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Abstract: We consider a problem in computational origami. Given a piece of paper as a convex
polygon P and a point f located within, we fold every point on a boundary of P to f and compute a
region that is safe from folding, i.e., the region with no creases. This problem is an extended version of
a problem by Akitaya, Ballinger, Demaine, Hull, and Schmidt that only folds corners of the polygon.
To find the region, we prove structural properties of intersections of parabola-bounded regions and
use them to devise a linear-time algorithm. We also prove a structural result regarding the complexity
of the safe region as a variable of the location of point f , i.e., the number of arcs of the safe region can
be determined using the straight skeleton of the polygon P.

Keywords: geometric folding; parabola intersection; computational origami; linear-time algorithms;
straight skeletons

1. Introduction

Paper folding offers rich computational geometry problems with many real-world
applications [1]. The topic, typically referred to as computational origami or mathematics of
paper folding [2,3], studies both feasibility problems and also structural problems [4–6] with
the aim to illuminate the connections between physical structures/problems and mathe-
matical geometric objects (see, e.g., [7,8]). As geometric construction using straightedge and
compass offers elegant connections between algebra and geometry, paper folding, which
can be seen as geometric construction with additional operations, may provide beautiful
structural properties worth studying (e.g., see [2,9]).

Akitaya, Ballinger, Demaine, Hull, and Schmidt [4] previously considered two folding
problems on a convex piece of paper P. Given a query point p inside P, their first problem,
originally proposed by Haga [10–12], called points to a point, is to find a region containing p
bounded by creases after fold-and-unfold of each corner of P onto p. Their second problem,
called lines to a line, takes as an input a line ` inside P and the goal is to find a region
containing ` bounded by creases after a fold-and-unfold of each side of P onto `. Although
these two problems share a similar structure, they find that the outcomes diverge. That
is, the region in the first problem resembles a Voronoi cell [13] with the inner point and
corners as seeds, while the region in the second problem relies on the straight skeleton of
the piece of paper.

We consider a variant of this folding problem in the same flavor, i.e., we are given a
query point f inside P and we are interested in a region containing f bounded by creases
after a fold-and-unfold of every point on the boundary of the paper δP onto f . We call this
result region a safe region R since every point p ∈ R is safe from this folding procedure. Our
contributions are an analysis of the shape of R, an efficient algorithm for finding R, and a
complexity of the safe region with respect to any query point f .

Figure 1a shows a few creases after folding various points on polygon edge v2v3 onto
point f . The resulting safe region is shown in Figure 1b. Figure 2 provides a comparison
between point-to-point folding considered in Akitaya et al. [4] (in Figure 2a) and our work
(in Figure 2b).
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Figure 1. The problem of folding every point on the boundary of a polygon P to a point f . (a) Sample
creases from points on edge v2v3; (b) The safe region R.
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Figure 2. Comparison of the settings of the problem considered in this paper with that of [4].
(a) Corner folding in [4]; (b) Boundary folding in our paper.

We first show that, although we fold infinitely many points on δP, the result region
R can be described finitely. It is a well-known result that a fold-and-unfold of multiple
points from a line onto a point produces an envelope of a parabola. Thus, we consider each
“side” of R as a parabolic arc instead of a traditional straight line segment. The analysis is
presented in Section 2.

Using the analysis of the properties of safe regions, we present a linear-time algorithm
for finding the region R, given a piece of paper P as a sorted list of n corners in counter-
clockwise order. Our algorithm works similarly to Graham’s scan for a convex hull. That is,
we consider adding one side of P as a parabola arc at a time, maintaining the loop invariant
that regulates the region R. During each iteration, we may destroy some of the previously
added parabola arcs. The key insight is that the destroyed parabola arc must be the one
that is closest to the newly added parabolic region. Thus, it allows us to amortize the cost
of destroying, achieving a linear-time algorithm overall. Section 3 explains the algorithm in
full detail.

