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Abstract: High-throughput screening systems are robotic cells that automatically scan and analyze
thousands of biochemical samples and reagents in real time. The problem under consideration is to
find an optimal cyclic schedule of robot moves that ensures maximum cell performance. To address
this issue, we proposed a new efficient version of the parametric PERT/CPM project management
method that works in conjunction with a combinatorial subalgorithm capable of rejecting unfeasible
schedules. The main result obtained is that the new fast PERT/CPM method finds optimal robust
schedules for solving large size problems in strongly polynomial time, which cannot be achieved
using existing algorithms.

Keywords: cyclic robot scheduling; high-throughput screening; parametric PERT/CPM; project
management; polynomial time algorithm

1. Introduction

High-throughput screening (HTS) systems are intelligent robotic cells widely used in
pharmaceutical and biomedical research to analyse new chemicals, discover new drugs, and
detect new viruses [1,2]. Advances in human genomics, along with the need to discover new
drugs and detect viruses, have driven requirements for testing of an increasing number of
biochemical compounds. The primary goal of HTS is to detect and identify lead compounds
that significantly affect the target of the analysis under study. There are typically thousands
of samples that need to be processed in a very short time. While HTS is defined by
the number of compounds tested, ranging from 10,000 to 100,000 per day, ultra-HTS is
characterized by the screening of in excess of 100,000 compounds per day [3,4]. These
substances for screening are fed into the robotic cell on microplates and then transported
by the robot between workstations according to the screening process.

Robots and robotic cells for HTS range widely from simple automatic dilution devices
to complex fully automated workstations in which robots perform a variety of functions
from sample dispensing to data collection, allowing for significant increases in screening
speed. However, conversion to an automated format introduces certain difficulties that
affect the design of the assay in practice. In particular, some operations are relatively
difficult to automate, such as removing debris, washing wells, and separating substrate
from product. Additionally, the more steps required for analysis, the more difficult it is
to automate, control, and schedule HTS operations. The purpose of this paper is to use
advanced operations research techniques and scheduling theory to optimally schedule the
HTS process and maximize cell performance.

A typical HTS cell includes a fixed set of workstations performing preparation, deposi-
tion, liquid dispensing, reading and analyzing, and incubation operations. The microplates
pass through the workstations sequentially in the same order in such a way that each
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microplate can re-enter the corresponding workstations (in scheduling theory, this type of
process is called a re-entry flowshop).

The microplate processing time of a workstation is the minimum time that a microplate
must remain on a workstation before the robot moves it to the next workstation. While a
microplate remains on the workstation, the next microplate cannot enter it; in scheduling
theory, this condition is called blocking. The goal is to find a cyclic schedule of robot moves
that minimizes cycle time, i.e., maximizes cell productivity. From the point of view of
scheduling theory, the scheduling problem under consideration is a cyclic single-robot,
multiple-machine flowshop scheduling problem with blocking and re-entry [5–7]. An HTS
system with an optimal schedule can minimize the overall screening time, maximizing the
throughput and hence reducing associated costs and enabling diagnosis of diseases and
rapid discovery of new drugs [8–10].

The scheduling problem under consideration has a complex combinatorial structure
and is difficult to solve. In recent decades, several popular methods, such as mixed
integer programming (MIP), Petri nets, max-plus algebra, greedy heuristics, and genetic
algorithms, have been used to find optimal schedules for HTS processes. However, many
existing methods have prohibitively high exponential computational complexity in the
worst case and therefore cannot be guaranteed to quickly find the optimal solution for large
problem instances.

This raises the question of whether there is a method for such scheduling problems
that can find the optimal schedule for arbitrary data in polynomial time. In what follows,
we give a positive answer to this question; namely, we develop a new efficient and practical
version of the PERT/CPM project management method to solve this problem. To demon-
strate the validity and practical usefulness of the new method, we focus on the theoretical
and numerical analyses of the HTS process for enzymatic assays. Although the scheduling
problem under consideration is complex and NP-hard, we solve it efficiently using the
proposed method if the number of screening operations is limited, which is a condition
usually encountered in practice [11,12].

This result complements the original studies of Oke et al. [11,13] and Wu et al. [12,14],
who used mixed integer programming and resource-oriented Petri nets, respectively, to
model, analyze, and solve the HTS scheduling problem for enzymatic assays. The proposed
PERT/CPM method works in conjunction with the prohibited intervals subalgorithm [15],
which weeds out unfeasible solutions and finds the optimal schedule in strongly polynomial
time (in the number of operations m), O(m3 log m), which, as far as we know, cannot be
achieved using existing algorithms. This worst-case polynomial complexity is a major
advantage over the existing HTS scheduling algorithms mentioned above. Moreover, our
solution method can not only produce a single optimal solution such as an MIP model or a
Petri net; rather, it can generate a whole set of different schedules, each of which is optimal,
and any of them can be selected by decision makers in accordance with their purpose
and requirements. Finally, unlike the aforementioned MIP algorithm in [11], the proposed
method ensures that the resulting optimal schedules remain robust (stable) under relatively
large variations in cycle time; this property of stability differs from robustness in Petri nets
(see, e.g., [3,16]), and will be explained in detail in Section 4.

The rest of the paper is organised as follows. The next section describes the problem.
Section 3 presents previous works and a literature review. Section 4 finds the best 1-cyclic
robot route and describes the parametric PERT/CPM project management method for
determining the minimum 1-cyclic time; the rest of this section describes the combinatorial
subalgorithm, working in combination with the PERT/CPM method, and provides a
resulting optimal 2-cyclic schedule which is robust and obtained in polynomial time.
Section 5 concludes the article.

2. Description of the Problem

As explained in the previous section, the HTS system is a robotic cell in which sub-
stances to be screened are supplied to the cell on microplates, and then the microplates are
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transported by the robot between workstations according to the screening process flow.
To demonstrate the validity and practical usefulness of the scheduling method developed
below, this paper focuses on the theoretical and numerical analyses of the HTS process for
enzymatic assays.

Enzymatic assays are one of the typical applications of HTS systems. A typical HTS
system for an enzymatic assay includes the following basic workstations [11–14]:

1. Cytomat2C, a microplate hotel designed to prepare microplates for screening.
2. Multidrop-384, a dispenser for dispensing liquid substances into the wells of microplates.
3. The Envision device, a reader for identifying and analyzing changes occurring in the

biochemicals being analyzed.
4. Teleshake, a device that maintains the necessary environment to allow biochemical

substances in the wells of a microplate to incubate.
5. A storage center, which holds the microplates for screening.
6. The transportation robot SCARA, used for delivering microplates among the above

devices to performing the specified screening procedures.

