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Abstract: The fault detection system using automated concepts is a crucial aspect of the industrial
process. The automated system can contribute efficiently in minimizing equipment downtime
therefore improving the production process cost. This paper highlights a novel model based fault
detection (FD) approach combined with an interval type-2 (IT2) Takagi–Sugeno (T–S) fuzzy system
for fault detection in the drilling process. The system uncertainty is considered prevailing during
the process, and type-2 fuzzy methodology is utilized to deal with these uncertainties in an effective
way. Two theorems are developed; Theorem 1, which proves the stability of the fuzzy modeling, and
Theorem 2, which establishes the fault detector algorithm stability. A Lyapunov stabilty analysis is
implemented for validating the stability criterion for Theorem 1 and Theorem 2. In order to validate
the effective implementation of the complex theoretical approach, a numerical analysis is carried out
at the end. The proposed methodology can be implemented in real time to detect faults in the drilling
tool maintaining the stability of the proposed fault detection estimator. This is critical for increasing
the productivity and quality of the machining process, and it also helps improve the surface finish of
the work piece satisfying the customer needs and expectations.

Keywords: fault detection; fuzzy logic; stability analysis; drilling operation; predictive maintenance

1. Introduction

Superior progress in the field of production process involves implementation of the
automatic fault detection scheme as it contributes significantly in an industrial sector by
lowering devices downtime as well as maintenance costs. Fault detection and notification
to the operator in real time associated with a complex system is the main intention of
automated fault detection system [1]. For the assurance of safety and superior performances
of nonlinear complex systems, the methodology of fault detection has been considered
to be very popular among the scientific researcher and is applied widely particularly
concentrating on the approaches of state observers [2,3]. The fault detection technique can
subdivided into [4–7]:

(a) signal-based method;
(b) data-driven method;
(c) model-based method;

The analysis of spectrum components associated with the measured signals is the
main concept behind the signal-based fault detection methodology. The knowledge-based
methodology incorporates intelligent techniques like neural networks for the detection
of faults. In the model-based methodology, there is a requirement of an exact model of
the system in order to simulate the process actual behaviour [8]. The various approaches
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associated with model-based fault diagnosis methodology are observer embedded tech-
niques, parity space techniques and the methodology of parameter estimation [9–11]. The
availability of the mathematical model associated with practical system is very crucial in
the model-based methodology. This is achievable by implementing a system identification
technique or by implementing the physical principles aspects. A model-based approach
is implemented effectively in the development of fault detection mechanism [12]. An
innovative methodology on the basis of model based technique is applied for the detection
of fault in mobile robots [13]. Kommuri et al. [14] proposed a novel observer relied fault
detection technique associated with electric vehicles. For dealing with the faults in the
nonlinear systems, Li et al. [15] illustrated a Type-1 Takagi–Sugeno (T–S) fuzzy logic system
based observer.

In the current era involving advanced manufacturing technology, there is a suitable
growth in automated and unattended machining techniques. Thus, there is a requirement of
suitable online condition monitoring technology for the minimization of error and wastage
of work material. These mechanical failures are the root cause of 79.6% machining tool
downtime in modern industries [16]. Hence, it is very important to detect the fault early for
the improvement of the product quality and to to cut short the machining downtime [17].
During the machining operation, the factors like cutting tools, various workpieces, several
types of cutting parameters, etc. affect the working conditions [18]. Ref. [19] proposed
a virtual sensor for the online detection of the fault in multi-toothed tools on the basis
of Bayesian classifier. In the work by Kumar et al. [20], a blended mechanism involving
Support Vector Machine (SVM), Artificial Neural Network (ANN), and Bayes classifier is
presented for the detection and classification of faults. In any manufacturing process, the
machine generates vibration, which results in degradation of machine tools, thus inducing
failures of some subsystems or the machine itself. The analysis of the vibrations signatures
can be implemented for the detection of the nature and extent of incorporated damage
in machines. A detailed review on devices utilized for vibration computation as well as
signal processing methodologies in order to monitor conditions of machine tools associated
with manufacturing operations was illustrated in the work by Goyal et al. [21]. A detailed
analysis on the methodology of tool condition monitoring associated with drilling, turning,
milling, and grinding was presented by Roth et al. [22]. Pimenov et al. created models
for predicting the machined surfaces roughness in a complex correlation between tool
wear, machining time, and cutting power utilizing AI, keeping the intention of combining
AI algorithms with online monitoring of automated manufacturing [23]. In the work by
Kuntoğlu et al., the importance of sensor data is highlighted and also stated that computer
assisted electronic and mechanical systems with tool condition monitoring technology
clears the path for machining industry and the prospect and development of Industry
4.0 [24]. Fan et al. proposed an innovative data-driven system in order to detect faults and
diagnose status variable identification (SVID) data in semiconductor manufacturing.The
experimental outcomes reveal that the suggested data driven system can provide quality
fault detection performances and supply important information associated with the critical
SVIDs and conjugate processing time for fault diagnostics [25]. For early failure identifica-
tion of the CNC machine tool under time-varying settings, a unique data mining method
was proposed by Luo et al. [26].

