps to control the oscillations and volatility
of the gradient. This results in faster convergence to the optimal solution during the
training process.

When the gradient’s curvature is large, the gradient changes faster, at which point
the curvature is reduced to make the gradient update smoother. Conversely, when the
gradient’s curvature is smaller, the gradient changes more slowly, so increases the curvature
to speed up the gradient update.

First, the difference between the squared second-order moment estimate of the gradi-
ent and the first-order moment estimate is computed, and the resulting value is defined as
the curvature. The formula is shown in (7):

curvature = vt − m2
t (7)

This curvature reflects the trend of the gradient change. A larger curvature indicates
a sharp change in the gradient, while the opposite indicates a smoother change in the
gradient. To limit the curvature magnitude, it was restricted to a range of 1.0. This is
performed to balance the parameter update and prevent the gradient from becoming too
large or too small. If the curvature exceeds this range, it is adjusted to 1.0; otherwise, the
original value is maintained. The formula is presented in (8):

GR = min(|curvature|, 1.0) (8)

The gradient is normalized to a unit vector, which maintains the direction of the
gradient while scaling its length to 1.0. This stabilizes and facilitates the adjustment of
the gradient update magnitude. This process ensures that the proper gradient size is
maintained when updating the parameters. The LCMAdam algorithm can balance gradient
variations more efficiently and converge to the optimal solution faster by dynamically
adjusting the curvature.

2.3. Linear Interpolation Strategy

The adaptive adjustment of the learning rate using the linear interpolation technique
can ensure that historical information is fully utilized during the training process and
the size of the learning rate is dynamically adjusted according to the current situation.
This adaptive adjustment can effectively avoid the performance degradation caused by
a too large or too small learning rate, thus improving the stability and efficiency of the
optimization algorithm in the training process.

Drawing on the concept of the microelement method, the learning rate is adjusted.
This approach replaces the use of a fixed learning rate. A learning rate value between
the maximum and minimum learning rates was calculated using a linear interpolation
method based on the relative position of the current training step in the cycle, as shown in
Equation (9):

lr = initial_lr − (initial_lr − min_lr)·(t/period) (9)

The variables used in this formula are: lr for the learning rate after approximation,
initial_lr for the maximum value that can be reached by the learning rate, min_lr for the
minimum value of the learning rate, t for the relative position in the cycle in which it is
currently located, and period for the period of interpolation. The purpose of this interpola-
tion is to dynamically adjust the learning rate during the training process to improve the
model’s convergence or adaptation to the training data. As training progresses, the learning
rate is tuned to enhance the performance and stability of the optimization algorithm.

2.4. LCMAdam Algorithm

The selection of the learning rate is a critical aspect of neural network training. The
Adam algorithm adjusts the learning rate by adaptive gradients and uses exponentially
weighted averaging to balance historical and current gradients for smoother parameter

Algorithms 2024, 17, 185 5 of 14

updates. However, during the initial stages of training, the Adam algorithm may cause
rapid convergence and oscillations, as well as the issue of being trapped in a local optimum
point, which can affect the stability and speed of training. To address the above problems, an
LCMAdam algorithm is proposed, which is improved on the basis of the Adam algorithm,
and the specific steps of the algorithm are as follows.

To initialize, set the initial learning rate to lr, the maximum learning rate to initial_lr,
the minimum learning rate to min_lr, the maximum change in the learning rate to max_lr_
change, the relative position, t, in the cycle and the cycle length to period, and initialize the
first-order momentum to mt and the second-order momentum to vt as zero.

Curvature adjustment stage: The curvature of the gradient was calculated, a correction
factor, GR, was calculated based on the curvature value of the gradient, and it was ensured
that the correction factor did not exceed 1.0. Then, the gradient was multiplied by this
correction factor, GR, so that the magnitude of the gradient was regulated by the curvature.
Finally, the gradient was processed, i.e., the gradient vector was divided by its parameter
to ensure stability and convergence during the gradient update process.

Learning rate adjustment phase: After obtaining the value set by initialization, the
value of the current learning rate was determined by calculating the relative position, t, of
the current step in the cycle, and the learning rate was adjusted according to the global
number of steps by linear interpolation.

Parameter update: By controlling the variation range of the learning rate, it ensures
that the learning rate does not exceed the specified maximum variation value during the
training process, and that the learning rate does not fall below the specified minimum value.

The LCMAdam optimizer introduces a linear interpolation adjustment and a curvature
control gradient strategy. This allows the model to adaptively adjust the learning rate based
on the actual situation, accelerating convergence speed, and improving training efficiency.
This section comprehensively discusses the learning rate and gradient adjustment, which
makes the LCMAdam algorithm more flexible in coping with different data situations when
training deep learning models. The algorithm for this approach is shown in Algorithm 1.

Algorithm 1: LCMAdam

1 : Input : initial point θ0, first − moment decay β1, sec ond − moment decay β2, regularization
constant ε

2 : Initialize m0 = 0 and v0 = 0, lr, initial_lr, min_lr, t, period
3 : For 0 to period perform
4 : gt = ∇ ft(θt−1)
5 : mt = β1mt−1 + (1 − β1)gt
6 : vt = β2vt−1 + (1 − β2)g2

t
7 : m̂t = m/(1 − βt

1)
8 : v̂t = v/(1 − βt

2)
9 : curvature = vt − m2

t
10 : momentum = min(|curvature|, 1.0)
11 : t = step%period
12 : lr = initial_lr − (initial_lr − min_lr)·(t/period)
13 : lr = max(min_lr, lr − max_lr_change)
14 : θt+1 = θt − lr·m̂t/(

√
v̂ + ε)

End for
Return θt

3. Experimental Design and Analysis of Results
3.1. Experimental Environment Configuration

The experiments utilized the Python programming language and the PyTorch deep
learning framework. The improved LCMAdam algorithm was also employed. Details
regarding the main software versions used in the experiments are shown in Table 1.