The microplates enter the robotic cell periodically, and the robot SCARA transports
all of the microplates between the workstations. There is an auxiliary device, separate
from the robot, that automatically delivers the microplates between the storage center and
the Cytomat2C, such that the system can continuously operate without interruption. In
the screening process under consideration, each microplate passes through workstations
in the same predefined technological sequence, as follows: Cytomat2C → Multidrop-384
→ Envision → Teleshake → Envision → Cytomat2C. In what follows, this technological
sequence of workstations is denoted by S = (M0, M1, M2, M3, M2, M0), where Mi, i = 0, 1, 2,
3, 2, 0, are the designations of the respective workstations.

In Figure 1 below we have plotted a PERT graph that depicts a typical HTS screening
process and its actual timing characteristics, as presented in [11,14]. The operations shown
in this figure are repeated for each individual microplate. This graph and Figure 2 clearly
show that the Cytomat2C and Envision workstations perform two operations during each
cycle in the technological sequence.
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Nodes represent repetitive operations performed by workstations during the screening
of each microplate. Capital letters within nodes identify workstations as follows: S for
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Storage Centre, C for Cytomat2C, M for Multidrop-384, E for Envision, and T for Teleshake.
The numbers inside the nodes indicate the required time (in seconds) for the corresponding
activity on the workstation. The arcs between nodes and the corresponding weights of the
arcs denote the robot’s delivery operations and their durations (in seconds), respectively.
The arcs between the Storage Centre and the Cytomat2C, and between the Cytomat2C
and the Storage Centre, which are both of zero length, represent the delivery operations
performed by the auxiliary transportation device.

Next, for the convenience of the readers, we present a Gantt chart in Figure 2 to
visualize how this data are used to determine the robot’s path and movement of microplates
between workstations in space and time. This chart will be constructed and used later, in
Section 4, using a general PERT/CPM-based method to find the optimal cyclic schedule that
minimizes cycle time. This cyclic schedule, with a period of 200.5 s, is shown in Figure 2.

In the Gantt chart in Figure 2, the following notation is used: workstations 0, 1, 2, and
3 denote Cytomat2C, Multidrop-384, Envision, and Teleshake, respectively. The abscissa
axis corresponds to time. The robot’s movement is shown with a red dotted line. The
numbers in the figure indicate the time the robot arrives at and leaves the corresponding
workstations. The first robot’s cycle begins at time t = 0, when the robot picks up a
screen-ready microplate, labeled MP0, from workstation 0 (Cytomat2C), then moves this
microplate MP0 to workstation 1 within 19 s. The robot then visits workstations in the
following order: the void robot moves (without a microplate) to workstation 2 (next in
the sequence S) → the robot moves with microplate MP−2 (which starts two cycles before
microplate MP0) to workstation 0 → the void robot moves to workstation 1 → the robot
moves, loaded with microplate MP0, to workstation 2 → the robot moves with microplate
MP0 to workstation 3 → the robot moves with microplate MP−1 to workstation 2 → the
void robot moves to workstation 0, where the robot waits for 35 s and completes its 1-
cyclic route at t = 200.5 s. The total processing time for the microplate MP0 is significantly
longer and amounts to 506 s. It begins at time t = −32 (not shown in Figure 2), when this
microplate is delivered by the auxiliary device to workstation 0, and ends at time t = 474 s,
when microplate MP0 is returned by the auxiliary device to the storage center, which occurs
during the third cycle of the robot. The processing life of microplate MP0 is indicated by a
bold blue line with small triangles.

The symbol MP−k (k = 1, 2, . . .) denotes a microplate that enters the screening system k
periods (cycles) before MP0. It can be seen that two adjacent instances of the corresponding
operation in workstation 3 (Teleshake) for two adjacent microplates intersect in time. In
order not to overload Figure 2, operations from S to C and from C to S visible in Figure 1 are
not shown in Figure 2. We denote the sequence of operations performed on the workstations
as O = (O0, O1, O2, O3, O4, O5), which means that operations O0 and O5 are performed on
workstation M0 (Cytomat2C), operation O1 is performed on workstation M1 (Multidrop-
384), operations O2 and O4 are performed on workstation M2 (Envision), and operation O3
is performed on workstation M3 (Teleshake). In this notation, the symbols R = (O0, O4, O1,
O2, O3) denote a periodically repeating sequence of completed operations, which uniquely
determines the cyclic route of movement of the loaded robot.

The Gantt chart shows that four identical microplates are sequentially introduced
into the system by the robot at times 0, 200.5, 401, and 601.5 s, respectively. The bold
horizontal lines show the processing operations at the workstations, and the thin dotted
line shows the route of the robot between the workstations. For the reader’s convenience, to
distinguish between operations on different microplates, their horizontal lines are depicted
in different colors and use indicators represented by small triangles, squares, and diamonds,
respectively. Figure 2 clearly shows that the Cytomat2C and Envision workstations perform
two operations (on different microplates) during each cycle in the process sequence.

Remark. We will study the scheduling problem under consideration from the point of
view of PERT/CPM project management. The Project Evaluation Review Technique (PERT)
and the Critical Path Method (CPM) are often used by project managers and decision
makers to break complex, large-scale projects into individual activities, identify the logical
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dependencies between them, and then manage them to minimize the overall project cost
and time [17,18]. In summary, PERT and CPM are operational research and scheduling
techniques with important advantages in practice, including clarity, user-friendliness, rigor
and flexible mathematical modeling, and computational efficiency. These techniques are
widely used in many industries, sectors, and services [18,19]. The PERT/CPM method is
successfully used in this study to solve the practical problem considered in [11,14], and, as
we will show below, this mathematical model has significant computational and practical
advantages over existing MIP and Petri net methods.

In this section, we recall several basic definitions in scheduling theory [5,6,20,21]. A
cyclic schedule can be defined as a schedule that repeats itself at fixed intervals of time;
these fixed intervals are called cycle time. If k microplates enter and leave the robotic cell
during a cycle, such a schedule is called a k-degree cyclic schedule, or a k-cyclic schedule.