A technique of reasoning and computation known as fuzzy logic uses classes with
ambiguous (fuzzy) boundaries as its objects. Everything, including degrees, is allowed
to be, or is, a matter of degree in fuzzy logic. Fuzzy logic is primarily employed in
its broad sense today. In particular, fuzzy logic in its broad sense is what is used in
practically all applications of fuzzy logic [27]. For more than 40 years, type-1 fuzzy sets
have served as the cornerstone of an effective method for simulating uncertainty, ambiguity,
and imprecision [28]. A compelling case is made for the use of fuzzy logic to influence
perceptions by Zadeh [29]. His claim is that fuzzy logic is better appropriate for modelling
perceptions than standard mathematical methods since perceptions of size, safety, health,
and comfort, for example, cannot be modelled using these methods. The debate about
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perception modelling is fresh and fascinating. It is evident that type-2 fuzzy sets, which
have membership functions that are not crisp, can model these perceptions better than
type-1 fuzzy sets, whose membership grades are crisp [30]. A type-2 fuzzy set smears
out the point value of the membership grade of a type-1 fuzzy set to model uncertainty
about that value by extending Zadeh’s original fuzzy set, now commonly referred to as
a Type-1 Fuzzy Set, from a fuzzy set whose membership grade is a single (point) value
to a fuzzy set whose membership grade is a function [31]. In the real world, most of
the physical systems involve nonlinearities. The T–S fuzzy model has the capability to
provide effective design technique associated with nonlinear systems utilizing effective
control methodologies as well as techniques in linear systems [32]. Exhaustive investigation
reveals that the T–S fuzzy concept has been applied vastly for fault detection problems [33].
An extra degree of freedom (DOF) known as the uncertainty footprint is included in the
type-2 fuzzy logic system. This is why the type-2 fuzzy technique demonstrates more
effective performance when compared to the type-1 fuzzy technique. system [34,35].
The concept and methodology of type-2 fuzzy logic system was stated elaborately by
Liang et al. [36]. Sepulveda et al. [37] demonstrated that the type-2 fuzzy logic system can
handle uncertainties in a better way than type-1 fuzzy logic systems due its characteristics
of having more parameters as well as more design DOF. Lam et al. [38] conducted research
that validates that a type-2 fuzzy technique has superior capabilities and is implemented in
the application associated with a robotic arm. In the work by Román-Flores et al. [39], a
new method of defuzzification for type-2 fuzzy intervals utilizing the Aumann integral was
proposed. The continuity of this new defuzzification process was demonstrated utilising
several well-known Hausdorff metric properties, Aumann integration, and the continuity
of the Lebesgue measure on the class of compact-convex subsets. Defuzzification processes
are well-known as important tools in control systems with uncertainty. From a practical
standpoint, the following characteristics are arguably the most crucial for a defuzzification
procedure: consistency and computing efficiency. Biglarbegian et al. [40], in their work,
developed a new IT2 FLS, called an m–n IT2 FLS, that is a simplified version of the WM UB
IT2 FLS.The m–n IT2 FLS has allowed for rigorous evaluations of IT2 fuzzy controllers, has
lately been deployed in a number of applications, and has shown tremendous potential as a
viable IT2 FLS that is not confined to control. They use a limits technique to quantitatively
study the structure of the m–n IT2 FLS and identify the conditions under which the m–n
IT2 FLS approaches the WM UB. These circumstances will also serve as guidance for the
m–n IT2 FLS design parameters, which will aid designers in selecting these parameters for
their applications. Castillo et al. [41] presented an overview of the uses of interval type-2
fuzzy logic in intelligent control. The paper’s main focus is on the underlying reasons
for employing type-2 fuzzy controllers in various applications. Bio-inspired algorithms
have recently emerged as effective optimization algorithms for handling complicated
issues. The use of bio-inspired optimization approaches in the design of type-2 fuzzy
controllers for specific applications has aided in the difficult work of determining the
suitable parameter values and fuzzy system topology. The associated cutting forces in this
work have nonlinearities embedded in the drilling process, which is an important aspect
and should be dealt with in an efficient manner using fuzzy techniques.

A combination of PD and PID with Type-2 fuzzy logic system for the chatter control in
milling process was proposed by Paul et al. [42]. An innovative model-based fault detection
(FD) system in combination with an interval type-2 (IT2) Takagi–Sugeno (T–S) fuzzy system
for detecting faults in downhole drilling systems was proposed by Paul et al. [43]. A novel
fault detection methodology for interval type-2 (IT2) Takagi–Sugeno (T–S) fuzzy systems
with sensor fault on the basis of novel fuzzy observer was illustrated by Li et al. [44]. In
their study, Montazeri-Gh and Yazdani pioneer the use of Interval Type-2 Fuzzy Logic
Systems (IT2FLSs) for gas turbine problem diagnostics. A bank of IT2FLSs trained for
state detection and health assessment of an industrial gas turbine under varied operating
conditions makes up the proposed FDI system. In order to achieve this, train and test
data are produced by adding mechanical fault signs to the mathematical model of the gas
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turbine. The Interval Type-2 Fuzzy C-Means (IT2FCM) clustering method is then used to
construct a fuzzy rule base, and a metaheuristic approach is used to optimise the parameters
of the IT2FLSs [45]. In order to enhance decision-making in fault detection, Maged and Xie
suggested a method for leveraging the prediction uncertainty information produced by
Bayesian deep learning models. Automatic Differentiation Variational Inference (ADVI) is
used for inference, and the resulting prediction uncertainty information is used to improve
defect identification. An actual case study on vertical continuous plating (VCP) of printed
circuit boards is used to test the proposed methodology [46]. An innovative method for
rotating machinery defect diagnosis and detection was presented by Jalayer et al. Fast
Fourier Transform (FFT), Continuous Wavelet Transform (CWT), and statistical features of
raw signals were combined to create a novel feature engineering paradigm [47].

An automatic fault detection technique with model based methodology is depicted
in this paper. The novel concept presented can be implemented effectively for the fault
detection in the drilling tool. The paper is organised as follows: In Section 2, the modeling
of drilling process involving tool movement is carried out using a type-2 fuzzy technique.
In this work, a type-2 fuzzy model is preferred over a type-1 fuzzy model because of
its capability to deal with nonlinearities with more degrees of freedom. In Section 3,
two theorems are developed. Theorem 1 proves the stability of the fuzzy modeling and
Theorem 2 validates the stability of the fault detection estimator. In both theorems, the
Lyapunov stability candidate is implemented for proving the stability criteria. For the
detection of faults in the drilling process while maintaining stability, a novel fault detection
methodology is presented. In Section 4, a numerical analysis is performed to validate
the effective implementation of the sophisticated theoretical method. Finally Section 5
summarizes the conclusion of this work.

2. Type-2 Fuzzy Logic Modeling Technique

The vibration in the drilling tool system can be resolved along three components
(4 DOF), which is shown in Figure 1.

Figure 1. Three modes of vibration (4 DOF) in drilling tools.

The lateral vibrations along two components (x, y), axial vibration (z) as well as
torsional vibration (θ) associated with the drilling tool are modeled as [48,49]:

MdrẌ + CdrẊ + KdrX = Fct (1)

here, the vibration is represented by X, and the cutting force is illustrated by Fct, stated as:

X = {x y z θ}T

Fct =
{

Fxd Fyd Fzd Fθd

}T (2)
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In addition,

Mdr =


mxx 0 0 0

0 myy 0 0
0 0 mzz mzθ

0 0 mθz mθθ



Cdr =


cxx 0 0 0
0 cyy 0 0
0 0 czz czθ

0 0 cθz cθθ



+2ψ


0 −mxx 0 0

myy 0 0 0
0 0 0 0
0 0 0 0



Kdr =


K̄xx 0 0 0

0 K̄yy 0 0
0 0 K̄zz K̄zθ

0 0 K̄θz K̄θθ



+ψ


0 −cxx 0 0

cyy 0 0 0
0 0 0 0
0 0 0 0



(3)

In addition, K̄xx = kxx − m2
xxψ2, K̄yy = kyy − m2

yyψ2, K̄zz = kzz − m2
zzψ2, K̄zθ = kzθ −

m2
zθψ2, K̄θz = kθz−m2

θzψ2h and K̄θθ = kθθ−m2
θθψ2. Again, mass = Mdr, damping matrix = Cdr,

stiffness matrix = Kdr, and spindle speed dependent = ψ. Again, (mxx, myy ), (kxx, kyy ) and
(cxx, cyy) are the modal masses, stiffness and damping constants of the most flexible mode
along two main components (x,y) of the drill bit, respectively. The vector associated with
the cutting force can be represented as follows:

Fct =


Fxd
Fyd
Fzd
Fθd

 = ḠX(t) + ḠTX(t− T) + ḠPẊ(t) (4)

In addition, 

Ḡ =
2

∑
jc=1

Ne

∑
je=1

TϕGe

ḠT =
2

∑
jc=1

Ne

∑
je=1

TϕGe
T

ḠP =
2

∑
jc=1

Ne

∑
je=1

TϕGe
P


(5)