Algorithms 2024, 17, 185 6 of 14

Table 1. Main software versions in the experiment.

Software Version

Python 3.10
Torch 2.0.1

Torchvision 0.15.0
Lightning 2.1.2

Cuda Cu118

The experimental code was written using the Lightning framework. The Python
language version used was 3.10, with Torch version 2.0.1 and torchvision version 0.15.0.
Lightning version 2.1.2 was also used. Experiments were conducted on three datasets:
MNIST, CIFAR10, and Stomach. MNIST is a grayscale image dataset of handwritten digits,
with each image being 28 × 28 pixels in size. CIFAR10 is a color image dataset that contains
different types of image classifications, and each image is 32 × 32 pixels in size. Stomach
is a medical imaging dataset with a total of 1885 images containing eight classifications.
Before training, the images were preprocessed into sizes of 224 × 224. Table 2 displays the
experimental dataset.

Table 2. Experimental dataset.

Dataset Number of
Samples Training Set Test Set Validation Set Category Data

Characteristics

MNIST 70,000 55,000 5000 10,000 10 Image size unification, data
diversity, moderate data volume

CIFAR10 60,000 45,000 5000 10,000 10 RGB image, relatively small scale,
small image size

Stomach 1885 900 485 500 8 RGB image, few categories,
recognition difficulty

3.2. Experimental Results and Analysis

In order to comprehensively assess the performance advantage of the LCMAdam
algorithm over other optimization algorithms, a series of classical optimization algorithms
were selected for comparative experiments (the initial conditions were the same for each
experiment, and the comparison was only the difference in the accuracy and loss values
between the different algorithms), including SGD, Adagrad, Adalelta, Adam, Nadam,
and StochGradAdam. Multiple experiments were conducted with different datasets and
learning rate conditions to comprehensively evaluate their performance. The comparison
of the experimental results of different optimization algorithms is shown in Table 3.

The experimental setup was as follows:

(1) Algorithm selection: the SGD, Adagrad, Adadelta, Adam, Nadam, StochGradAdam,
and LCMAdam algorithms were selected for comparison.

(2) Number of training rounds: to ensure a fair comparison, the number of training rounds
(Epoch) in the experiment was set to 100.

(3) Batch size: to maintain consistency in the experiment, we set the batch size to 128.
(4) Learning rate setting: the initial learning rate of all algorithms was set to 0.001. The

maximum learning rate of the LCMAdam algorithm was set to 0.005, the minimum
learning rate was set to 0.001, and the maximum change of learning rate was set
to 0.001.

(5) Other hyperparameters: the cycle length (period) in the LCMAdam optimizer was set
to 1.1.

(6) Multiple experiments: since the LCMAdam algorithm needed to adjust the cycle length
and the maximum variation in the learning rate, we conducted multiple experiments
on each dataset and selected the best results as the experimental results.

Algorithms 2024, 17, 185 7 of 14

(7) Experimental results: 17 comparative experiments were conducted on MNIST, CI-
FAR10, and Stomach datasets, and the average of the 17 results was taken as the
final result to reflect the advantages of the LCMAdam algorithm in solving the Adam
algorithm problem and improving the generalization ability.

Table 3. Comparison of experimental results of different optimization algorithms.

Dataset Optimization
Algorithm Accuracy Loss

MNIST

SGD 97.18% 0.092
Adagrad 98.68% 0.067
Adalelta 96.42% 0.1297

Adam 98.64% 0.060
NAdam 98.44% 0.0638

StochGradAdam 98.11% 0.0695
LCMAdam 98.49% 0.060

CIFAR10

SGD 48.32% 1.466
Adagrad 29.87% 1.95
Adalelta 25.97% 1.973

Adam 68.49% 1.22
NAdam 69.85% 1.685

StochGradAdam 69.06% 1.032
LCMAdam 75.20% 1.28

Stomach

SGD 57.60% 1.171
Adagrad 69.99% 0.9581
Adalelta 56.00% 1.665

Adam 74.20% 0.883
NAdam 74.80% 0.817

StochGradAdam 70.20% 0.9307
LCMAdam 76.80% 0.66

The LCMAdam algorithm aims to improve the generalization ability of the model and
solve the oscillation problem caused by the algorithm’s non-convergence. To evaluate the
performance of the LCMAdam algorithm on various neural networks, different datasets
were used for training. The MNIST dataset, consisting of grayscale images with a size
of 28 × 28 pixels each, was used to train a simple fully connected neural network. On
the other hand, the CIFAR10 and Stomach datasets were used to train a MobileNetV2
lightweight neural network. These two datasets contain color RGB images. To compare
the algorithms, we selected cross datasets and observed their convergence on all three
datasets. The learning rate settings are the same as in Table 3. In order to comprehensively
demonstrate the performance of the LCMAdam algorithm under different combinations
of hyperparameter settings, three different combinations of maximum variation values
of the learning rate and cycle lengths were designed and comparative experiments were
conducted. In Figures 1 and 2, the performance of the LCMAdam algorithm is shown for
different combinations of hyperparameter settings on the MNIST and CIFAR10 datasets.
The algorithm’s performance varies depending on the values of initial_lr and min_lr,
max_lr_change and period (when validating a dataset, the best performance parameter
value is taken for the other dataset).