Finally, given any potential query point f , we calculate the precise number of parabola
arcs of the region R. They turn out to be dependent on a set of inscribed circles, each of
which is centered at a node of the straight skeleton of P. We dedicate Section 4 to focus
solely on this property.

We hope that our problem will expand the richness of the family of fold-and-unfold
origami problems. Nevertheless, it could serve as a bridge joining the previous two problems
from [4], since our problem statement is similar to their first problem, but our result is
similar to their second problem.

2. Preliminaries

In this section, we provide a formal definition of the problem. We are given a convex
polygon P as an ordered list of vertices V(P) = [v1, v2, . . . , vn] in counterclockwise order.
We shall treat the list as a circular list. Given two points a and b, we refer to a line segment
whose ends are a and b as a segment ab. Equivalently, the polygon P is also represented as
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a list of edges E(P) = [e1, e2, . . . , en], where ei = vivi+1 is a line segment joining vi and vi+1.
We denote its boundary as δP, i.e., δP =

⋃
E(P).

We are also given a point f strictly inside P. Consider a point u ∈ δP on edge
ei = vivi+1. Folding u onto f results in a straight line L, referred to as a crease line, which
passes through the middle point on the line segment u f and is also orthogonal to u f . We
are interested in the set of crease lines when folding every point on ei onto f . The envelope
of this family of crease lines corresponds to a parabola, whose focus is f and directrix is a
line resulting from extending the segment ei to a line. We refer to this parabola as pi. See
Figure 3.

f

directrix

u

u′

Figure 3. Fold-and-unfold points on a line to a fixed point multiple times, creating an envelope of
a parabola.

To see this, let line L′ be erected perpendicularly to the directrix at point u, and let
u′ = L∩ L′. We have |u′ f | = |u′u|, which indeed obeys the definition of parabolas. In other
words, u′ is a point on a parabola’s curve. Furthermore, for every point v ∈ L′ such that
|v f | < |vu|, the point v is “safe” from other creases produced by fold-and-unfold of every
other point from this directrix, which is a line extension of the segment ei.

Since pi divides the plane into two parabolic half-planes, we are interested in the region
containing f . We define a half-space H(pi) to be the half-plane containing f . More formally,
H(pi) contains all points v such that |v f | ≤ |vu|, where u is an orthogonal projection of v
on the line extension of ei.

Our goal is to find:

R =
n⋂

i=1

H(pi),

defined to be the safe region. When focusing on point f , we sometimes refer to the safe
region with respect to point f as R f .

We describe the algorithm in Section 3. Later in this section, we state relevant geome-
try facts.

2.1. A Parabola as a Projection of a Conic Section

A parabola can be viewed as a conic section, i.e., a curve on a surface of a cone
intersecting a cutting plane tilted at the same angle as the cone. Analytically, we consider a
Euclidean space R3. A cone is a surface satisfying the equation:

x2 + y2 − z2 = 0

with an apex of the cone at the origin. A cutting plane can be defined with an equation:

x cos θ + y sin θ − z = r,
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where r is the distance on the xy-plane from the cone’s apex to the nearest point of the
cutting plane, and θ is the directional angle on the xy-plane to that point. By this definition,
we have a parabola as a curve on the tilted cutting plane. See Figure 4a,b.
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Figure 4. Interpretation of a parabola as a projection of a conic section. (a) Mapping a tilted parabola
to the xy-plane; (b) Projection of a parabola on the xy-plane; (c) Two cutting planes; (d) Angle bisector
and two intersections.

A projected parabola is an orthogonal projection of the tilted parabola onto the xy-
plane, which is also a parabola. The projected parabola has the cone’s apex as its focus,
and an intersect line of the cutting plane with the xy-plane as its directrix. This projection
viewpoint was briefly mentioned at the end of [14]. In this paper, we refer to projected
parabolas simply as parabolas.

We say that parabola p is in the upright form if, by rotating and translating the xy-plane,
the parabola possesses an analytical form of y = tx2 where t > 0.