The diagonal coefficient matrices are Ḡ, ḠT , and ḠP [50]. The nonlinear nature of the
cutting forces is an important factor and has to be handled in an appropriate manner. The
governing equation associated with the drilling process can be achieved as follows using
Equations (1) and (4):

MdrẌ(t) + CdrẊ(t) + KdrX(t) = ḠX(t)
+ḠTX(t− T) + ḠPẊ(t)

(6)
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Here, time delay is signified by T. A controller is used to generate the control forces
required to control the drilling operation. Discretizing Equation (6) with a control force is:

MdrẌ(t) + CdrẊ(t) + KdrX(t) = ḠX(t)
+ḠTX(t− T) + ḠPẊ(t) + Uctrl(t)

(7)

and the control is illustrated as Uctrl =


uxd
uyd
uzd
uθd

. The state space form of Equation (7) is

illustrated as:

ż(t) = Aiz(t) + BiUctrl(t) + Div(t) (8)

where
z =

[
XT ẊT]T , v(t) ∈ z(t− T)

Ai =

[
0 I

M−1
dr Ḡ−M−1

dr Kdr M−1
dr ḠP −M−1

dr Cdr

]
Di =

[
0 0

M−1
dr ḠT 0

] (9)

where z represents vibration state vector associated with vibration at time interval t. In
addition, Ai, Bi and Di are constants. The identity matrices are 0 and I, respectively. Bi
represents the constant input matrix to define the controller. Now the continuous-time
model is transformed into discrete-model by keeping both the control force and cutting
forces constant during the sampling period Ts,

Uctrl(t)=Uctrl(kTs), v(t) = v(kTs), kTs6 ≤ t6≤ (k + 1)Ts (10)

The time model in the discrete domain is represented using Equations (8) and (10) as:

Zdis(k + 1) =AdZdis(k)+BdUctrl(k)+Ddv(k) (11)

Now, the state vector is illustrated as Zdis(k), the state matrix is Ad = eAiT , and the

input vector is Bd =

(∫
eAiτi dτ

)
Bi. In addition, uc(k) is the scalar input. The associ-

ated nonlinearity is embedded in the cutting forces represented by v(k). In addition, Dd
represents the matrix to define the cutting force.

Type-2 Takagi–Sugeno(IT2 T–S) Fuzzy System

Fuzzy Technique description: For example, if A1i · · · , A6i, B1i, B3i, B3i are type-2 fuzzy
sets, then the type-2 fuzzy set A with the membership function GA is defined as

A = {(x, ς), GA(x, ς) | ∀xεR, ∀ςεMx ⊆ [0, 1]} (12)

where ς is an auxiliary variable, 0 6 GA(x, ς) 6 1, Mx is the primary membership function.
For the type-2 fuzzy set A,

A =
∫

xεX

∫
ςεMx

GA(x, ς)/(x, ς) (13)

The integral
∫

of the classical fuzzy set becomes the sum ∑.
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The upper and lower membership functions are defined as Gu
A(x1, ς) and Gl

A(x, ς).
They describe the upper and lower bounds of the uncertainties. For i-th rule and the point
x1, the crisp input is fuzzified in the interval of [ f l

i (x1), f u
i (x1)],

f u
i (x1) = Gu

A1i
(x1, ς) ∗ Gu

A2i
(x1, ς) ∗ Gu

A3i
(x1, ς)

f l
i (x1) = Gl

A1i
(x1, ς) ∗ Gl

A2i
(x1, ς) ∗ Gl

A3i
(x1, ς)

(14)

where ∗ denotes the t-norm operator, it can be the minimization.
For all l rules, type-2 fuzzy inference engine aggregates with the fuzzified inputs and

infers another type-2 fuzzy set,

GO(y) = txεX [GA(x) u GB(x, y)] (15)

where GO(y) represents the membership function of the fired rule, which is expressed by
extended sup-star composition. For details on it, please refer to [51].

We use the type-reduction method to convert GO(y) into a type-1 fuzzy set. This
technique captures more information about rule uncertainties than does the defuzzified
value (a crisp number), and seems to be as fundamental to the design of fuzzy logic systems
that include linguistic uncertainties (that translate into rule uncertainties) as variance is to
the mean in case of probabilistic uncertainties. The centroids associated with type-2 fuzzy
sets are calculated. For the i-th rule, the centroid of j-the output fuzzy rule is yi

j = [yi
l j, yi

rj],

yi
l j and yi

rj are the most left and right points. The type-2 fuzzy sets are reduced to the

type-1 fuzzy set with the interval [yi
l j, yi

rj]. The most popular technique for type-reducing
an interval type-2 fuzzy set is the Karnik–Mendel (KM) iterative procedure. The outcome
of type-reduction of an interval type-2 fuzzy set is an interval type-1 set considering the
criteria that the centroid is placed between the two endpoints. The iterative methodology
is a superior technique in order to find these endpoints. The centroid of the type-1 set is
considered to be the centre of this interval.

For all p rules,

yl j =
∑

p
i=1 f i

l yi
l j

∑
p
i=1 f i

l
, yrj =

∑
p
i=1 f i

ryi
rj

∑
p
i=1 f i

r
(16)

where f i
l and f i

r are the firing strengths associated with yi
l j and yi

rj of i-th rule. By the
minimization and maximization operation, yl j and yrj can be expressed as

yl j =
∑

p
i=1 f i

l jyl j + ∑
p
i=1 f i

rjylk

∑
q
i=1 f i

r + ∑
q
i=1 f i

l
, yrj =

∑
p
i=1 f i

l jyrj + ∑
p
i=1 f i

rjyrk

∑
q
i=1 f i

r + ∑
q
i=1 f i

l
(17)

where qi
l j =

f i
l

∑
q
i=1 f i

r+∑
q
i=1 f i

l
, qi

rj =
f i
r

∑
q
i=1 f i

r+∑
q
i=1 f i

l
. By singleton fuzzifier, the jth output of the

fuzzy logic system can be expressed as

f̂ j =
yrj + yl j

2
=

1
2

[
(φT

rj(z)wrj(z) + φT
l (z)wl j(z)

]
(18)

where j = 1, 2, 3. wrj is the point at which µBrj = 1, wl j is the point at which µBl j = 1.
The plant dynamics which is nonlinear in nature can be described by employing a

p-rule IT2 T–S fuzzy model [36,38]. The rule is formulated in such a manner that the
antecedent has IT2 fuzzy sets, whereas the consequent is represented by a linear dynamical
system as follows:

Rule j : IF z1(z(k)) is V̄ j
1 AND...zΨ(z(k)) is V̄ j

Ψ
THEN zΨ = Az(k)+Buc(k)

(19)