It is required to find a schedule of robot moves that minimizes the average cycle time
Tavr, and thus maximizes the productivity of the cell.

During each cycle, the robot can serve different microplates, which start the screening
process at times . . . −T, 0, T, 2T, . . ., respectively. The Gantt chart in Figure 2 illustrates
the optimal 1-cyclic screening schedule which will be obtained below. The durations of
operations at the workstations for the benchmark problem in [11,14] are the same as shown
in Figure 1. The detailed calculation of this schedule will be presented in Section 4.

Let us formulate the HTS cyclic problem in standard scheduling theory terms. Denote
by M0, M1, M2, M3 the workstations Cytomat2C, Multidrop-384, Envision, and Teleshake,
respectively. In the screening process under consideration, the microplate passes through
the same predetermined technological sequence of workstations, denoted by S, that starts
from workstation M0 and continues as follows: S = (M0, M1, M2, M3, M2, M0), where
workstations M0 and M2 are re-entered.

Recall that the sequence of operations performed on the workstations is denoted
O = (O0, O1, O2, O3, O4, O5).

The following conditions are imposed:

• The time, denoted pk, that a microplate spends on a workstation before the robot
moves it to another workstation is unknown, but the lower bound, lk, of this time is
known in advance.

• Workstations M0, M1, M2, and the robot can only hold one microplate at a time.
• The number of microplates simultaneously processed at workstation M3 can be greater

than one. Let us denote by β the maximum number of microplates that can be
simultaneously served at workstation M3. The capacity β of the Teleshake is flexible;
that is, β is a variable whose optimal value must be found.

Each operation Ok, k = 0, 1, . . ., 5, of the processing sequence O is characterized by the
following parameters:

• pk, the processing time of operation Ok, k = 0, 1, . . ., 5;
• dk, the time required for a robot to deliver a microplate from a workstation performing

operation Ok to the next workstation in technological sequence S, k = 0, 1, . . ., 5;
• lk, the lower bound for the processing time of operation Ok, i.e., pk ≥ lk, k = 0, 1, . . ., 5.

In this model, all pk are assumed to be unknown (decision variables) while the lk and
dk values are given input data. The time required for an unloaded robot to move from one
workstation to another is considered negligible.

In Section 4, we present a fast HTS scheduling algorithm that solves the problem
under study using two coupled algorithms. The first algorithm is a parametric PERT/CPM
project management algorithm, and the second is a modification of the existing prohibited
intervals method. Among all available robot paths, the proposed algorithm selects the path
with the minimum cycle time.

For reader convenience, each step of the general algorithm proposed will be accom-
panied by a numerical example, which is generated from the data of the actual screening
process of an enzymatic assay as discussed in [11,14]. The relevant timing parameters are
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presented in Figures 1 and 2. In the notation introduced above, these time parameters are
as follows (in seconds): l0 = 32, l1 = 20, l2 = 54, l3 = 210, l4 = 54, l5 = 34; d0 = 19, d1 = 23,
d2 = 20, d3 = 20, d4 = 20.

3. Related Work: Literature Review

Scheduling theory is a widely discussed research topic in operations research and
industrial engineering [5–7,20–22]. However, since HTS is a relatively new technology, its
scheduling problems have not yet been extensively studied. There is presently not much
literature on HTS scheduling algorithms, despite the fact that they are clearly interesting
from a theoretical point of view and applicable in practice.

It was in the 1970s and early 1980s that the components that make HPS technologies
possible came together. These were robots and small-scale servo-powered robotic devices,
microplates, and apparently, most importantly, personal computers. In 1974, this technology
was first used for enzyme-linked immunosorbent assay (ELISA) in London and at the
Centers for Disease Control (USA) [23].

In early studies, heuristic and approximation methods such as genetic algorithms were
proposed to solve the HTS scheduling problem [1,24,25]; however, they could not guarantee
an optimal solution. Thus, the applicability of these methods is limited. In one of the first
papers on the topic that we are aware of [4], the authors presented a computer-integrated
model incorporating characteristics of HTS scheduling problems for different assays. They
observed that, as with most hard scheduling problems, there are no efficient algorithms
for finding optimal solutions in HTS; hence, they proposed the use of heuristic procedures
and genetic algorithms, which had become known for their applicability in flowshop and
jobshop problems in scheduling theory several decades earlier.

In [24,26], the authors focused on creating an optimal HTS schedule exploiting cyclic
Petri net models. When defining the variables in their model, they used the starting and
ending events of activities. This way of defining discrete time nodes was easy to implement
in the scheduling model. Another study [27] was a continuation of previous work [26], and
was also based upon Petri net concepts with the aim of determining a globally optimal
schedule for HTS systems. In addition, these authors extended their model to include the
hierarchical nesting of cycles.

In paper [16], the authors modeled the HTS system using a dioid algebraic approach
and applied max-plus algebra to the cyclic HTS. In max-plus algebra, the addition and
multiplication operations of classical arithmetic are replaced by the max and addition
operators, respectively. The scheduling problem was then transformed into the problem of
calculating a feedback controller that could function correctly in the presence of variations,
disturbances, and delays. In [3], the author studied timed event graphs with constraints,
and modeled systems with nested schedules. To apply his findings, he used the proposed
method to analyze a real HTS system, and found an optimal schedule. Extending the dioid
and Petri net approaches, the authors of the mentioned works [24–27] used mixed integer
programming formulations to schedule real HTS systems.

An important step forward in the analysis and practical use of the considered HTS
scheduling problem was made in recent studies [11–14] that significantly developed the
mixed-integer programming (MIP) and resource-oriented Petri nets approaches, respec-
tively, to model, analyze and solve the considered problem. The study in [11,13] was
motivated by the practical problem of automated testing for viruses and new drugs using
HTS. The authors examined in detail how scheduling screening activities in a real-world
HTS system affects its efficiency, throughput, operating costs, and screening quality. The
purpose of that work was to minimize the total screening time and to study the features
of the screening process that guarantee the optimal schedule. These authors developed
innovative and comprehensive mixed-integer programming models that efficiently com-
puted optimal cyclic and non-cyclic schedules for multi-microplate screening with several
real-world biomedical applications, namely the drug discovery process of screening en-
zymatic assays and the general SARS-CoV-2 detection process. The authors convincingly
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showed that their MIP algorithm can significantly reduce screening time compared to some
commercial software products. Using a comprehensive MIP model, they found the optimal
2-cyclic schedules for enzyme assay screening. However, finding a solution in the MIP
model for real cases of the problem may be inefficient, because the computation time for
solving the MIP problem depends exponentially on the number of integer variables in the
model, limiting the practical application of such methods for large-scale cases.