2.2. Two Parabolas

We define semi-confocal parabolas as a family of parabolas that share the same focus,
but their directrixes do not need to have the same directional angle. It follows that semi-
confocal parabolas are projected parabolas from multiple cutting planes that cut the same
cone. We state two important facts on intersections of two parabolas which, under the conic
interpretation, are straightforward.

Lemma 1. Two semi-confocal parabolas do not intersect iff their directional angles are the same.

Proof. Two parabolas with the same directional angle are produced from two parallel
cutting planes in the conic view, which never intersect.
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Lemma 2. If two semi-confocal parabolas intersect, then they intersect at two points which also lie
on an angle bisector of their directrixes.

Proof. Take conic section interpretation. Their curves on the surface of the cone must also
lie on their cutting planes, in which the intersection of the planes is a straight line. This line
piece goes through the cone exactly two times. See Figure 4c,d.

It follows from Lemma 2 that two intersecting semi-confocal parabolas pi, pj produce
a safe region R = H(pi) ∩ H(pj) which is a bounded convex region. Moreover, since we
only deal with parabolas whose directrixes are from boundary edges of a convex polygon,
the non-intersecting case never occurs.

Given two parabolas pi and pj, we can compute their intersections using analytical
techniques in O(1) time as follows. We reduce the problem of finding intersection of two
parabolas to the problem of finding intersection of a parabola and a line. Without loss of
generality, we consider pi in the upright form. From Lemma 2, we find an angle bisector b
such that it divides the inner angle between edges ei and ej. Then, we find the resulting
intersections of pi and b using quadratic equations.

We remark particularly on the structure of the safe region R.
Consider each parabola pi in the upright form. We can partition this parabola using

the two intersection points into three arcs: the left arc, the central arc, and the right arc,
where the left arc corresponds to the half-parabola unbounded to −∞ and the right arc
corresponds to the half-parabola unbounded to +∞, and the central arc lies between the
two intersection points (see Figure 5). Under this notation, we note that the left arc of pi
intersects pj only once at the intersection point where it also intersects the right arc of pj,
and vice versa.

left arc

ri
gh

t a
rc

central arc

f

directrix

Figure 5. Arc decomposition of a parabola.

In our analysis, where there are parabolas p1, p2, . . . , pn, we refer to the two intersection
points between parabolas pi and pj as qij and qji. To distinguish between these two points,
imagine if one traverses counterclockwisely on the boundary of H(pi) ∩ H(pj), then one
would see an arc of pi, the intersecting point qij, the arc of pj, and then the intersection point
qji. The counterclockwise definitions of these points are crucial to our proof of Lemma 4.
See Figure 4d.

2.3. Many Parabolas

In this section, we analyze the structure of the intersection of k semi-confocal parabolas,
extending the result from the previous section.

Let p1, p2, . . . , pk be k semi-confocal parabolas with different directional angles. We
shall consider the safe region of these parabolas and prove the following lemma.

Lemma 3. Each parabola touches at most one arc of the safe region.
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Proof. We prove by induction on k for the case where k = 2 follows from Lemma 2.
Consider k parabolas. Let R′ =

⋂k−1
i=1 H(pi). Inductively, each parabola p1, p2, . . . , pk−1

touches at most one arc of R′. We consider R = R′ ∩ H(pk), we shall show that pk only
touches at most one arc of R. If R′ ⊆ H(pk), then R = R′ and pk does not touch R; hence,
the lemma is true. We then assume that R′ 6⊆ H(pk).

Clearly, pk touches one arc of R = R′ ∩ H(pk). We call that arc ak. Each endpoint of ak
belongs to some arc of R′.

There are two cases.
Case 1: Both endpoints of ak belongs to a single arc of pi. In this case, pk intersects

exactly one arc of R′ exactly twice. Then, the safe region R is the intersection of exactly two
parabolas, i.e., R = H(pi) ∩ H(pk). Thus, the lemma follows from Lemma 2.