Algorithms 2022, 15, 284 8 of 32

Here, V̄ j
α is termed as an IT2 fuzzy logic set having a rule which is j corresponding

to the function zα(z(k)), α = 1, 2, 3...Ψ , also j = 1, 2, . . . , p; Ψ is a positive integer. The
illustration of the state vector associated with the system is represented by z(k) ∈ Rn.
Again, A ∈ Rn×n and B ∈ Rn×m are the unknown system and unknown input matrices,
respectively. The input vector is illustrated as uc(k) ∈ Rm. The pattern of type-2 fuzzy set
is [52]:

y(z(k)) = yrk+ylk
2

= 1
2 (ξ

T
rk 	rk +ξT

lk	lk)

= 1
2 [ξ

T
rk ξT

lk ]

[
	rk
	lk

]
= ξT	

(20)

where ylk and yrk represents the numerical illustration of left and right most points, respec-
tively, as:

ylk =
1

∑L
z=1 f z

l
∑L

z=1 f z
l ys

lk

yrk =
1

∑L
z=1 f z

r
∑L

z=1 f z
r ys

rk

(21)

ylk = ∑L
e=1 qlo_e

lk ylk + ∑Q
d=L+1 qup_dylk

= [Qlo
lk Qup

lk ]

[
ylo

lk
yup

lk

]
= ξT

lk	lk

(22)

also, ξT = 1
2 [ξ

T
rk ξT

lk ] and 	T = [	T
rk	

T
lk] and f z

l , f z
r termed as firing strengths of ys

lk and ys
rk

of rule p.The discrete-time nonlinear system represented by Equation (11) along with fault
dynamics can be represented by an IT2 T–S fuzzy model with r rules as:

The Rule in Details:
If δ1(Z(k)) is Ñi

1 AND. . . . . . AND δp(Z(k)) is Ñi
p THEN, the discretized state space

system with output will be:

Zdis(k + 1) = AdZdis(k)+Bduc(k)

+Ddv(k) + ft(ydis, Φ),

ydis(k) = CdZdis(k)

(23)

where Ñi
a stated as an interval type-2 fuzzy set having rule i associated with the function

δa(Z(k)), i = 1, 2, . . . r, r = the number of IF-THEN rules. Again, a = 1, 2, . . . p, with p
considered to be positive integer. In addition, Zdis(k) ∈ Rn is the systems state vector,
ydis(k) ∈ Rq is the output, uc(k) ∈ Rm is the system input, and v(k) is the unknown
bounded system uncertainty. The concept of firing strength having the ith rule is of the
following interval sets:

Wi(k) = [ωl(k), ωu(k)], i = 1, 2, . . . . . . , p (24)
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where

ωl(k) = 1
2

Ψ

∏
α=1

µ(l)M̃i
α
( fα(k)) ≥ 0

ωu(k) = 1
2

Ψ

∏
α=1

µ(u)M̃i
α
( fα(k)) ≥ 0

µ(l)M̃i
α
( fα(k)) ≥ µ(u)M̃i

α
( fα(k)) ≥ 0

ωl(k) ≥ ωu(k) ≥ 0, ∀i

(25)

in which ωl(x(t)), ωu(x(t), µ(l)M̃i
α
( fα(x(t))) and µ(u)M̃i

α
( fα(x(t)) illustrates the lower grade

of membership, upper grade of membership, lower membership function, and upper
membership function, respectively. The IT2 T–S fuzzy model [1,53] can be illustrated
as follows:

Zdis(k + 1) =
p

∑
i=1

ω̃k(Zdis(k))AdZ(k)+
p

∑
i=1

ω̃m(Zdis(k))

+
p

∑
i=1

ω̃j(Zdis(k))[ ft(ydis(k), Φ(k)) + Bduc(k)]

ydis(k) =
p

∑
i=1

ω̃j(Zdis(k))CiZdis(k)

(26)

where
p

∑
i=1

ω̃i(Zdis(k)) = Ad and
p

∑
i=1

ω̃m(Zdis(k)) = Ddv(k). Relying on the stated Equation (20),

the weighting functions associated with the type-2 fuzzy are:

p

∑
i=1

ω̃k(Zdis(k))AdZdis(k)= 1
2 ωli(k)αT

li(Zdis(k))

+ 1
2 ωui(k)αT

ui(Zdis(k)) ≥ 0, ∀i
p

∑
i=1

ω̃m(Zdis(k)) = 1
2 ωlm(k)αT

lm(Zdis(k))

+ 1
2 ωum(k)αT

um(Zdis(k)) ≥ 0, ∀m
p

∑
i=1

ω̃j(Zdis(k)) = 1
2 ωl j(k)αT

lj(Zdis(k))

+ 1
2 ωuj(k)αT

uj(Zdis(k)) ≥ 0, ∀j

(27)

In this stage, it is important to prove that the identification error is bounded; therefore,
the fault dynamics are considered to be constant and therefore:

p

∑
i=1

ω̃j(Zdis(k))[ ft(ydis(k), Φ(k))] = Ω (28)

where Ω is the positive definite matrix. Thus, using Equations (27) and (28) in Equation (26),

Zdis(k + 1) =
p

∑
i=1

ω̃i(Zdis(k))+
p

∑
m=1

ω̃m(Zdis(k))

+
p

∑
j=1

ω̃j(Zdis(k))[Bduc(k)] + Ω
(29)
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In addition, the weighting functions satisfy the convex sum property depicted as:

p

∑
i=1

ω̃i(Zdis(k)) = 1,
p

∑
m=1

ω̃m(Zdis(k)) = 1,

p

∑
j=1

ω̃j(Zdis(k)) = 1

0 ≤ αT
li(Zdis(k)) ≤ 1, 0 ≤ αT

ui(Zdis(k)) ≤ 1, ∀i

0 ≤ αT
lm(Zdis(k)) ≤ 1, 0 ≤ αT

um(Zdis(k)) ≤ 1, ∀i

0 ≤ αT
lj(Zdis(k)) ≤ 1, 0 ≤ αT

uj(Zdis(k)) ≤ 1, ∀i

(30)

in which αli(Zdis(k)), αui(Zdis(k)), αlm(Zdis(k)), αum(Zdis(k)), αl j(Zdis(k)) and αuj(Zdis(k))
are nonlinear functions, ω̃i(Zdis(k)), ω̃m(Zdis(k)) and ω̃j(Zdis(k)) are the concerned mem-
bership functions. In addition, Equation (27) states the type reduction.