The minimum learning rate parameter, min_lr, is held constant at 0.001. Based on
the observations in Figure 1, the LCMAdam algorithm performs best when the learning
rate parameter range is increased from 0.001 to 0.005. When the maximum learning rate
parameter was set to 0.05 and 0.01, the program lagged behind the maximum learning
rate parameter of 0.005 in the later stages of training, although it slightly outperformed
the maximum learning rate parameter of 0.005 in the early stages of training. This phe-
nomenon may be due to the learning rate range being set too large, which can result in an
inappropriate value of the learning rate during later training phases, ultimately affecting

Algorithms 2024, 17, 185 8 of 14

the search for the local optimal solution. The initial learning rate value remains unchanged
at 0.001, and by combining the calculated values of some formulas in this algorithm, the
minimum learning rate is set to 0.001 without any other changes.

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 15

(1) Algorithm selection: the SGD, Adagrad, Adadelta, Adam, Nadam, StochGradAdam,
and LCMAdam algorithms were selected for comparison.

(2) Number of training rounds: to ensure a fair comparison, the number of training
rounds (Epoch) in the experiment was set to 100.

(3) Batch size: to maintain consistency in the experiment, we set the batch size to 128.
(4) Learning rate setting: the initial learning rate of all algorithms was set to 0.001. The

maximum learning rate of the LCMAdam algorithm was set to 0.005, the minimum
learning rate was set to 0.001, and the maximum change of learning rate was set to
0.001.

(5) Other hyperparameters: the cycle length (period) in the LCMAdam optimizer was
set to 1.1.

(6) Multiple experiments: since the LCMAdam algorithm needed to adjust the cycle
length and the maximum variation in the learning rate, we conducted multiple ex-
periments on each dataset and selected the best results as the experimental results.

(7) Experimental results: 17 comparative experiments were conducted on MNIST,
CIFAR10, and Stomach datasets, and the average of the 17 results was taken as the
final result to reflect the advantages of the LCMAdam algorithm in solving the Adam
algorithm problem and improving the generalization ability.
The LCMAdam algorithm aims to improve the generalization ability of the model

and solve the oscillation problem caused by the algorithm’s non-convergence. To evaluate
the performance of the LCMAdam algorithm on various neural networks, different da-
tasets were used for training. The MNIST dataset, consisting of grayscale images with a
size of 28 × 28 pixels each, was used to train a simple fully connected neural network. On
the other hand, the CIFAR10 and Stomach datasets were used to train a MobileNetV2
lightweight neural network. These two datasets contain color RGB images. To compare
the algorithms, we selected cross datasets and observed their convergence on all three
datasets. The learning rate settings are the same as in Table 3. In order to comprehensively
demonstrate the performance of the LCMAdam algorithm under different combinations
of hyperparameter settings, three different combinations of maximum variation values of
the learning rate and cycle lengths were designed and comparative experiments were con-
ducted. In Figures 1 and 2, the performance of the LCMAdam algorithm is shown for
different combinations of hyperparameter settings on the MNIST and CIFAR10 datasets.
The algorithm’s performance varies depending on the values of _initial lr and min_ lr ,
max_ _lr change and period (when validating a dataset, the best performance parameter
value is taken for the other dataset).

0 5 10 15 20

0.9215

0.9310

0.9405

0.9500

0.9595

0.9690

0.9785

0.9880

0.9975

A
cc

epoch

initial_lr
 0.05
 0.01
 0.005

0 5 10 15 20

0.000

0.032

0.064

0.096

0.128

0.160

0.192

0.224

0.256

Lo
ss

epoch

initial_lr
 0.05
 0.01
 0.005

(a) (b)

Figure 1. Performance comparison of the MNIST dataset for different learning rate variation inter-
vals: (a) comparison of accuracy; (b) comparison of loss values.

Figure 1. Performance comparison of the MNIST dataset for different learning rate variation intervals:
(a) comparison of accuracy; (b) comparison of loss values.

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 15

0 5 10 15 20
0.3

0.4

0.5

0.6

0.7

A
cc

epoch

period--max_lr_change
 1.1--0.001
 1.01--0.01
 1.1--0.01

0 5 10 15 20

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

epoch

period--max_lr_change
 1.1--0.001
 1.01-0.01
 1.1-0.01

(a) (b)

Figure 2. Comparison of the performance of the CIFAR10 dataset for different learning rates in terms
of maximum change and cycle length: (a) comparison of accuracy; (b) comparison of loss values.

The minimum learning rate parameter, min_ lr , is held constant at 0.001. Based on
the observations in Figure 1, the LCMAdam algorithm performs best when the learning
rate parameter range is increased from 0.001 to 0.005. When the maximum learning rate
parameter was set to 0.05 and 0.01, the program lagged behind the maximum learning
rate parameter of 0.005 in the later stages of training, although it slightly outperformed
the maximum learning rate parameter of 0.005 in the early stages of training. This phe-
nomenon may be due to the learning rate range being set too large, which can result in an
inappropriate value of the learning rate during later training phases, ultimately affecting
the search for the local optimal solution. The initial learning rate value remains unchanged
at 0.001, and by combining the calculated values of some formulas in this algorithm, the
minimum learning rate is set to 0.001 without any other changes.

The variation in the maximum variation in the learning rate max_ _lr change and
the cycle length period in Figure 2 also affects the performance of the LCMAdam algo-
rithm. The experimental results indicate that the LCMAdam algorithm performs best
when the learning rate maximum variation parameter and the cycle length parameter are
set to 1.1 and 0.001, respectively. However, changing the maximum amount of change in
the learning rate parameter to 0.01 results in a good performance in the early stages of
training, but a decrease in performance in the later stages. When adjusting these two pa-
rameters simultaneously, the performance is still not as good as when they are set to 1.1
and 0.001. This phenomenon may be due to improper parameter settings resulting in a
large variation in lr in the final calculation.