Case 2: One endpoint of ak belongs to pi while the other belongs to pj. We show that
in this case, pk intersects exactly two arcs, implying the lemma. We consider pi first, i.e.,
we look at the intersection Ri = H(pk) ∩ H(pi). Let qi be the intersecting point of pi and
pk. We can partition pk into three arcs; let bk be the unbounded arc starting at qi. From
Lemma 2, we know that bk only intersects Ri once. Since R ⊆ Ri, we have that bk also
intersects R at most once at qi. We follow the same argument for pj. Thus, pk only intersects
R′ exactly twice, as claimed.

3. The Algorithm

Our algorithm for finding a safe region works similarly to Graham’s scan [15] for
convex hull. We briefly described the algorithm as a pseudocode in Algorithm 1. Later in
this section, we explain the algorithm and prove its correctness.

Algorithm 1: Our algorithm for finding the safe region.

function SAFEREGION(P : POLYGON, f : POINT)
[e1, e2, e3, . . . , en]← E(P)
p1 ← PARABOLA( f , e1)
p2 ← PARABOLA( f , e2)
q12 ← INNERINTERSECTION(p1, p2)
q21 ← INNERINTERSECTION(p2, p1)
R← DOUBLYLINKEDLIST(ARC(p1, q21, q12), ARC(p2, q12, q21))
for i ∈ [3, 4, 5, . . . , n] do

pi ← PARABOLA( f , ei)
(pH , `H , rH)← HEAD(R)
(pT , `T , rT)← TAIL(R)
qTi ← INNERINTERSECTION(pT , pi)
qiH ← INNERINTERSECTION(pi, pH)
if qiH ∈ LEFTARC(pH , `H) ∧ qTi ∈ RIGHTARC(pT , rT) then

continue // skip this iteration

while qiH ∈ RIGHTARC(pH , rH) do
R← REMOVEHEAD(R)
(pH , , rH)← HEAD(R)
qiH ← INNERINTERSECTION(pi, pH)

while qTi ∈ LEFTARC(pT , `T) do
R← REMOVETAIL(R)
(pT , `T , )← TAIL(R)
qTi ← INNERINTERSECTION(pT , pi)

R← UPDATEHEAD(R, ARC(pH , qiH , rH))
R← UPDATETAIL(R, ARC(pT , `T , qTi))
R← APPENDTAIL(R, ARC(pi, qTi, qiH))

return R
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Algorithm 1 uses the following subroutines. Subroutine PARABOLA( f , e) creates a
representation of a parabola with f as its focus and a line extension of edge e as its directrix.
Subroutine INNERINTERSECTION(pi, pj) computes the intersection point qij of parabola pi
and pj; we recall that from Lemma 2, there are two intersection points and this subroutine
returns the “inner” one, i.e., qij, not qji.

Since our goal is to find a safe region,

R =
n⋂

i=1

H(pi),

Algorithm 1 iterates over parabolas pi producing a partial solution Ri such that:

Ri =
i⋂

j=1

H(pj),

i.e., Ri is the safe region for the first i parabolas. We maintain Ri as a cyclic list of
parabola arcs:

a1, a2, . . . , ak,

where each arc aj is a 3-tuple (p, `, r) which keeps a reference to the parabola aj.p, its left
endpoint aj.`, and its right endpoint aj.r. We note that with this representation, aj.r = aj+1.`
for 1 ≤ j < k, and ak.r = a1.`. We also note that, using the notation defined in Section 2.2,
aj.r is qj(j+1) and aj.` is q(j−1)j.

Initially, we start with R2 = H(p1) ∩ H(p2). We encode the partial safe region as an
ordered list of arcs, A(R2) = [a1, a2], where:

a1 = (p1, q21, q12)

a2 = (p2, q12, q21)

For each iteration i > 2, we consider adding H(pi) to Ri−1 to produce Ri = Ri−1 ∩
H(pi). There are three cases:

• Case 1: pi does not change the region, i.e., Ri−1 ∩ H(pi) = Ri−1 and we can discard pi;
• Case 2: pi clips the region, i.e., all parabola arcs in Ri−1 remain on the boundary of

Ri−1 ∩ H(pi); or
• Case 3: pi eclipses other parabolas in the region, i.e., some parabola arc is entirely

outside Ri−1 ∩ H(pi).