In addition, ωli(k), ωui(k), ωlm(k), ωum(k), ωl j(k) and ωuj(k) are the fuzzy weighting
functions. For (27), the implementation of the learning laws takes place in the following manner:

ωli(k + 1)−ωli(k) = −Ψ1(k)emod(k)αT
li(Zdis(k))

ωui(k + 1)−ωui(k) = −Ψ2(k)emod(k)αT
ui(Zdis(k))

ωlm(k + 1)−ωlm(k) = −Ψ1(k)emod(k)αT
lm(Zdis(k))

ωum(k + 1)−ωum(k) = −Ψ2(k)emod(k)αT
um(Zdis(k))

ωl j(k + 1)−ωl j(k) =
−Ψ1(k)[Bduc(k)]emod(k)αT

lj(Zdis(k))

ωuj(k + 1)−ωuj(k) =
−Ψ2(k)[Bduc(k)]emod(k)αT

uj(Zdis(k))

(31)

Ψ1(k) and Ψ2(k) are stated by the equations mentioned below:

Ψ1(k) =


Ψ1(k)

1 + π1(k)
if ‖ ei(k + 1) ‖> 1

σ1
‖ ei(k) ‖

0 if ‖ ei(k + 1) ‖< 1
σ1
‖ ei(k) ‖

Ψ2(k) =


Ψ2(k)

1 + π2(k)
if ‖ ei(k + 1) ‖> 1

σ2
‖ ei(k) ‖

0 if ‖ ei(k + 1) ‖< 1
σ2
‖ ei(k) ‖

(32)

also 0 < Ψ1(k) ≤ 1 and 0 < Ψ2(k) ≤ 1, The dead-zone parameter is represented by σ1 and
σ2. Again, π1(k) and π2(k) are represented by:

π1(k) =‖ αT
li(Zdis(k)) ‖2 + ‖ αT

lm(Zdis(k)) ‖2

+ ‖ αT
lj(Zdis(k))[Bduc(k)] ‖2

π2(k) =‖ αT
ui(Zdis(k)) ‖2 + ‖ αT

um(Zdis(k)) ‖2

+ ‖ αT
uj(Zdis(k))[Bduc(k)] ‖2

(33)

The modeling error emod(k) satisfies the equation below:

emod(k) = Ẑdis(k)− Zdis(k) (34)
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Ẑdis(k) is the state of the fuzzy model, also from Equation (29):

(σ1 + σ2)Ẑdis(k + 1) =
p

∑
i=1

ω̃i(Zdis(k)) +
p

∑
i=1

ω̃m(Zdis(k))

+
p

∑
i=1

ω̃j(Zdis(k))[Bduc(k)] + Ω
(35)

where σ1 and σ2 are positive constants, and σ1, σ2 > 1 are design parameters.
In order to analyze the stability of the training algorithm (31), the dynamics of the

modeling error emod(k) are required. Thus, (35) can be expressed as:

(σ1 + σ2)Zdis(k + 1) =
p

∑
i=1

ω∗i (Zdis(k)) +
p

∑
i=1

ω∗m(Zdis(k))

+
p

∑
i=1

ω∗j (Zdis(k))[Bduc(k)] + Ω
(36)

(σ1 + σ2)Zdis(k + 1) = 1
2 ω∗li(k)α

T
li(Zdis(k))

+ 1
2 ω∗ui(k)α

T
ui(Zdis(k)) + 1

2 ω∗lm(k)α
T
lm(Zdis(k))

+ 1
2 ω∗um(k)αT

um(Zdis(k)) + 1
2 ω∗l j(k)α

T
lj(Zdis(k))[Bduc(k)]

+ 1
2 ω∗uj(k)α

T
uj(Zdis(k))[Bduc(k)]

+(εli + εui) + (εlm + εum) + (εl j + εuj)[Bduc(k)] + Ω

(37)

where ω∗li(k), ω∗ui(k), ω∗lm(k), ω∗um(k), ω∗l j(k) and ω∗uj(k) are unknown optimal weights, εli,

εui, εlm, εum, εl j and εuj are approximation errors, such as
p

∑
i=1

ω∗i (Zdis(k)) = 1
2 ω∗li(k)α

T
li(Zdis(k))

+ 1
2 ω∗ui(k)α

T
ui(Zdis(k)) + (εli + εui),

p

∑
i=1

ω∗m(Zdis(k)) = 1
2 ω∗lm(k)α

T
lm(Zdis(k))

+ 1
2 ω∗um(k)αT

um(Zdis(k)) + (εlm + εum),
p

∑
i=1

ω̃j(Zdis(k)) = 1
2 ω∗l j(k)α

T
lj(Zdis(k))

+ 1
2 ω∗uj(k)α

T
uj(Zdis(k)) + (εl j + εuj).

The error dynamics are from (35) and (37),

(σ1 + σ2)emod(k + 1) =
p

∑
i=1

ω̄i(Zdis(k))

+
p

∑
i=1

ω̄m(Zdis(k)) +
p

∑
i=1

ω̄j(Zdis(k))[Bduc(k)]
(38)



Algorithms 2022, 15, 284 12 of 32

(σ1 + σ2)emod(k + 1) = 1
2 ω̄li(k)αT

li(Zdis(k))

+ 1
2 ω̄ui(k)αT

ui(Zdis(k))

+ 1
2 ω̄lm(k)αT

lm(Zdis(k))

+ 1
2 ω̄um(k)αT

um(Zdis(k))

+ 1
2 ω̄l j(k)αT

lj(Zdis(k))[Bduc(k)]

+ 1
2 ω̄uj(k)αT

uj(Zdis(k))[Bduc(k)]

+ξi + ξm + ξ j[Bduc(k)]

(39)

where ω̄li(k) = ω̃li(k) − ω∗li(k), ω̄ui(k) = ω̃ui(k) − ω∗ui(k), ω̄lm(k) = ω̃lm(k) − ω∗lm(k),
ω̄um(k) = ω̃um(k) − ω∗um(k), ω̄l j(k) = ω̃l j(k) − ω∗l j(k), ω̄uj(k) = ω̃uj(k) − ω∗uj(k),
ξi = εli + εui + Ri, ξm = εlm + εum + Rm and ξ j = εl j + εuj + Rj, Ri, Rm and Rj are the

remainders of the Taylor formula for
p

∑
i=1

ω̃i(Zdis(k)),
p

∑
i=1

ω̃m(Zdis(k)) and
p

∑
i=1

ω̃j(Zdis(k)),

respectively.
The next theorem provides proof of the stability of the fuzzy modeling. It is for the

identification of the nonlinear system using Type 2 fuzzy thus validating that identification
error emod(k) is bounded.

Theorem 1. If the nonlinear system (26) is compensated using the fuzzy model (35) by utilizing
the updating laws (31), then the modeling error emod(k) should be

lim
k→∞

‖ emod(k) ‖2=
2η(k)ξ̃

π1(k) + π2(k)

satisfying the condition (σ1 + σ2) ‖ emod(k + 1) ‖>‖ emod(k) ‖.