For training, the hyperparameters are set to the set of data on which the LCMAdam
algorithm performs best on the three datasets. Figure 3 shows the performance compari-
son of various algorithms for the MNIST dataset.

Figure 2. Comparison of the performance of the CIFAR10 dataset for different learning rates in terms
of maximum change and cycle length: (a) comparison of accuracy; (b) comparison of loss values.

The variation in the maximum variation in the learning rate max_lr_change and the
cycle length period in Figure 2 also affects the performance of the LCMAdam algorithm.
The experimental results indicate that the LCMAdam algorithm performs best when the
learning rate maximum variation parameter and the cycle length parameter are set to
1.1 and 0.001, respectively. However, changing the maximum amount of change in the
learning rate parameter to 0.01 results in a good performance in the early stages of training,
but a decrease in performance in the later stages. When adjusting these two parameters
simultaneously, the performance is still not as good as when they are set to 1.1 and 0.001.
This phenomenon may be due to improper parameter settings resulting in a large variation
in lr in the final calculation.

Algorithms 2024, 17, 185 9 of 14

For training, the hyperparameters are set to the set of data on which the LCMAdam
algorithm performs best on the three datasets. Figure 3 shows the performance comparison
of various algorithms for the MNIST dataset.

Algorithms 2024, 17, x FOR PEER REVIEW 10 of 15

0 50 100

0.340

0.425

0.510

0.595

0.680

0.765

0.850

0.935

1.020

A
cc

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

0 50 100

0.00

0.26

0.52

0.78

1.04

1.30

1.56

1.82

2.08

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

(a) (b)

Figure 3. Performance comparison of various algorithms on the MNIST dataset: (a) comparison of
accuracy; (b) comparison of loss values.

The results in Figure 4 show that, on the CIFAR10 dataset, although the accuracy of
the LCMAdam algorithm is slightly lower than that of the Adam and NAdam algorithms
at the beginning of the training period, the accuracy of the LCMAdam algorithm sur-
passes that of the remaining six algorithms as the training progresses, and the algorithm
improves its accuracy by 6.71% compared to the Adam algorithm. The accuracy of the
LCMAdam algorithm is improved by 5.35% and 6.14% compared to the improved Adam
algorithm-based NAdam algorithm and StochGradAdam algorithm, respectively. This
advantage can be attributed to the curvature-controlled gradient strategy employed by
the LCMAdam optimizer. During the training process, the LCMAdam algorithm ensures
the smoothness of the gradient update by limiting the curvature of the gradient. By ad-
justing the change in the size of the curvature, the LCMAdam algorithm can effectively
avoid drastic fluctuations in the gradient, thus improving the stability of model training.

0 50 100

0.087

0.174

0.261

0.348

0.435

0.522

0.609

0.696

0.783

A
cc

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

Figure 4. Accuracy of different algorithms for the CIFAR10 dataset.

Figure 5 shows that the LCMAdam algorithm has a slightly lower loss value than the
other algorithms at the beginning of training. As the number of training rounds increases,
the Adam algorithm is lower than the algorithm by 0.06 in comparison.

Figure 3. Performance comparison of various algorithms on the MNIST dataset: (a) comparison of
accuracy; (b) comparison of loss values.

The results in Figure 4 show that, on the CIFAR10 dataset, although the accuracy of
the LCMAdam algorithm is slightly lower than that of the Adam and NAdam algorithms
at the beginning of the training period, the accuracy of the LCMAdam algorithm surpasses
that of the remaining six algorithms as the training progresses, and the algorithm improves
its accuracy by 6.71% compared to the Adam algorithm. The accuracy of the LCMAdam
algorithm is improved by 5.35% and 6.14% compared to the improved Adam algorithm-
based NAdam algorithm and StochGradAdam algorithm, respectively. This advantage can
be attributed to the curvature-controlled gradient strategy employed by the LCMAdam
optimizer. During the training process, the LCMAdam algorithm ensures the smoothness
of the gradient update by limiting the curvature of the gradient. By adjusting the change in
the size of the curvature, the LCMAdam algorithm can effectively avoid drastic fluctuations
in the gradient, thus improving the stability of model training.

Algorithms 2024, 17, x FOR PEER REVIEW 10 of 15

0 50 100

0.340

0.425

0.510

0.595

0.680

0.765

0.850

0.935

1.020
A

cc

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

0 50 100

0.00

0.26

0.52

0.78

1.04

1.30

1.56

1.82

2.08

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

(a) (b)

Figure 3. Performance comparison of various algorithms on the MNIST dataset: (a) comparison of
accuracy; (b) comparison of loss values.

The results in Figure 4 show that, on the CIFAR10 dataset, although the accuracy of
the LCMAdam algorithm is slightly lower than that of the Adam and NAdam algorithms
at the beginning of the training period, the accuracy of the LCMAdam algorithm sur-
passes that of the remaining six algorithms as the training progresses, and the algorithm
improves its accuracy by 6.71% compared to the Adam algorithm. The accuracy of the
LCMAdam algorithm is improved by 5.35% and 6.14% compared to the improved Adam
algorithm-based NAdam algorithm and StochGradAdam algorithm, respectively. This
advantage can be attributed to the curvature-controlled gradient strategy employed by
the LCMAdam optimizer. During the training process, the LCMAdam algorithm ensures
the smoothness of the gradient update by limiting the curvature of the gradient. By ad-
justing the change in the size of the curvature, the LCMAdam algorithm can effectively
avoid drastic fluctuations in the gradient, thus improving the stability of model training.