The question arises whether there is a polynomial algorithm for solving this problem.
This is a challenging issue that has been considered in papers [12,14], in which the HTS sys-
tem was modeled with complex and detailed resource-oriented Petri nets. Using this model,
the authors of these studies found and analyzed the necessary and sufficient conditions
under which a feasible cyclic schedule may exist and obtained an optimal schedule for the
problem under consideration. Although they did not explicitly disclose the complexity of
their algorithm, their work clearly represented a valuable breakthrough from a theoretical
perspective and showcased an important practical application of HTS technology. Our arti-
cle can be seen, in a sense, as a complement to this research. While the algorithm in [12,14]
successfully finds a single optimal cyclic schedule for the problem under consideration, we
will show that the proposed PERT/CPM-based algorithm discovers and discloses a whole
set of optimal and robust schedules for that problem.

4. The Parametric PERT/CPM Method for Finding the Optimum Schedule

In this section, we present a fast scheduling algorithm that solves the problem using
two conjugated algorithms, A and B (see Figure 3). The main algorithm, denoted A, is
the PERT/CPM project management method, which considers the case where the robot’s
route is fixed, and each processing time lies within a specified time interval known as a
time window. We also consider the case where the number of processing operations is
limited by a small constant, as is the case in practice in enzymatic assays. In this case,
the total number of possible robot routes is a reasonable fixed number, and the proposed
algorithm begins with generating all available robot routes. Then, the first algorithm can
alternately process all available robot routes, one after another, and find, among them,
the route that produces the minimum-time 1-cyclic schedule. For this purpose, we use
and extend the parametric PERT/CPM algorithm on a directed weighted graph, which
had been previously developed by the authors in [21]; the latter algorithm is modified to
accommodate the specifics of HTS, and is described below. This procedure is repeated
for each feasible robot route, and then, among all the obtained pathfinding solutions, the
algorithm A selects the 1-cyclic route with the minimum cycle time.
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Figure 3. Schematic diagram of the PERT/CPM/PIM algorithm.

At the output of the first algorithm A we obtain the following results: (i) the optimal
1-cyclic robot path, and (ii) the optimal values of the processing times pk and the variable β
that satisfy the technological constraints of the process, as detailed below.

Next, we introduce a second subalgorithm, denoted Algorithm B, which takes as input
the optimal processing times pk of all screening operations provided by the aforementioned
PERT/CPM subalgorithm A and finds a set of optimal 2-cyclic schedules. Note that 2-cyclic
schedules are generally more efficient than 1-cyclic schedules, and have the following
additional advantages: (1) their optimal average cycle time is usually strictly less than
the optimal 1-cyclic time, and (2) the resulting set of different 2-cyclic optimal schedules
(with each one having possibly different component lengths, but the same average cyclic
time) allows us to obtain a robust problem solution. To do this, we modify and use the
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above-mentioned prohibited intervals method (PIM) from our previous work [15]. Using
real numerical data from [11,14], we apply the combined PERT/CPM/PIM algorithm and
efficiently solve the considered scheduling problem in polynomial time with respect to the
number of operations.

Let us start by describing how we generated all 1-cyclic robot routes. Recall that in the
problem formulation in Section 2, it was stated that the robot SCARA moves microplates
between four available workstations M0, M1, M2, and M3, which are the Cytomat2C,
Multidrop-384, Envision, and Teleshake workstations, respectively. The sequence of these
movements is uniquely determined by the sequence of moments of completion of the five
following operations (O0, O1, O2, O3, O4). Thus, the considered HTS system has 4! = 24
different robot routes, which we denote by R = (O0, O[1], O[2], O[3], O[4]). Obviously,
these routes are determined by permutations of the numbers 1, 2, 3, and 4. The route
R = (O0, O1, O2, O3, O4) is trivial. Thus, the general scheme of the solution procedure is
as follows: we first need to consider the 23 remaining routes one by one, then solve the
PERT/CPM problem for each robot route, which is presented in the next subsection, and
finally select the solution with the minimum cycle time T. In fact, as noted in [14], the
specific input data of the enzymatic assay screening process can significantly reduce the
number of possible robot routes to be tested.

4.1. Description of the PERT/CPM Algorithm A

This algorithm considers the case where the processing times of operations are flexible
and bounded by their low bounds. In addition, the time required to complete the sequence
of operations in the HTS system is limited by the specified screening time constraints, which
will be presented below. We show that for any given robot route, this problem reduces
to the parametric critical path problem, which is a well-solvable special case of a general
linear programming problem. Unlike linear programming, the parametric critical path
algorithm is executed in a time that is strongly polynomial in the number of operations.

Consider a 1-cyclic robot route, and let T be its (unknown) cycle length. The completion
time of operation Ok performed in interval [0, T), k = 0, 1, . . ., 5 is denoted by tk. Let us
take t0 = 0, i.e., assume that the cycle [0, T) starts when the robot takes a microplate
from workstation M0 (Cytomat2C). The time in the cycle [0, T) when the (next instance
of) operation O0 starts is denoted using t6. Note that the microplate, having completed
its operation O0 at time t0 = 0 starts this instance of this operation at time t6 − T. The
cyclic robot route is denoted using R = (O0, O[1], O[2], O[3], O[4]). This means that at time
t0 = 0, the robot picks up the microplate from workstation M0 and moves it to workstation
M1. If operation O[1] is performed on workstation M1, i.e., [1] = 1, then the robot waits
for operation O1 to complete at time t1. If [1] ̸= 1, then the unloaded robot moves to the
workstation performing operation O[1] and waits there for operation O[1] to complete at
time t[1]. At time t[1], the robot picks up the microplate and moves it to the next workstation
in the screening process sequence S, as defined in Section 2. If this workstation does
not perform operation O[2], then the unloaded robot moves to another workstation that
performs operation O[2]. Similar robot actions are associated with operations O[2], O[3], and
O[4]. At time T, the robot takes the next microplate from workstation M0 and repeats the
same steps as in the previous cycle.