Proof. The candidate LP(k) for Lyapunov analysis is chosen as follows:

LP(k) = 1
2 ‖ ω̄li(k) ‖2 + 1

2 ‖ ω̄ui(k) ‖2

+ 1
2 ‖ ω̄lm(k) ‖2 + 1

2 ‖ ω̄um(k) ‖2

+ 1
2 ‖ ω̄l j(k) ‖2 + 1

2 ‖ ω̄uj(k) ‖2

LP(k) = 1
2 tr
[
ω̄T

li (k))ω̄li(k)
]
+ 1

2 tr
[
ω̄T

ui(k)ω̄ui(k)
]

+ 1
2 tr
[
ω̄T

lm(k))ω̄lm(k)
]
+ 1

2 tr
[
ω̄T

um(k)ω̄um(k)
]

+ 1
2 tr
[
ω̄T

lj(k)ω̄l j(k)
]
+ 1

2 tr
[
ω̄T

uj(k)ω̄uj(k)
]

(40)
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In addition, the following relation is valid ∆LP(k) = LP(k + 1)− LP(k), so:

∆LP(k) = 1
2 [‖ ω̄li(k + 1) ‖2 − ‖ ω̄li(k) ‖2]

+ 1
2 [‖ ω̄ui(k + 1) ‖2 − ‖ ω̄ui(k) ‖2]

+ 1
2 [‖ ω̄lm(k + 1) ‖2 − ‖ ω̄lm(k) ‖2]

+ 1
2 [‖ ω̄um(k + 1) ‖2 − ‖ ω̄um(k) ‖2]

+ 1
2 [‖ ω̄l j(k + 1) ‖2 − ‖ ω̄l j(k) ‖2]

+ 1
2 [‖ ω̄uj(k + 1) ‖2 − ‖ ω̄uj(k) ‖2]

(41)

From the updating law (31),

∆LP(k) = 1
2 [‖ ω̄li(k)−Ψ1(k)emod(k)αT

li(Zdis(k)) ‖2

− ‖ ω̄li(k) ‖2]

+ 1
2 [‖ ω̄ui(k)−Ψ2(k)emod(k)αT

ui(Zdis(k)) ‖2

− ‖ ω̄ui(k) ‖2]

+ 1
2 [‖ ω̄lm(k)−Ψ1(k)emod(k)αT

lm(Zdis(k)) ‖2

− ‖ ω̄lm(k) ‖2]

+ 1
2 [‖ ω̄um(k)−Ψ2(k)emod(k)αT

um(Zdis(k)) ‖2

− ‖ ω̄um(k) ‖2]

+ 1
2 [‖ ω̄l j(k)−Ψ1(k)[Bduc(k)]emod(k)αT

lj(Zdis(k)) ‖2

− ‖ ω̄l j(k) ‖2]

+ 1
2 [‖ ω̄uj(k)−Ψ2(k)[Bduc(k)]emod(k)αT

uj(Zdis(k)) ‖2

− ‖ ω̄uj(k) ‖2]

(42)
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∆LP(k) = 1
2 Ψ2

1(k) ‖ emod(k) ‖2 [‖ αT
li(Zdis(k)) ‖2

−Ψ1(k) ‖ emod(k) ‖ [‖ ω̄li(k)αT
li(Zdis(k)) ‖

+ 1
2 Ψ2

2(k) ‖ emod(k) ‖2 [‖ αT
ui(Zdis(k)) ‖2

−Ψ2(k) ‖ emod(k) ‖ [‖ ω̄ui(k)αT
ui(Zdis(k))] ‖

+ 1
2 Ψ2

1(k) ‖ emod(k) ‖2 [‖ αT
lm(Zdis(k)) ‖2

−Ψ1(k) ‖ emod(k) ‖ [‖ ω̄lm(k)αT
lm(Zdis(k)) ‖

+ 1
2 Ψ2

2(k) ‖ emod(k) ‖2 [‖ αT
um(Zdis(k)) ‖2

−Ψ2(k) ‖ emod(k) ‖ [‖ ω̄um(k)αT
um(Z(k))] ‖

+ 1
2 Ψ2

1(k) ‖ emod(k) ‖2 [‖ αT
lj(Zdis(k))[Bduc(k)]) ‖2

−Ψ1(k) ‖ emod(k) ‖ [‖ ω̄l j(k)αT
lj(Zdis(k))[Bduc(k)] ‖

+ 1
2 Ψ2

2(k) ‖ emod(k) ‖2 [‖ αT
uj(Zdis(k))[Bduc(k)] ‖2

−Ψ2(k) ‖ emod(k) ‖ [‖ ω̄uj(k)αT
uj(Zdis(k))[Bduc(k)] ‖

(43)

Using the error dynamics (39), also Ψ1(k) = Ψ2(k) = η(k)

∆LP(k) = 1
2 η2(k) ‖ emod(k) ‖2 [‖ αT

li(Zdis(k)) ‖2

+ ‖ αT
lm(Zdis(k)) ‖2 + ‖ αT

lj(Zdis(k))[Bduc(k)] ‖2]

+ 1
2 η2(k) ‖ emod(k) ‖2 [‖ αT

ui(Zdis(k)) ‖2

+ ‖ αT
um(Zdis(k)) ‖2 + ‖ αT

uj(Zdis(k))[Bduc(k)] ‖2]

−2η(k) ‖ eT
mod(k) ‖

×[(σ1 + σ2)emod(k + 1)− ξi − ξm − ξ j[Bduc(k)]]

(44)

∆LP(k) = 1
2 η2(k) ‖ emod(k) ‖2 [‖ αT

li(Zdis(k)) ‖2

+ ‖ αT
lm(Zdis(k)) ‖2 + ‖ αT

lj(Zdis(k))[Bduc(k)] ‖2]

+ 1
2 η2(k) ‖ emod(k) ‖2 [‖ αT

ui(Zdis(k)) ‖2

+ ‖ αT
um(Zdis(k)) ‖2 + ‖ αT

uj(Zdis(k))[Bduc(k)] ‖2]

−2η(k) ‖ emod(k) ‖ (σ1 + σ2) ‖ emod(k + 1) ‖

+2η(k) ‖ emod(k) ‖ [ξi + ξm + ξ j[Bduc(k)]]

(45)

Using the definition (32), (33) and (σ1 + σ2) ‖ emod(k + 1) ‖>‖ emod(k) ‖ and
ξ(k) = ξi + ξm + ξ j[Bduc(k)], then:
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∆LP(k) ≤ −2η(k) ‖ emod(k) ‖2

+ 1
2 η2(k) ‖ emod(k) ‖2 (π1(k) + π2(k))

+2η(k) ‖ emod(k)ξ(k) ‖

≤ −η(k) ‖ emod(k) ‖2

+ 1
2 η2(k) ‖ emod(k) ‖2 (π1(k) + π2(k))

+η(k) ‖ ξ(k) ‖2

≤ −η(k){1− η(k)
2 (π1(k) + π2(k)} ‖ emod(k) ‖2

+η(k) ‖ ξ(k) ‖2

(46)

Since the modeling error ξ(k) is bounded as

‖ ξ(k) ‖2≤‖ ξ̃ (47)

in order that ∆LP(k) ≤ 0,

η(k)
2 (π1(k) + π2(k)} ‖ emod(k) ‖2≥ η(k)ξ̃

‖ emod(k) ‖2≥ 2η(k)ξ̃
π1(k)+π2(k)

(48)

Therefore, it is proved that LP(k) is bounded. In addition, if Ψ1(k), Ψ2(k) = 0, then,
from (31), it is evident that the weights do not change and hence they are bounded. In
addition, in this stage, it is assumed that the fault dynamics are not changing due to the
non occurrence of faults. This theorem validates that the fuzzy modeling approach can be
implemented with assured stability. The next stage is the fault detection scheme where an
innovative observer will be developed to detect faults in the drilling bit with respect to the
vibration measurements.