0 50 100

0.087

0.174

0.261

0.348

0.435

0.522

0.609

0.696

0.783

A
cc

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

Figure 4. Accuracy of different algorithms for the CIFAR10 dataset.

Figure 5 shows that the LCMAdam algorithm has a slightly lower loss value than the
other algorithms at the beginning of training. As the number of training rounds increases,
the Adam algorithm is lower than the algorithm by 0.06 in comparison.

Figure 4. Accuracy of different algorithms for the CIFAR10 dataset.

Algorithms 2024, 17, 185 10 of 14

Figure 5 shows that the LCMAdam algorithm has a slightly lower loss value than the
other algorithms at the beginning of training. As the number of training rounds increases,
the Adam algorithm is lower than the algorithm by 0.06 in comparison.

Algorithms 2024, 17, x FOR PEER REVIEW 11 of 15

0 50 100

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

Figure 5. Loss values of different algorithms for the CIFAR10 dataset.

The accuracy of several different algorithms was compared on the Stomach dataset.
According to the results in Figure 6, the accuracy of the Adadelta and SGD algorithms is
significantly lower than the other five algorithms as the number of training rounds in-
creases. The LCMAdam algorithm improves by 2.6%, 2%, and 6.6% compared to the
Adam algorithm as well as the NAdam algorithm and StochGradAdam algorithm, which
are improved based on the Adam algorithm. This advantage can be attributed to the linear
interpolation control change learning rate strategy, which constantly changes the value of
the learning rate during training and utilizes linear interpolation to approximate the learn-
ing rate for adjustment. By adjusting the learning rate in a timely and precise manner, the
LCMAdam algorithm can converge to the optimal solution more efficiently and be more
responsive to changes and challenges during training, which in turn improves perfor-
mance and stability.

0 50 100

0.490

0.525

0.560

0.595

0.630

0.665

0.700

0.735

0.770

A
cc

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

Figure 6. Accuracy of different algorithms on the Stomach dataset.

The loss values for the test set of several different algorithms were compared for the
Stomach dataset. The results in Figure 7 show that, as the number of training rounds in-
creases, the Adadelta algorithm has significantly higher loss values than the other optimi-
zation algorithms. The LCMAdam algorithm outperforms the other six algorithms with
lower loss values. Specifically, when compared to the Adam algorithm, as well as the

Figure 5. Loss values of different algorithms for the CIFAR10 dataset.

The accuracy of several different algorithms was compared on the Stomach dataset.
According to the results in Figure 6, the accuracy of the Adadelta and SGD algorithms
is significantly lower than the other five algorithms as the number of training rounds
increases. The LCMAdam algorithm improves by 2.6%, 2%, and 6.6% compared to the
Adam algorithm as well as the NAdam algorithm and StochGradAdam algorithm, which
are improved based on the Adam algorithm. This advantage can be attributed to the linear
interpolation control change learning rate strategy, which constantly changes the value
of the learning rate during training and utilizes linear interpolation to approximate the
learning rate for adjustment. By adjusting the learning rate in a timely and precise manner,
the LCMAdam algorithm can converge to the optimal solution more efficiently and be more
responsive to changes and challenges during training, which in turn improves performance
and stability.

Algorithms 2024, 17, x FOR PEER REVIEW 11 of 15

0 50 100

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

Figure 5. Loss values of different algorithms for the CIFAR10 dataset.

The accuracy of several different algorithms was compared on the Stomach dataset.
According to the results in Figure 6, the accuracy of the Adadelta and SGD algorithms is
significantly lower than the other five algorithms as the number of training rounds in-
creases. The LCMAdam algorithm improves by 2.6%, 2%, and 6.6% compared to the
Adam algorithm as well as the NAdam algorithm and StochGradAdam algorithm, which
are improved based on the Adam algorithm. This advantage can be attributed to the linear
interpolation control change learning rate strategy, which constantly changes the value of
the learning rate during training and utilizes linear interpolation to approximate the learn-
ing rate for adjustment. By adjusting the learning rate in a timely and precise manner, the
LCMAdam algorithm can converge to the optimal solution more efficiently and be more
responsive to changes and challenges during training, which in turn improves perfor-
mance and stability.

0 50 100

0.490

0.525

0.560

0.595

0.630

0.665

0.700

0.735

0.770

A
cc

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

Figure 6. Accuracy of different algorithms on the Stomach dataset.

The loss values for the test set of several different algorithms were compared for the
Stomach dataset. The results in Figure 7 show that, as the number of training rounds in-
creases, the Adadelta algorithm has significantly higher loss values than the other optimi-
zation algorithms. The LCMAdam algorithm outperforms the other six algorithms with
lower loss values. Specifically, when compared to the Adam algorithm, as well as the

Figure 6. Accuracy of different algorithms on the Stomach dataset.

The loss values for the test set of several different algorithms were compared for the
Stomach dataset. The results in Figure 7 show that, as the number of training rounds
increases, the Adadelta algorithm has significantly higher loss values than the other op-
timization algorithms. The LCMAdam algorithm outperforms the other six algorithms

Algorithms 2024, 17, 185 11 of 14

with lower loss values. Specifically, when compared to the Adam algorithm, as well as the
NAdam algorithm and the StochGradAdam algorithm, which are based on the improve-
ment of the Adam algorithm; the LCMAdam algorithm reduces the loss values by 0.223,
0.157, and 0.2707.