We can now reformulate our cyclic scheduling problem as the following special-type
parametric linear programming problem P with t0 = 0 and variables T, t1, . . ., t6 defined for
any specific robot route and introduced below:

Problem P: Minimize T
subject to
The robot move constraints:

t[k] ≥ t[k−1] + d[k−1], k = 1, 2. . .., 5; t [5] = T. (1)
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The processing time constraints:

pk = tk − tk−1 − dk-1 ≥ lk, if tk > tk−1, k = 1, 2, 4; (2a)

pk = tk + T − tk−1 − dk−1 ≥ lk, if tk < tk−1, k = 1, 2, 4; (2b)

p3 = t3 − t2 + (β − 1)T − d2 ≥ l3, if t2 < t3 and t3 ̸= t2 + d2; (2c)

p3 = t3 + β T − t2 − d2 ≥ l3, if t3 < t2 or t3 = t2 + d2; (2d)

p0 = t0 + T − t6 ≥ l0; (2e)

p5 = t5 − t4 − d4 ≥ l3. (2f)

Screening time constraints:

t1 + d1 + T − t6 ≤ 152; (3a)

t1 + d1 − t0 − d0 ≤ 44; (3b)

t3 + d3 + (β − 1)T − t0 − d0 ≤ 369, if t2 < t3; (3c)

t3 + d3 + β T − t0 − d0 ≤ 369, if t3 < t2. (3d)

Overlapping constraints:
t6 − t5 ≥ 0; (4a)

t2 ≤ t3 + d3, if t2 < t4 or (t2 > t4 and t3 > t4) (4b)

t4 ≤ t1 + d1, if t4 < t2 or (t4 > t2 and t1 > t2) (4c)

The robot-move constraints (1) ensure that the robot has enough time to complete
all its movements without delay. Inequalities (2a) take into account the case when the
operation Ok starts and ends within the cycle [0, T). Inequalities (2b) consider the case where
the operation Ok starts in the cycle [0, T) and ends in the next cycle [T, 2T). Inequalities
(2c,d) take into account the case where the processing time of microplates at workstation
M3 exceeds the cycle time T. The parameter β determines the number of simultaneously
processed microplates at workstation M3. In the case where t3 = t2 + d2 in inequality (2d),
the robot simultaneously unloads the microplate from workstation M3 and loads the next
microplate onto it. Inequalities (2e,f) determine the processing time of operations O0 and
O5, respectively. Inequality (3a) requires that the interval between the starts of operations
O0 and O2 does not exceed the specified value of 152 s.

Inequality (3b) requires that the interval between the starts of operations O1 and O2
should not exceed 44 s. Inequalities (3c,d) require that the interval between the starts of
operations O1 and O4 of the same microplate should not exceed 369 s. Constraint (4a)
ensures that operations O0 and O5 do not overlap in time on workstation M0. Constraints
(4b,c) ensure that operations O2 and O4 do not overlap in time on workstation M2.

At this stage we need to modify the parametric critical path approach originally
proposed by the authors in [21]. We reformulate Problem P above as a parametric critical
path model as follows. A graph, GP, is constructed, in which each t-variable in constraints
(1)–(4c) corresponds to a node of the graph. Next, each constraint in problem P is presented
in the form tj ≥ ti + (a + bT), where i, j ∈ (1, 2, . . ., 6), a is a real number, and b is an integer.
To this constraint we associate a directed arc eij in the graph GP leading from node i to node
j and having length wij = a + bT (see Figure 4). Thus, problem P reduces to the following
parametric critical path problem, denoted Problem Q:
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Problem Q. For any specific robot route, find the minimum value of parameter T in
the constructed graph GP, such that the graph does not contain cycles of positive length.

The proof of this reduction is given in [21]. The parameter β in (2c,d) and (3c,d),
although it expands the problem formulation in [21], does not violate the proof. Note that
as soon as a specific robot’s path is chosen and fixed, the logical (disjunctive) conditions in
Problem P acquire only one possible outcome; that is, they cease to be disjunctive. As a
result, for each fixed robot route, Problem P is transformed into a special type of a linear
programming problem, which reduces to a parametric shortest path problem as proven by
the authors in [21].

Now we can solve Problem Q for all robot routes repeatedly using the parametric
critical path algorithm [21]. This part of the algorithm requires a routine repeated com-
putation of a cycle time in graph GP for each available robot route, the total number of
which is a small constant. Omitting the intermediate routine calculations for each candidate
robot’s routes, we obtain the minimum 1-cyclic time T = 200.5, which is obtained for the
robot route R = (O0, O4, O1, O2, O3) and β = 2. In this case, the constraints (1)–(4) have the
following form:

The robot move constraints:
t4 ≥ t0 + 19;

t1 ≥ t4 + 20;

t2 ≥ t1 + 23;

t3 ≥ t2 + 20;

t0 ≥ t3 + 20 − T.

The processing time constraints:

t1 ≥ t0 + 39;

t2 ≥ t1 + 77;

t3 ≥ t2 + 230 − T;

t4 ≥ t3 + 74 − T;

t0 ≥ t6 + 32 − T;

t5 ≥ t4 + 54.

Screening time constraints:

t6 ≥ t1 − 129 + T;

t0 ≥ t1 − 40;
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t0 ≥ t3 − 368 + T.

Overlapping constraints:
t6 ≥ t5 + 0;

t3 ≥ t2 − 20;

t1 ≥ t4 − 23.

The corresponding parametric PERT/CPM graph GP, which has positive and negative
operation durations, some of which may depend on the parameter T, is presented in
Figure 4. The nodes in the graph correspond to six operations, Ok, performed in the interval
[0, T), k = 0, 1, . . ., 5. Constraints of type (1) are represented by arcs of length dk leading
from node k to node k + 1; constraints of the form ti + di + T − tj ≤ aj are represented by
arcs leading from node i to node j and having length di − aj + T. The cycle time T plays the
role of a parameter in this scheduling problem. The corresponding Gantt chart depicting
the optimal 1-cyclic schedule was presented earlier in Figure 2. The optimal 1-cyclic time
T = 200.5.

The corresponding critical path in the graph GP, depending on the value of the
parameter T, can be found quickly, in strongly polynomial time O(m3), where m is the
number of operations. This fact was proved in [21]. The only difference in the modified
algorithm described above is that the original parametric algorithm must be repeated for
all feasible robot routes and all values of integer parameter β equal to 1, 2, or 3. We carried
out the necessary intermediate computations, and found that the best schedule is obtained
when β = 2.