3. The Technique of Fault Detection

A general fault dynamics equation is illustrated as [1]:

ft(ydis, Φ) = Γ(k− k0)ΦT∆i(k). (49)

In the above equation, the unknown fault magnitude is depicted by Φ ∈ Rp×n. The
fault dynamics time profile is represented by Γ(k− k0). The intention of using time profile
factor is for extracting general occurring fault dynamics associated with the nonlinear
system. The fault basis function, which is a known quantity, is stated as ∆i(k) ∈ Rp. The
time profile [54] is illustrated as:

Γ(τ) =
{

0, i f τ < 0
(1− e−k̄iτ), i f τ ≥ 0

}
, i = 1, 2, . . . N (50)

The rate of growth of fault is given by k̄i > 0 . The relation depicting abrupt faults is
given by:

Γ(τ) =
{

0, i f τ < 0
1, i f τ ≥ 0

}
, i = 1, 2, . . . N (51)

where τ is the time of fault occurrence, τ = f (k− k0). For the purpose of monitoring the
system represented by Equation (26), a fault detection observer is chosen as:
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Ẑdis(k + 1) =
p

∑
i=1

ω̃k(Zdis(k)AdẐdis(k)

+
p

∑
i=1

ω̃j(Zdis(k))
[

f̂t(ydis(k), Φ̂(k)) + Bduc(k)
]

+k f [ydis(k)− ŷdis(k)]

ŷdis(k) =
p

∑
i=1

ω̃j(Z(k))CdẐdis(k)

(52)

the representation of the system state is done in this manner Ẑdis(k) ∈Rn, ŷdis(k) ∈ Rq is
the calculated output, and k f illustrates the observer gain. In addition,

ez(k) = Zdis(k)− Ẑdis(k)
ey(k) = ydis(k)− ŷdis(k)

(53)

represents the state residual and the output residual, respectively. Now, the error dynamics
before the fault commencement are:

ez(k + 1) =
p

∑
i=1

ω̃k(Zdis(k))Adez(k)

+
p

∑
i=1

ω̃m(Zdis(k))−
p

∑
i=1

ω̃j(Zdis(k))k f Cdez(k)

ey(k) =
p

∑
i=1

ω̃j(Z(k))Cdez(k)

(54)

In addition, the state and output residuals after the detection of the fault:

ez(k + 1) =
p

∑
i=1

ω̃k(Zdis(k))Adez(k)

+
p

∑
i=1

ω̃m(Zdis(k))−
p

∑
i=1

(ω̃j(Zdis(k))k f Cdez(k)− Φ̃T∆i(k))

ey(k) =
p

∑
i=1

ω̃j(Zdis(k))Cdez(k)

(55)

where the parameter estimation error is signified by Φ̃ = Φ− Φ̂. In addition, Φ̃T∆i(k) = discrete
time approximation (ADT). Using the concept of Z-transform applied by Zheng et al. [55], the
FD residual can be expressed as:

r(z) = (m1 + m2)[ydis(z)− ŷdis(z)]
= (m1 + m2)ey(z)

= (m1 + m2)
p

∑
i=1

ω̃j(Zdis(k))Cdez(z)
(56)

r(z) = (m1 + m2)
p

∑
i=1

ω̃j(Zdis(k))Cd

×
(

Zdis I −
p

∑
i=1

ω̃k(Zdis(k))Ad +
p

∑
i=1

(ω̃j(Zdis(k))k f Cd

)−1

×
p

∑
i=1

ω̃m(Zdis(k))

(57)
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where m1 and m2 are constant design matrix. The involved nonlinearity is represented by
p

∑
i=1

ω̃m(Zdis(k)). If the below mentioned conditions are satisfied, then it can be separated

from the FD residual.
Condition 1

p

∑
i=1

ω̃j(Zdis(k))Cd = 0 and

p

∑
i=1

ω̃j(Zdis(k))Cd

×
(
−

p

∑
i=1

ω̃k(Zdis(k))Ad +
p

∑
i=1

(ω̃j(Zdis(k))k f Cd)

)
= 0

(58)

Condition 2

p

∑
i=1

ω̃j(Zdis(k))Cd = 0 and(
−

p

∑
i=1

ω̃k(Zdis(k))Ad +
p

∑
i=1

ω̃j(Zdis(k))k f Cd

)
= 0

(59)

The conditions Equations (58) and (59) are utilized to extract the values of observer
gains. Now, we propose that ω̃j(Zdis(k)) = µω̃k(Zdis(k)).In addition, Φ̃T∆i(k) = Π and
Ad − µk f Cd = Ad̄. Using Equation (55):

ez(k + 1) =
p

∑
i=1

ω̃k(Zdis(k))Ad̄ez(k)

+
p

∑
i=1

ω̃m(Zdis(k)) +
p

∑
i=1

ω̃j(Zdis(k))Π

ey(k) =
p

∑
i=1

ω̃j(Zdis(k))Cdez(k)

(60)

The following updated laws will be used to verify that the state residual and parameter
estimate error are uniformly bounded, which also confirms that the output residual is
uniformly bounded:

Φ̂l(k + 1) = 1
2 (Φ̂l(k) + Φ̂u(k))

− 1
2 Rθ

p

∑
i=1

ω̃j(Zdis(k))∆i(k)eT
y (k)Bθ

− 1
2 γ

p

∑
i=1

ω̃j(Zdis(k))(Φ̂l(k)

+Φ̂u(k))(‖I − Rθ∆i(k)∆T
i (k)‖)

(61)

Φ̂u(k + 1) = 1
2 (Φ̂u(k) + Φ̂l(k))

− 1
2 Rθ

p

∑
i=1

ω̃j(Zdis(k))∆i(k)eT
y (k)Bθ

− 1
2 γ

p

∑
i=1

ω̃j(Zdis(k))(Φ̂u(k)

+Φ̂l(k))(‖I − Rθ∆i(k)∆T
i (k)‖)

(62)
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Theorem 2. The boundary condition of the output residual ey(k) and the parameter estimation
error Φ̃ will be validated if the conditions stated below are satisfied:

‖ ez(k) ‖≥
2(φ2

1 + φ2
2)

(1− A2
d̄max
− 1

4 R2
θ B2

θ ∆2
maxC2

dmax
)

‖ Φ̃l(k) + Φ̃u(k) ‖

≥

√√√√√√ (Ψd ++ω2
1 + L2

max + 2φ2
3)

1
4 + γ2 ‖

p

∑
i=1

ω̃j(Zdis(k)) ‖2 ‖I − Rθ∆i(k)∆T
i (k)‖2]

when a discrete time observer is used to monitor a nonlinear system that has been updated with new
laws. Equations (61) and (62) are utilized for the unknown parameter tuning process linked to ADT

Proof. Consider Lyapunov candidate function as:

LP(k) = eT
z (k)ez(k){

1
2 tr
[
Φ̃T

l (k)Φ̃l(k)
]
+ 1

2 tr
[
Φ̃T

u (k)Φ̃u(k)
]} (63)

The first difference of the Equation (63) is given by:

∆LP(k) =
[
eT

z (k + 1)ez(k + 1)− eT
z (k)ez(k)