Algorithms 2024, 17, x FOR PEER REVIEW 12 of 15

NAdam algorithm and the StochGradAdam algorithm, which are based on the improve-
ment of the Adam algorithm; the LCMAdam algorithm reduces the loss values by 0.223,
0.157, and 0.2707.

50 100

0.44

0.66

0.88

1.10

1.32

1.54

1.76

1.98

2.20

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

Figure 7. Loss values for different algorithms for the Stomach dataset.

Based on Figure 8, on the CIFAR10 dataset, the LCMAdam algorithm has slightly
lower GPU power consumption compared to the StochGradAdam algorithm, but still out-
performs the Adam algorithm and other compared algorithms. This is due to the
LCMAdam algorithm’s dynamic learning rate adjustment strategy, which results in a
slightly longer training time compared to some other algorithms. The LCMAdam algo-
rithm’s dynamic learning rate adjustment strategy offers more precise guidance for model
optimization, thereby enhancing the model’s convergence speed and performance to
some extent.

Figure 8. GPU power consumption of different algorithms for the CIFAR10 dataset.

Based on the observations in Figure 9, it can be seen that the GPU power consump-
tion of the seven algorithms is basically equal when facing a more difficult dataset to rec-
ognize, such as Stomach, but there is a slight difference in their processing time. The
LCMAdam algorithm shows a faster processing speed when dealing with this type of
more difficult dataset, an advantage that may bring significant benefits in real-world sce-
narios.

Figure 7. Loss values for different algorithms for the Stomach dataset.

Based on Figure 8, on the CIFAR10 dataset, the LCMAdam algorithm has slightly lower
GPU power consumption compared to the StochGradAdam algorithm, but still outperforms
the Adam algorithm and other compared algorithms. This is due to the LCMAdam
algorithm’s dynamic learning rate adjustment strategy, which results in a slightly longer
training time compared to some other algorithms. The LCMAdam algorithm’s dynamic
learning rate adjustment strategy offers more precise guidance for model optimization,
thereby enhancing the model’s convergence speed and performance to some extent.

Algorithms 2024, 17, x FOR PEER REVIEW 12 of 15

NAdam algorithm and the StochGradAdam algorithm, which are based on the improve-
ment of the Adam algorithm; the LCMAdam algorithm reduces the loss values by 0.223,
0.157, and 0.2707.

50 100

0.44

0.66

0.88

1.10

1.32

1.54

1.76

1.98

2.20

Lo
ss

epoch

 SGD
 Adagrad
 Adadelta
 Adam
 NAdam
 StochGradAdam
 LCMAdam

Figure 7. Loss values for different algorithms for the Stomach dataset.

Based on Figure 8, on the CIFAR10 dataset, the LCMAdam algorithm has slightly
lower GPU power consumption compared to the StochGradAdam algorithm, but still out-
performs the Adam algorithm and other compared algorithms. This is due to the
LCMAdam algorithm’s dynamic learning rate adjustment strategy, which results in a
slightly longer training time compared to some other algorithms. The LCMAdam algo-
rithm’s dynamic learning rate adjustment strategy offers more precise guidance for model
optimization, thereby enhancing the model’s convergence speed and performance to
some extent.

Figure 8. GPU power consumption of different algorithms for the CIFAR10 dataset.

Based on the observations in Figure 9, it can be seen that the GPU power consump-
tion of the seven algorithms is basically equal when facing a more difficult dataset to rec-
ognize, such as Stomach, but there is a slight difference in their processing time. The
LCMAdam algorithm shows a faster processing speed when dealing with this type of
more difficult dataset, an advantage that may bring significant benefits in real-world sce-
narios.

Figure 8. GPU power consumption of different algorithms for the CIFAR10 dataset.

Based on the observations in Figure 9, it can be seen that the GPU power consumption
of the seven algorithms is basically equal when facing a more difficult dataset to recognize,
such as Stomach, but there is a slight difference in their processing time. The LCMAdam
algorithm shows a faster processing speed when dealing with this type of more difficult
dataset, an advantage that may bring significant benefits in real-world scenarios.

Algorithms 2024, 17, 185 12 of 14

Algorithms 2024, 17, x FOR PEER REVIEW 13 of 15

Figure 9. GPU power consumption of different algorithms for the Stomach dataset.

The LCMAdam algorithm demonstrates superior performance not only in processing
simple grayscale images, but also in processing color image data. After 100 rounds of
training, the LCMAdam algorithm processes images with slightly higher accuracy than
the other algorithms; especially compared to the standard Adam algorithm, the
LCMAdam algorithm achieves significant optimization. The benefits of the LCMAdam
algorithm are emphasized in improving image recognition accuracy and reducing oscil-
lation ability. The experimental results confirm the superiority of the LCMAdam algo-
rithm, particularly its robust performance. The algorithm presents high accuracy under
different datasets and achieves low loss values during training. This shows that the
LCMAdam algorithm has unique advantages in dealing with complex data structures.

4. Conclusions
In this study, a new optimization algorithm, LCMAdam, is proposed to further im-

prove the problems and deficiencies of the Adam optimization algorithm. Comprehensive
experimental validation confirms that the LCMAdam algorithm outperforms traditional
optimization methods, such as Adam, on several standard datasets. The LCMAdam algo-
rithm demonstrates significant improvements in stability and convergence speed for com-
plex problems. The LCMAdam algorithm offers a more flexible and efficient training ap-
proach by combining curvature-controlled gradient and linear interpolation to adapt the
learning rate adjustment. The LCMAdam algorithm has made significant progress in im-
proving the performance and stability of neural network training, but there are still some
limitations. One such limitation is the computational efficiency challenge that may be
faced when dealing with extremely large-scale datasets. In addition, the performance of
the LCMAdam algorithm may be affected by the characteristics of the dataset, especially
in sparse data or highly unbalanced classification tasks, where additional tuning may be
required to achieve optimal performance. The results indicate that the LCMAdam algo-
rithm enhances the model’s performance on standard test sets and real-world applica-
tions, including medical image processing. This provides a promising approach for im-
proving performance and generalization of deep learning models.