Figure 6 illustrates these three cases. The safe regions Ri−1 are shown with additional
parabolas pi with ei as their directrixes.

f

ei

pi

(a)

f

ei

pi

(b)

f

ei

pi

(c)

Figure 6. Three cases of adding parabola pi to the partial safe region Ri−1. (a) Case 1: pi does not
change the region. (b) Case 2: pi clips the region. (c) Case 3: pi eclipses some parabola.

To distinguish between these cases, our basic procedure is to test if a point lies in H(pi).
The counterclockwise ordering of parabolas ensures that pi would affect two sequences of
arcs, i.e., clockwisely,

ak, ak−1, ak−2, . . . ,



Algorithms 2023, 16, 281 8 of 13

to be referred to as the neighbors to the left of pi, and counterclockwisely,

a1, a2, a3, . . . ,

to be referred to as the neighbors to the right of pi,
We first consider point qk1 = ak.r (which is also a1.`). Lemma 4 below ensures that we

are in Case 1 if qk1 ∈ H(pi). See Figure 7.

e1

ek

ei

f

qk1

qi1

Figure 7. Proof of Lemma 4.

Otherwise, some part of Ri−1 is below parabola pi. We in turns consider the points:

ak−1.r, ak−2.r, . . . ,

from the neighbors to the left of pi and find the largest index j such that aj ∩ H(pi) 6= ∅. In
this case, the parabolas ak.p, ak−1.p, . . . , aj+1.p are eclipsed by pi.

We also process the neighbors to the right of pi similarly by finding the smallest index
j′ such that aj′ ∩ H(pi) 6= ∅ together with the sequence of eclipsed arcs a1, a2, . . . , aj′−1. We
note that it can be the case that j = j′ when only one arc survives pi eclipsing.

To construct Ri, we discard eclipsed arcs, add a new arc ai for pi, and compute the
following:

• The left intersection point ai.` = aj.r, which is the intersection between pi and aj.p;
• The right intersection point ai.r = aj′ .`, which is the intersection between pi and aj′ .p.

Finally, we re-index the arcs in Ri. We quickly remark that this procedure can be seen as a
“twin-headed” Graham scan.

The following lemmas show that this procedure is correct.

Lemma 4. If qk1 ∈ H(pi), then Ri−1 ⊆ H(pi) and Ri = Ri−1.

Proof. Since Ri−1 ⊆ H(p1) ∩ H(pk), our goal is to show that H(p1) ∩ H(pk) ⊆ H(pi) in
this case.

Consider the intersection of p1 and pk. Recall that the two intersection points qk1 and
q1k partition both parabolas into their left arcs, central arcs, and right arcs. Let us call them
a`k, ac

k, ar
k and a`1, ac

1, ar
1.

We now consider the intersection of p1 and pi. We show that qi1, the intersection point
of pi and p1, is on the left arc a`1 of p1. To see this, we start by rotating the plane such that pi
is in the upright form. Then, we find a region r = H(p1) ∩ H(pi). Since qk1 ∈ p1 and also
qk1 ∈ H(pi), qk1 in on the boundary of H(p1) ∩ H(pi) = r. Again, since qk1 ∈ p1 and also
on the boundary of r, traversing from qk1 on the boundary of r clockwisely with respect to
f would reach qi1, by definition of qi1, as claimed.

Using the same argument, we can show that qki is in the right arc ar
k of pk.

Using qi1 and qki, we partition pi into three arcs—a1, a2, and a3—so that a1 is an
unbounded curve with qi1 as its end point, a2 is a bounded part with qi1 and qki as their
end points, and finally, a3 is an unbounded curve with qki as its end point (see Figure 7).