The resulting solution to problem Q is the following: T = 200.5, t1 = 39, t2 = 116,
t3 = 145.5, t4 = 19, t5 = 73, and t6 = 168.5. For reader convenience, this is presented in
Figure 2 in Section 2. This 1-cyclic solution is exactly the same as the optimal 1-cyclic
solutions for the considered benchmark problem obtained by Wu et al. [14], who used the
Petri net method.

Remark 1. In the next section, we will show that this computational result can be improved:
using the modified prohibited intervals method (subalgorithm B), we will find a whole set
of different optimal 2-cyclic schedules, such that the above 1-cyclic schedule is just a special
case among them, and prove their robustness.

Remark 2. Inequalities (3c,d) restrict the possible values of the input parameter β. We can
directly solve the examples of problem Q for all robot routes and all possible β values,
which, as follows from the problem formulation in the considered HTS system, are 1, 2,
and 3.

Remark 3. It should be noted that the considered PERT/CPM subalgorithm works ef-
ficiently not only for the considered HTS system with six operations, but also it can be
employed for scheduling more complex biochemical processes with a larger number of
workstations and operations.

4.2. The Prohibited Intervals Method B

Once the optimal processing times of screening operations have been found by the
PERT/CPM subalgorithm in the previous subsection, these values are then used as inputs
for subalgorithm B, described below. The main goal of this subalgorithm is to find an
optimal 2-cyclic solution whose average cycle time is no less than the optimal 1-cyclic time
and which, in addition, is robust, a useful property which will be discussed below.

Let us start with a brief description of the corresponding method for solving scheduling
problems, called the prohibited intervals method, which was discovered in the early 1960s
by a group of Byelorussian mathematicians [28–30]. In [15], we improved this method and



Algorithms 2024, 17, 127 12 of 18

obtained a modification that optimally solves the problem in polynomial time. In this work,
we develop and modify this method to highlight the features of HTS scheduling.

Description of the prohibited intervals. Consider the processing sequence O = (O0, O1,
O2, O3, O4, O5) for microplates, which was discussed in the problem definition in Section 2.
The completion time for operation Ok for a microplate starting at time 0 is denoted by Zk.
Evidently, the following relations hold:

Z0 = p0; Zk = Zk−1 + dk−1 + pk, k = 1, . . ., 5,

where the timing parameters dk and pk are as defined in Section 2.
Suppose that some workstation performs an operation Oj, and that this workstation

carries out this operation sequentially on two microplates, one of which starts at time 0,
and the other of which starts at time T. This workstation can sequentially perform the
considered operation on these two microplates without time overlapping in the case when

Zj ≤ T + Zj − pj, i.e., pj ≤ T.

Thus,
Max pj ≤ T, j = 0, 1, 2, 4, 5. (5)

Suppose now that some microplate begins the screening process at time T. Then the
operation Ok of this microplate is completed at time

T + Zk, k = 0, 1, . . ., 5.

Consider a pair of operations, denoted i and j, where i < j. Let operation i be carried
out by the microplate starting at time T, and operation j carried out by the microplate
starting at time 0. Two cases are possible:

Case 1: T + Zi ≤ Zj.
In this case, the robot can transport the microplate that has completed operation Oi,

and then transport the microplate that has completed operation Oj, if T + Zi + di ≤ Zj.
Case 2: Zj ≤ T + Zi. In this case, the robot can transport the microplate that has

completed operation Oj, and then transport the microplate that has completed operation
Oi, if Zj + dj ≤ T + Zi.

Combining the above inequalities T + Zi + di ≤ Zj and Zj + dj ≤ T + Zi, we obtain that
the time interval between any two microplates introduced into the screening process must
satisfy the following resulting condition:

T /∈ (Zj − Zi − di, Zj − Zi + dj), i < j; i, j = 0, 1, . . ., 4. (6)

The resulting intervals (Zj − Zi − di, Zj − Zi + dj), for all pairs i, j are called prohibited.
The points within any of these intervals correspond to unfeasible values of the cycle time T.

Recall that after operation O5 is completed at workstation M0 (Cytomat2C), the mi-
croplate is delivered to the storage center by a special auxiliary device, and not by a robot.
Therefore, the intervals in (6) do not include the variable Z5.

Workstation M0 performs operations O0 and O5. These operations do not overlap in
time on workstation M0 if: (1) a previous microplate has completed operation O5 earlier
than the next microplate starts operation O0, i.e., Z5 ≤ T + Z0 − p0; or (2) a previous
microplate has started operation O5 after the next microplate has completed operation O0,
T + Z0 ≤ Z5 − p5. These two inequalities give the following prohibited interval with respect
to T: T /∈ (Z5 − Z0 − p5, Z5 − Z0 + p0). Because Z0 = p0, we obtain that

T /∈ (Z5 − p0 − p5, Z5) (7)
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Workstation M2 performs operations O2 and O4. Using the same arguments as de-
scribed above, we obtain the following prohibited interval:

T /∈ (Z4 − Z2 − p4, Z4 − Z2 + p2) (8)

The Prohibited Intervals Rule for the 1-cycle case. The set of the prohibited intervals
(5)–(8) is denoted by F. The main idea of the Prohibited Intervals Method is as follows:
According to the definition of the set F, and due to the periodicity of the screening process
under study, a schedule is feasible (that is, a real number T satisfying inequalities (5)–(8)
exists) if the time interval between any two microplates introduced into the screening
process does not belong to the set F. Formally, this rule is as follows:

Since all microplates enter the screening system periodically at equal time period T, it
follows that the interval between them must be one of the numbers T, 2T, 3T, . . ., mT. The
Prohibited Intervals Rule can now be re-formulated as follows: A cyclic schedule with cycle
time T exists if the values T, 2T, . . ., mT do not belong to any of the prohibited intervals of
the set F. The minimum T, such that T, 2T, 3T, . . ., mT do not belong to any of the prohibited
intervals in the set F, is the optimal 1-cyclic time [15].