Author Contributions: Conceptualization, methodology, and writing—original draft preparation,
W.Z.; software, project administration, and resources, Y.S.; data curation, J.C.; writing—review and
editing, supervision, and formal analysis, H.S.; funding acquisition, Q.Z. and L.X. and L.Z. All au-
thors have read and agreed to the published version of the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: 1. Liaoning Provincial Department of Education Basic Research Project for Higher Educa-
tion Institutions (General Project), Shenyang University of Technology, Research on Optimization
Design of Wind Turbine Cone Angle Based on Fluid Physics Method (LJKZ0159). 2. Basic Research
Project of Liaoning Provincial Department of Education “Training and Application of Multimodal

Figure 9. GPU power consumption of different algorithms for the Stomach dataset.

The LCMAdam algorithm demonstrates superior performance not only in processing
simple grayscale images, but also in processing color image data. After 100 rounds of
training, the LCMAdam algorithm processes images with slightly higher accuracy than the
other algorithms; especially compared to the standard Adam algorithm, the LCMAdam
algorithm achieves significant optimization. The benefits of the LCMAdam algorithm are
emphasized in improving image recognition accuracy and reducing oscillation ability. The
experimental results confirm the superiority of the LCMAdam algorithm, particularly its
robust performance. The algorithm presents high accuracy under different datasets and
achieves low loss values during training. This shows that the LCMAdam algorithm has
unique advantages in dealing with complex data structures.

4. Conclusions

In this study, a new optimization algorithm, LCMAdam, is proposed to further im-
prove the problems and deficiencies of the Adam optimization algorithm. Comprehensive
experimental validation confirms that the LCMAdam algorithm outperforms traditional op-
timization methods, such as Adam, on several standard datasets. The LCMAdam algorithm
demonstrates significant improvements in stability and convergence speed for complex
problems. The LCMAdam algorithm offers a more flexible and efficient training approach
by combining curvature-controlled gradient and linear interpolation to adapt the learning
rate adjustment. The LCMAdam algorithm has made significant progress in improving the
performance and stability of neural network training, but there are still some limitations.
One such limitation is the computational efficiency challenge that may be faced when
dealing with extremely large-scale datasets. In addition, the performance of the LCMAdam
algorithm may be affected by the characteristics of the dataset, especially in sparse data or
highly unbalanced classification tasks, where additional tuning may be required to achieve
optimal performance. The results indicate that the LCMAdam algorithm enhances the
model’s performance on standard test sets and real-world applications, including medical
image processing. This provides a promising approach for improving performance and
generalization of deep learning models.

Author Contributions: Conceptualization, methodology, and writing—original draft preparation,
W.Z.; software, project administration, and resources, Y.S.; data curation, J.C.; writing—review and
editing, supervision, and formal analysis, H.S.; funding acquisition, Q.Z. and L.X. and L.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: 1. Liaoning Provincial Department of Education Basic Research Project for Higher Educa-
tion Institutions (General Project), Shenyang University of Technology, Research on Optimization
Design of Wind Turbine Cone Angle Based on Fluid Physics Method (LJKZ0159). 2. Basic Research
Project of Liaoning Provincial Department of Education “Training and Application of Multimodal

Algorithms 2024, 17, 185 13 of 14

Deep Neural Network Models for Vertical Fields” Project Number: JYTMS20231160. 3. Research on
the Construction of a New Artificial Intelligence Technology and High-Quality Education Service
Supply System in the 14th Five-Year Plan for Education Science in Liaoning Province, 2023–2025,
Project Number: JG22DB488. 4. “Chunhui Plan” of the Ministry of Education, Research on Optimiza-
tion Model and Algorithm for Microgrid Energy Scheduling Based on Biological Behavior, Project
No. 202200209. 5. Shenyang Science and Technology Plan “Special Mission for Leech Breeding and
Traditional Chinese Medicine Planting in Dengshibao Town, Faku County”, Project No. 22-319-2-26.

Data Availability Statement: The location of the Python code used in this paper is https://github.
com/zhou0618/LCMAdam (accessed on 6 April 2024); CIFAR10 dataset: https://www.kaggle.com/
datasets/gazu468/cifar10-classification-image (accessed on 6 April 2024); and Stomach datasets:
https://doi.org/10.1038/s41597-020-00622-y (accessed on 6 April 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The list of abbreviations and symbols is shown below.

LCMAdam Linear Curvature Momentum Adam
GR correction factor
initial_lr maximum learning rate
min_lr minimum learning rate
max_lr_change maximum variation in the learning rate
period cycle length

References
1. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017. [CrossRef]
2. Chakrabarti, K.; Chopra, N. A Control Theoretic Framework for Adaptive Gradient Optimizers in Machine Learning. arXiv 2023.