Using the structure from Lemma 2, we know that a1 ∪ a2 intersects pk at only qki ∈ ar
k.

Thus, pi does not intersect ac
k ∪ a`k.
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Additionally, we know that a2 ∪ a3 intersects p1 at only qi1 ∈ a`1, implying that pi does
not intersect ar

1 ∪ ac
1.

We can conclude that pi does not intersect with Ri−1 because Ri−1 lies between the
unbounded curves ac

k ∪ a`k and ar
1 ∪ ac

1.

We also have a simple contraposition.

Corollary 1. If Ri−1 6⊆ H(pi), then qk1 6∈ H(pi).

Let R̂ =
⋂i

j=1 H(pj) be the correctly updated solution, we would like to show that Ri

constructed above equals R̂. We remark that the i-th parabola pi corresponds to edge ei that
comes counterclockwisely after all other edges that contribute to Ri−1.

Lemma 5. If Ri−1 6⊆ H(pi), the arcs on Ri−1’s boundary which do not belong to R̂ form a
consecutive sequence:

aj, aj+1, . . . , ak, a1, a2, . . . , aj′ .

Proof. Lemma 3 ensures that if pi intersects the boundary of Ri−1, pi touches at most one
arc of R̂, the result of the intersection of H(pi) and Ri−1. This implies that the arcs of Ri−1
do not belong to form a (circular) consecutive sequence. To see this, assume otherwise and
note that in that case, pi would touch more than one arc of R̂.

Our procedure finds the consecutive sequence starting at qk1, the intersection of pk
and p1, then iterates through other consecutive points. Thus, the procedure is correct if the
starting point is correct, i.e., we start at some intersection point outside R̂. This is indeed
the case because Corollary 1 guarantees that when Ri−1 6⊆ H(pi), qk1 is outside R̂.

We conclude with our main correctness theorem.

Theorem 1. Our updating procedure is correct, i.e., Ri+1 = R̂, and the algorithm computes the
safe region in linear time.

Proof. Regarding the updating procedure, we deal with three possible cases. Lemma 4
ensures that our condition for Case 1 is correct. In other cases, Lemma 5 shows that the
procedure for deleting arcs is correct. By induction on n, the algorithm thus produces the
required safe region.

To analyze the running time, we first note that, except the two inner while loops, for
each i, the algorithm runs in O(1) time. To account for the running time of the inner while
loops, observe that each iteration of the loop removes one parabola from the list. Since
at most n parabolas are inserted in the list, the deletion can take place at most n times,
implying the total running time of O(n) for the loops.

4. The Number of Arcs of the Safe Region

In this section, we consider the complexity of the boundary of the safe region; in other
words, we count the exact number of arcs of the safe region. From previous sections, we
derive that a side of the safe region is a parabolic arc with point f as its focus. We also
see that some edge of P may not contribute to the resulting safe region, i.e., a parabola
associated with it does not touch the safe region. It is natural to ask for the number of arcs
of the safe region.

Assuming that the polygon P is fixed, the number of arcs of the safe region depends
on the focus f . We denote explicitly by R f a safe region with point f as its focus. As in [4],
this section analyzes the number of arcs of safe region R f , i.e., |A(R f )|, where A(R f ) is the
set of arcs of R f . Figure 8a shows two safe regions R f2 with query point f2 and R f3 with
query point f3.
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R f3
R f2

(a)

C

c
R f3

R f2

|A(R f )|
2
3

(b)

Figure 8. Safe regions with 2 and 3 parabola arcs. (a) Safe regions with query points f2 and f3; (b) An
event circle determines the numbers of arcs.

Akitaya et al. [4] consider the same problem for the case where each side of P is folded
onto a line. They show that the straight skeleton of P plays an important role in determining
the number of sides of the resulting region. This is true for our case as well. As an example,
Figure 8b shows an inscribed circle C which can be determined using the straight skeleton
and two safe regions shown previously. We remark that f2 6∈ C but f3 ∈ C.