The set U is defined as a complementary set to the set F: U = (−∞, ∞)\F, and it is
known as the set of allowed intervals. Let T be the cycle time of a one-cyclic schedule, and
m be the number of workstations. Then a one-cyclic schedule is feasible if

T ∈ U, 2T ∈ U, 3T ∈ U, . . ., mT ∈ U. (9)

The Modified Prohibited Intervals Rule for the 2-cycle case. Since we are searching for
an optimal two-cyclic schedule, instead of the conditions described in (9), we will have
the following:

T1 ∈ U, T2 ∈ U, T ∈ U, T + T1 ∈ U, T2 + T ∈ U, 2T ∈ U, 2T + T1 ∈ U, . . ., ⌈m/2⌉T ∈ U
(10)

where T = T1 + T2 is the cycle time and Tavr = (T1 + T2)/2.
The proof directly follows from the periodicity of the screening process under study.
Numerical example. Consider the set of numerical data used in subalgorithm A,

corresponding to the real-world HTS system in [14]. The processing times of the operations
are the following numbers, obtained as the optimal one-cyclic solution of the corresponding
critical path problem Q, solved above by the PERT/CPM subalgorithm A: p0 = 32, p1 = 20,
p2 = 54, p3 = 210, p4 = 54, and p5 = 34. The completion times Zk are the following: Z0 = 32,
Z1 = 71, Z2 = 148, Z3 = 378, Z4 = 452, and Z5 = 506. According to Expression (6), we obtain
the following prohibited intervals:

Set S1 = {(20, 62), (54, 97), (210, 250), (54, 94), (97, 136), (284, 327), (284, 324), (327, 366),
(358, 401), (401, 440)}.

According to Expressions (5), (7) and (8), we obtain, in addition, the following prohib-
ited intervals:

Set S2 = {(−∞, 54), (440, 506), (250, 358)}.
At the next step, we merge the prohibited intervals for the sets S1 and S2 and

finally obtain:
F = {(−∞, 97), (97,136), (210, 250), (250, 401), (401, 440), (440, 506)}.
Thus, the set of allowed intervals U = (−∞, ∞)\F has the following form:
U = {[97, 97], [136, 210], [250, 250], [401, 401], [440, 440], [506, ∞).
Remark. Using the Prohibited Intervals Rule formulated above and the polynomial

algorithm of the authors in [15], we can find the optimal 1-cyclic solution. However, in
this study, there is no need to use this algorithm for finding such a 1-cyclic solution, since
this value has already been found by Algorithm A, namely, T = 200.5. Instead, we will
now focus on finding an optimal 2-cyclic solution, which can, in general, be better than an
optimal 1-cyclic schedule.
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Proposition 1. A 2-cyclic schedule with time intervals T1 = 151 and T2 = 250 is feasible.

Proof. It is easy to see that conditions (10) are satisfied. Indeed, we have:

T1 = 151 ∈ [136, 210] ∈ U, T2 = 250 ∈ [250, 250] ∈ U,

T1 + T2 = 151 + 250 = 401 ∈ [401, 401] ∈ U,

401 + 151 ∈ [506, ∞) ∈ U,

250 + 401 ∈ [506, ∞) ∈ U,

which proves the feasibility of the considered 2-cyclic schedule. □

The average cycle time of this 2-cyclic schedule, Tavr, is (T1 + T2)/2 = (151 + 250)/2 =
200.5.

Proposition 2. (i). All 2-cyclic schedules obtained by choosing time intervals T1 = 191 + x
and T2 = 210 − x, where 0 ≤ x ≤ 9.5, are feasible.

(ii). Any of these 2-cyclic schedules is optimal.
(iii). The 2-cyclic schedule with cycle times (T1, T2) = (151, 250) is optimal.

Proof. (i). It is evident that the conditions in (10) for a schedule with (T1, T2) = (191 + x,
210 − x), where 0 ≤ x ≤ 9.5 are satisfied. This is proven by the below:

191 + x ∈ [136, 210] ∈ U, 210 − x ∈ [136, 210] ∈ U,

[(191 + x) + (210 − x)] = 401∈ [401, 401] ∈ U,

401 + (151 + x) ∈ [506, ∞) ∈ U,

(250 − x) + 401 ∈ [506, ∞) ∈ U.

Hence, any two-cyclic schedule in the considered set is feasible. The average cycle
time of these schedules is: Tavr = (T1 + T2)/2 = [(191 + x) + (210 − x)]/2 = 200.5.

(ii). Suppose that there is a two-cyclic schedule with a cycle time T′ = T′
1 + T′

2 < 401.
Then, from the definition of U, it follows that:

T′ = T′
1 + T′

2 either belongs to the allowed interval [97, 97], the allowed interval
[136, 210], or the allowed interval [250, 250].

Assume that T′
1 ≤ T′

2, then T′
1 ≤ 250/2 = 125, and T′ + T′

1 ≤ 250 +125 = 375. From
the definition of U, it also follows that 97 ≤ T′

1 and 97 ≤ T′
2, therefore

291 = 397 ≤ T′ + T′
1, that is, 291 ≤ T′ + T′

1 ≤ 375.

Thus, T′ + T′
1 /∈ U, i.e., a feasible two-cyclic schedule with cycle time T′ < 401 does not

exist, which proves the Proposition, specifically cases (ii) and (iii). □

Computing two-cyclic robot route. For a given two-cyclic schedule with time intervals
(T1, T2) and cycle time T = T1 + T2, let us calculate completion times for operations
Oi (i = 0, 1, 2, 3, 4) in the time interval [0, T). Note that in the two-cyclic schedule each
operation Oi appears twice,

ti = Zi mod T and t′i = (Zi + T1) mod T; i = 0, 1, . . ., 4.

Recall that, given two numbers a and b, the modulo operation a mod b returns the
remainder after dividing a by b. For example, 10 mod 3 = 1.

The following Proposition 3 determines the optimal two-cyclic robot route R = (O[1],
O[2], . . ., O[10]).
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Proposition 3. Given real numbers T and T1, arrange the numbers ti and t′i in increasing order:

t*[1] < t*[2] < . . . < t*[10],

where the symbol t*i denotes either ti or t′i.

The following sequence of operations

R = (O[1], O[2], . . ., O[10]),

induced by the above ordering of the numbers t*i is the only possible optimal 2-cyclic robot
route with period T. This fact immediately follows from two observations: (i) the robot
handles not more than one microplate at a time, and (ii) the robot starts its kth move within
[0, T), exactly at time t = t*k, k = 1, . . ., 10 computed above. More details are given in [21].