[CrossRef]
3. Ding, K.; Xiao, N.; Toh, K.-C. Adam-family Methods with Decoupled Weight Decay in Deep Learning. arXiv 2023. [CrossRef]
4. Liu, M.; Zhang, W.; Orabona, F.; Yang, T. Adam+: A Stochastic Method with Adaptive Variance Reduction. arXiv 2020. [CrossRef]
5. Asadi, K.; Fakoor, R.; Sabach, S. Resetting the Optimizer in Deep RL: An Empirical Study. arXiv 2023. [CrossRef]
6. Chen, A.C.H. Exploring the Optimized Value of Each Hyperparameter in Various Gradient Descent Algorithms. arXiv 2022.

[CrossRef]
7. Yuan, W.; Gao, K.-X. EAdam Optimizer: How ε Impact Adam. arXiv 2020. [CrossRef]
8. Xia, L.; Massei, S. AdamL: A fast adaptive gradient method incorporating loss function. arXiv 2023. [CrossRef]
9. Tian, R.; Parikh, A.P. Amos: An Adam-style Optimizer with Adaptive Weight Decay towards Model-Oriented Scale. arXiv 2022.

[CrossRef]
10. Heo, B.; Chun, S.; Oh, S.J.; Han, D.; Yun, S.; Kim, G.; Uh, Y.; Ha, J.-W. AdamP: Slowing Down the Slowdown for Momentum

Optimizers on Scale-invariant Weights. arXiv 2021. [CrossRef]
11. Dozat, T. Incorporating Nesterov Momentum into Adam. 2016. Available online: https://openreview.net/forum?id=OM0jvwB8

jIp57ZJjtNEZ (accessed on 6 April 2024).
12. Zhang, C.; Shao, Y.; Sun, H.; Xing, L.; Zhao, Q.; Zhang, L. The WuC-Adam algorithm based on joint improvement of Warmup and

cosine annealing algorithms. Math. Biosci. Eng. MBE 2024, 21, 1270–1285. [CrossRef]
13. Jiang, Y.; Liu, J.; Xu, D.; Mandic, D.P. UAdam: Unified Adam-Type Algorithmic Framework for Non-Convex Stochastic

Optimization. arXiv 2023. [CrossRef]
14. Pan, Y.; Li, Y. Toward Understanding Why Adam Converges Faster Than SGD for Transformers. arXiv 2023. [CrossRef]
15. Shao, Y.; Fan, S.; Sun, H.; Tan, Z.; Cai, Y.; Zhang, C.; Zhang, L. Multi-Scale Lightweight Neural Network for Steel Surface Defect

Detection. Coatings 2023, 13, 1202. [CrossRef]
16. Shao, Y.; Zhang, C.; Xing, L.; Sun, H.; Zhao, Q.; Zhang, L. A new dust detection method for photovoltaic panel surface based on

Pytorch and its economic benefit analysis. Energy AI 2024, 16, 100349. [CrossRef]
17. Liu, H.; Tian, X. An Adaptive Gradient Method with Energy and Momentum. Ann. Appl. Math. 2022, 38, 183–222. [CrossRef]
18. Hotegni, S.S.; Berkemeier, M.; Peitz, S. Multi-Objective Optimization for Sparse Deep Multi-Task Learning. arXiv 2024. [CrossRef]
19. Yun, J. StochGradAdam: Accelerating Neural Networks Training with Stochastic Gradient Sampling. arXiv 2024. [CrossRef]
20. Fakhouri, H.N.; Alawadi, S.; Awaysheh, F.M.; Alkhabbas, F.; Zraqou, J. A cognitive deep learning approach for medical image

processing. Sci. Rep. 2024, 14, 4539. [CrossRef]

https://github.com/zhou0618/LCMAdam
https://github.com/zhou0618/LCMAdam
https://www.kaggle.com/datasets/gazu468/cifar10-classification-image
https://www.kaggle.com/datasets/gazu468/cifar10-classification-image
https://doi.org/10.1038/s41597-020-00622-y
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.2206.02034
https://doi.org/10.48550/arXiv.2310.08858
https://doi.org/10.48550/arXiv.2011.11985
https://doi.org/10.48550/arXiv.2306.17833
https://doi.org/10.48550/arXiv.2212.12279
https://doi.org/10.48550/arXiv.2011.02150
https://doi.org/10.48550/arXiv.2312.15295
https://doi.org/10.48550/arXiv.2210.11693
https://doi.org/10.48550/arXiv.2006.08217
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://doi.org/10.3934/mbe.2024054
https://doi.org/10.48550/arXiv.2305.05675
https://doi.org/10.48550/arXiv.2306.00204
https://doi.org/10.3390/coatings13071202
https://doi.org/10.1016/j.egyai.2024.100349
https://doi.org/10.4208/aam.OA-2021-0095
https://doi.org/10.48550/arXiv.2308.12243
https://doi.org/10.48550/arXiv.2310.17042
https://doi.org/10.1038/s41598-024-55061-1

Algorithms 2024, 17, 185 14 of 14

21. Liu, Z.; Zhang, Z.; Lei, Z.; Omura, M.; Wang, R.-L.; Gao, S. Dendritic Deep Learning for Medical Segmentation. IEEECAA J.
Autom. Sin. 2024, 11, 803–805. [CrossRef]

22. Liu, C.; Fan, F.; Schwarz, A.; Maier, A. AnatoMix: Anatomy-aware Data Augmentation for Multi-organ Segmentation. arXiv 2024.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JAS.2023.123813
https://doi.org/10.48550/arXiv.2403.03326

	Introduction
	LCMAdam Algorithm Design
	Adam Optimization Algorithm
	Curvature-Controlled Gradient Strategy
	Linear Interpolation Strategy
	LCMAdam Algorithm

	Experimental Design and Analysis of Results
	Experimental Environment Configuration
	Experimental Results and Analysis

	Conclusions
	References