We start by defining useful notations related to straight skeletons and event circles.
A straight skeleton [16] of a polygon P, denoted by S(P), is a subset of P such that for each
point u ∈ S(P), there exist at least two points on δP with the same distance to u. More
intuitively, we may see the skeleton as a Voronoi diagram of line segments where each site
is an edge of the polygon. The straight skeleton S(P) partitions P into regions, referred
to as faces. Thus, under the Voronoi interpretation, each face is bounded by exactly one
polygon edge as other edges of S(P). We refer to a face that is bounded by polygon edge ei
as face Fi. We also note that a face is also a convex polygon. See Figure 9 for an illustration.

c1

c2
c3

c4

c5

c6

Figure 9. The straight skeleton of polygon P, with each face colored differently. Points c1, . . . , c6 are
event points.

The skeleton may be viewed as a tree, where each non-leaf node ensures at least three
equidistant points on δP. A non-leaf node of S(P) is referred to as an event point. A circle
centered at an event point and tangential to the nearest edge of the polygon is called an
event circle of S(P). Let C be the set of all event circles of S(P), and let Ce ⊆ C be a set of
event circles tangential to edge e. We also denote by int(C) an interior of circle C, i.e., the
set {(x, y) : (x− x0)

2 + (y− y0)
2 < r2} for a circle with center (x0, y0) and radius r.

The goal of this section is to show that, under the fixed polygon P, the structure of
A(R f ) is governed by event circles of straight skeleton S(P) of P.

We start by analyzing the case when the safe region intersects with the skeleton faces.
The following lemma directly follows from the Voronoi interpretation of the straight skeleton.

Lemma 6. For each event circle C with event point c, c is adjacent to face Fi if and only if its
corresponding polygon edge ei is tangential to C.

The following two lemmas provide basic properties for our main theorem in this section.
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Lemma 7. For a particular focus f , int(R f ) intersects with skeleton face Fi adjacent to edge ei iff
the associated parabola pi is part of the arcs of R f .

Proof. (⇒) Assume that int(R f ) intersects Fi. Since Fi is bounded by a polygon edge and
R f is contained in P, we know that there are parts of the boundary of R f that intersect Fi.
Consider any point u on the boundary of R f inside Fi. Clearly, u must be on an arc of some
parabola, i.e., we have that:

min
j
|uuj| = |u f |,

where uj is an orthogonal projection of u onto ej. Since all points in Fi are closer to ei than
other edges, the minimizer of the above term is ui; thus, u must also lie on pi, i.e., pi is part
of arcs of R f .

(⇐) We prove by contradiction. Assume that int(R f ) does not intersect Fi, but pi is
part of the boundary of R f . Consider any point u ∈ pi on the boundary. Since int(R f ) is
disjoint from Fi, u is strictly in some face Fj. In this case, we have that:

|u f | = |uui| > |uuj|,

where ui and uj are orthogonal projections of u onto ei and ej, implying that u 6∈ H(pj),
a contradiction.

Lemma 8. For C ∈ C with event point c, a safe region R f strictly contains an event point c, i.e.,
c ∈ int(R f ), iff f ∈ int(C).

Proof. Let r be the radius of an event circle C. Project c orthogonally to a line extension of
every edge ei, named the projected point ci.

(⇐) Assume that f ∈ int(C), i.e., |c f | < r. We show that r ∈ H(pi) for every parabola
pi associated with polygon edge ei. This is the case when r is strictly closer to f than every
other edge ei. Consider each edge ei tangent to C, we have |c f | < r = |cci|. For edge ei not
tangent to C, we have that |cci| > r; thus, |c f | < r < |cci|. Hence, c is in the safe region R f .

(⇒) Assume that f 6∈ int(C). In this case, we have |c f | ≥ r. Since C is an event
circle, there exists edge ei tangent to C. For that particular edge, we have |cci| = r. Thus,
|c f | ≥ r = |cci|, and c is not strictly contained in the safe region R f .