In our numeric example in Figure 2 T1 = T2 = 200.5, T = T1 + T2 = 401, which gives the
sequence of operation completion times as follows:

(t*[1] < t*[2] < . . . < t*[10]) = (t0 = 0 < t4 = 19 < t1 = 39 < t2 = 116 < t′3 = 145.5 < t′0 =
200.5 < t′4 = 219.5 < , t′1 = 239.5 < t′2 = 316.5 < t3 = 346).

Thus we obtained the following robot route:

R = (O[1], O[2], . . ., O[10]) = (O0, O4, O1, O2, O3, O0, O4, O1, O2, O3).

This sequence of robot moves is the same for any of the two-cyclic schedules defined
by time intervals T1 = 191 + x and T2 = 210 − x, where 0 ≤ x ≤ 9.5.

Now consider the 2-cyclic schedules defined by the time intervals (T1, T2) = (151, 250)
and T = T1 + T2 = 401. In this case, the sequence of operation completion times differs from
the previous case:

(t*[1] < t*[2] < . . . < t*[10]) = (t0 = 0 < t4 = 19 < t1 = 39 < t′3 = 96 < t2 = 116 < t′0 = 151 <
t′4 = 170 < , t′1 = 190 < t′2 = 267 < t3 = 346).

The Gantt chart of this 2-cyclic schedule is presented in Figure 5.
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Figure 5. The Gantt chart for the optimal two-cyclic schedule (T1, T2) = (151, 250), Tavr = 200.5.

The Gantt chart in Figure 5 has the same notations as Figure 2. The main difference
between the two diagrams is that Figure 5 shows the optimal 2-cyclic schedule of the robot.
In this notation, the corresponding periodic route of the loaded robot is as follows:

R = (O[1], O[2], . . ., O[10]) = (O0, O4, O1, O3, O2, O0, O4, O1, O2, O3).
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As seen previously in Figure 2, the robot’s movement is shown with a red dotted line.
The numbers in the chart indicate the time the robot arrives at and leaves the corresponding
workstations. The processing life of microplates is indicated by horizontal lines highlighted
with small triangles, squares, and diamonds, respectively. The optimal two-cyclic schedule
shown in Figure 5 is (T1, T2) = (151, 250).

Complexity of the proposed PERT/CPM/PIM algorithm. In concluding this section, we
note that the worst-case complexity of the parametric PERT/CPM algorithm in Section 4
is the same as the complexity of the corresponding critical path-finding algorithm in [21],
that is, O(m3), while the complexity of the prohibited interval method is O(m3log m) [15].
Therefore, the complexity of the combined PERT/CPM/PIM algorithm, in the worst case,
is O(m3log m).

Discussion. The main practical purpose of this work is twofold. First, we propose an
algorithm that efficiently—in polynomial time—generates a set of optimal schedules with
cycle times (T1, T2) = (191 + x, 210 − x), where x ∈ [0, 9.5], which includes, as particular
cases, the optimal solutions obtained by methods [11–14]. Indeed, if x = 9.5, we obtain
the one-cyclic schedule T = T1 = T2 = 200.5 found in [14]; if we set x = 0, then we obtain
a 2-cyclic schedule with T1 = 191 and T2 = 210, the same as in [11]. Note that the 2-cyclic
optimal schedule defined by times (T1, T2) = (151, 250) and the corresponding robot route
R presented above have not been discovered by the algorithms [11–14].

Another important feature of the proposed method is that it significantly generalizes
existing MIP and Petri net methods in the sense that it generates robust optimal two-cyclic
schedules. Indeed, recall that a schedule is said to be robust if its cycle time T is insensitive
to unexpected disturbances and/or can be easily corrected by a predetermined control
policy. Let the resulting 2-cyclic schedule with times (T1, T2) = (191 + x, 210 − x) be fixed
for some x ∈ (0, 9.5). Assume that due to unforeseen variations in the processing times
of operations, a certain microplate, instead of the planned cycle time T1, will be delayed
by some fixed deviation δ, that is, it will have a cycle time T1 + δ. The controller will then
select the next scheduled microplate to start δ time units earlier, i.e., the next cycle time will
be T2 − δ. This simple control strategy ensures that the average cycle time Tavr remains
stable: Tavr = (T1 + δ + T2 − δ)/2 = (T1 + T2)/2, that is, the resulting schedule is optimal
and robust.

5. Conclusions

The problem considered in this study is to find an optimal robust cyclic schedule of
robot movements that ensures maximum performance of the HTS system for biochemical
analysis. To address this problem, we propose a new efficient PERT/CPM project manage-
ment method, which works in combination with a modified prohibited intervals algorithm.
To demonstrate the validity and practical utility of this method, we focus on the theoretical
and numerical analysis of a real HTS process for enzymatic assay. The main result obtained
is that the new combined PERT/CPM method is strongly polynomial, in contrast to existing
mixed integer programming methods. Another advantage of the new method is that it
is able to simultaneously generate a whole set of different optimal solutions, which can
be used in practice for controlling unexpected fluctuations of input data. A characteristic
feature of these results is that they have theoretical significance and at the same time have
a strong applied focus.

While the present work focuses on HTS scheduling specifically for enzyme assays
consisting of six workstations, the proposed mathematical model and project management
techniques can be naturally extended to address and solve a variety of screening scheduling
problems with a larger number of devices and more general formulations such as multi-
degree cyclic scheduling, re-scheduling for unexpected disruptions, and the use of multiple
robots to transport microplates. Since a wide variety of biochemical libraries are available
today, each containing a huge number of compounds, it is essential to collect big data,
compare results from different screens, schedule screening processes, and optimize them
in an automated HTS system. These challenging problems can be addressed in future
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research by exploring new powerful and practice-oriented techniques from data science
and artificial intelligence.
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Abbreviations
The list of main symbols and abbreviations used in this paper.
Symbol Meaning
F Set of prohibited intervals
U Set of allowed intervals
S Storage Center
S Technological sequence of workstations
O Technological sequence of operations on workstations
R Robot’s route
T 1-cyclic cycle time
(T1, T2) 2-cyclic cycle time
CPM Critical Path Method
HTS High-Throughput Screening
MIP Mixed Integer Programming
PERT Project Evaluation Review Technique
PIM Prohibited Intervals Method
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