The following theorem gives the number of boundary arcs of R f as a function of event
circles containing f .

Theorem 2. If f is strictly inside some event circle, i.e., f ∈ int(C) for some C ∈ C, then:

|A(R f )| = |{ei ∈ E(P) : there exists C ∈ Cei s.t. f ∈ int(C)}|

Otherwise, |A(R f )| = 2.

Proof. We first assume that f ∈ int(C) for some event circle C. Consider each event circle
C with event point c such that f ∈ int(C). From Lemma 8, we know that c ∈ int(R f ). This
also means that int(R f ) intersects every face Fi adjacent to event point c. Lemma 6 ensures
that these faces Fi’s correspond with edges ei’s tangent to C, the set of edges ei such that
C ∈ Cei . Since Lemma 7 ensures that for each face Fi adjacent to edge ei intersecting with
R f , the parabola pi appears as an arc of R f , we have that for each tangent edge ei of C, its
parabola pi appears as an arc in R f . The lemma, in this case, follows by taking the union of
all boundary edges from every event circle C ∈ C that f is strictly inside.

On the other hand, if f is not strictly contained in any event circle C ∈ C, Lemma 2
ensures that the safe region must touch two parabolas.

Figure 10 shows an application of Theorem 2. The event circles are shown with their
intersections. From Theorem 2, for each point f , the number of arcs of A(R f ) depends
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on the number of edges tangent to event circles containing f . Thus, every point f in a
particular intersection of event circles has the same value of |A(R f )|. Each intersection in
Figure 10 is shown with a different color depending on the value of |A(R f )| for a query
point f inside it. Remark again that for query point f in the area outside any event circles,
the value of |A(R f )| is 2.

|A(R f )|
2
3
4
5
6

Figure 10. Intersections of event circles from the straight skeleton determine |A(R f )|.

Alternatively, one may view Theorem 2 with the conic section interpretation as follows.
The input polygon P induces n cutting planes, forming the straight skeleton and their
corresponding faces when projected onto the xy-plane, and the point f is represented as a
cone whose apex is at f .

The structural results in this section give another linear-time algorithm for finding safe
regions, by first finding straight skeleton in O(n)-time using [17], then computing event
circles, and finally using this information to find the set of edges contributing to the arcs of
the safe region. However, we believe that the results in this section contribute mainly to the
structural understanding of the problem and may serve as a guideline for tackling harder
problems, especially the non-convex case of the problem. We discuss this in Section 5.1.

5. Conclusions and Open Problems

We present a linear-time algorithm for finding a safe region for folding each point on
the boundary of a convex polygon P to point f ∈ P. We also give structural properties
related to the number of arcs in a safe region for each focal point f , based on straight
skeletons. We note the crucial roles of straight skeletons in our problem as well as other
problems in origami design, as can be seen in [18]. An interesting direction for future work
is to investigate problems with the similar structures while using straight skeletons as keys.

As mentioned in the introduction, we also hope that our results show interesting
connections between the two problems posted by Akitaya et al. [4].

5.1. Remarks on Non-Convex Polygons

Results in Section 4 shed some light on non-convex cases. However, there are issues
with the current approach. When dealing with non-convex polygons, there are two related
concepts: straight skeletons [16] and medial axes [19] (see also [17,20]). For a given polygon,
a medial axis contains points with equal distance to more than one points on δP, while
a straight skeleton is a Voronoi diagram where each site is a line extension of each edge.
They are the same in convex polygons, however, in non-convex polygons, their medial axes
contain curved segments.

In our application, since we can only fold every point on each polygon edge, but
not points on the line extension of the edge, it makes sense to consider a medial axis.
However, each face in the medial axis can be bounded by more than one polygon edges,
breaking down one of our key assumptions. We leave the investigation of this approach to
non-convex polygons as an important open question.
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