]
+ 1

2 tr
[
Φ̃T

l (k + 1)Φ̃l(k + 1)− Φ̃T
l (k)Φ̃l(k)

]
+ 1

2 tr
[
Φ̃T

u (k + 1)Φ̃u(k + 1)− Φ̃T
u (k)Φ̃u(k)

] (64)

Now, let
∆LP1(k) =

[
eT

z (k + 1)ez(k + 1)− eT
z (k)ez(k)

]
∆LP2(k) = 1

2 tr
[
Φ̃T

l (k + 1)Φ̃l(k + 1)− Φ̃T
l (k)Φ̃l(k)

]
+ 1

2 tr
[
Φ̃T

u (k + 1)Φ̃u(k + 1)− Φ̃T
u (k)Φ̃u(k)

] (65)

Now, ∆LP1(k) will be expanded. Using Equation (60):

∆LP1(k) =

[
p

∑
i=1

ω̃k(Zdis(k))Ad̄ez(k)

]T

+

[
p

∑
i=1

ω̃m(Zdis(k)) +
p

∑
i=1

ω̃j(Zdis(k))Π

]T

×
[

p

∑
i=1

ω̃k(Zdis(k))Ad̄ez(k)

]

+

[
+

p

∑
i=1

ω̃m(Zdis(k)) +
p

∑
i=1

ω̃j(Zdis(k))Π

]

−eT
z (k)ez(k)

(66)
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∆LP1(k) =

(
p

∑
i=1

ω̃k(Zdis(k))AT
d̄ eT

z (k)

)

×
(

p

∑
i=1

ω̃k(Zdis(k))Ad̄ez(k)

)

+

(
p

∑
i=1

ω̃k(Zdis(k))AT
d̄ eT

z (k)

)(
p

∑
i=1

ω̃m(Zdis(k))

)

+

(
p

∑
i=1

ω̃k(Zdis(k))AT
d̄ eT

z (k)

)(
p

∑
i=1

ω̃j(Zdis(k))Π

)

+

(
p

∑
i=1

ω̃m(Zdis(k))

)(
p

∑
i=1

ω̃k(Zdis(k))Ad̄ez(k)

)

+

(
p

∑
i=1

ω̃m(Zdis(k))

)(
p

∑
i=1

ω̃m(Zdis(k))

)

+

(
p

∑
i=1

ω̃m(Zdis(k))

)(
p

∑
i=1

ω̃j(Zdis(k))Π

)
(

p

∑
i=1

ω̃j(Zdis(k))ΠT

)(
p

∑
i=1

ω̃k(Zdis(k))Ad̄ez(k)

)

+

(
p

∑
i=1

ω̃j(Zdis(k))ΠT

)(
p

∑
i=1

ω̃m(Zdis(k))

)

+

(
p

∑
i=1

ω̃j(Zdis(k))ΠT

)(
p

∑
i=1

ω̃j(Zdis(k))Π

)
−eT

z (k)ez(k)

(67)

Re-arranging the terms in Equation (67) and

∆LP1(k) =‖
(

p

∑
i=1

ω̃k(Zdis(k))

)
‖2‖ Ad̄ ‖2‖ ez(k) ‖2

+ ‖
(

p

∑
i=1

ω̃m(Zdis(k))

)
‖2

+ ‖
(

p

∑
i=1

ω̃j(Zdis(k))

)
‖2‖ Π ‖2

+2 ‖
(

p

∑
i=1

ω̃k(Zdis(k))

)(
p

∑
i=1

ω̃m(Zdis(k))

)
‖
(

AT
d̄ eT

z (k)
)
‖

+2 ‖
(

p

∑
i=1

ω̃k(Zdis(k))

)(
p

∑
i=1

ω̃j(Zdis(k))

)
‖
(

AT
d̄ eT

z (k)Π
)
‖

+2 ‖
(

p

∑
i=1

ω̃m(Zdis(k))

)(
p

∑
i=1

ω̃j(Zdis(k))

)
‖‖ Π ‖

−eT
z (k)ez(k)

(68)

Now, considering

(
p

∑
i=1

ω̃k(Zdis(k))

)(
p

∑
i=1

ω̃m(Zdis(k))

)
‖
(

AT
d̄ eT

z (k)
)
‖≤ φ2

1ez(k),



Algorithms 2022, 15, 284 20 of 32

(
p

∑
i=1

ω̃k(Zdis(k))

)(
p

∑
i=1

ω̃j(Zdis(k))

)
‖
(

AT
d̄ eT

z (k)Π
)
‖≤ φ2

2ez(k),(
p

∑
i=1

ω̃m(Zdis(k))

)(
p

∑
i=1

ω̃j(Zdis(k))

)
‖ Π ‖≤ φ2

3

∆LP1(k) ≤‖
(

p

∑
i=1

ω̃k(Zdis(k))

)
‖2‖ Ad̄ ‖2‖ ez(k) ‖2

+ ‖
(

p

∑
i=1

ω̃m(Zdis(k))

)
‖2

+ ‖
(

p

∑
i=1

ω̃j(Zdis(k))

)
‖2‖ Π ‖2

+2 ‖ φ2
1 ‖ ez(k) ‖

+2 ‖ φ2
2 ‖ ez(k) ‖

+2 ‖ φ2
3 ‖ − ‖ ez(k) ‖2

(69)

where φ2
1 , φ2

2 and φ2
3 are positive definite matrices. Now, ∆LP2(k) will be expanded. Using

Equation (61):

∆LP2(k) = 1
2 tr{[ 1

2 (Φ̃l(k) + Φ̃u(k))

− 1
2 Rθ

p

∑
i=1

ω̃j(Zdis(k))∆i(k)eT
y (k)Bθ

− 1
2 γ

p

∑
i=1

ω̃j(Zdis(k))(Φ̂l(k) + Φ̂u(k))(‖I − Rθ∆i(k)∆T
i (k)‖)]T

×[ 1
2 (Φ̃l(k) + Φ̃u(k))− 1

2 Rθ

p

∑
i=1

ω̃j(Zdis(k))∆i(k)eT
y (k)Bθ

− 1
2 γ

p

∑
i=1

ω̃j(Zdis(k))(Φ̂l(k) + Φ̂u(k))(‖I − Rθ∆i(k)∆T
i (k)‖)]

−Φ̃T
l (k)Φ̃l(k)}

+ 1
2 tr{[ 1

2 (Φ̃u(k) + Φ̃l(k))

− 1
2 Rθ

p

∑
i=1

ω̃j(Zdis(k))∆i(k)eT
y (k)Bθ

− 1
2 γ

p

∑
i=1

ω̃j(Zdis(k))(Φ̂u(k) + Φ̂l(k))(‖I − Rθ∆i(k)∆T
i (k)‖)]T

×[ 1
2 (Φ̃u(k) + Φ̃l(k))− 1

2 Rθ

p

∑
i=1

ω̃j(Zdis(k))∆i(k)eT
y (k)Bθ

− 1
2 γ

p

∑
i=1

ω̃j(Zdis(k))(Φ̂u(k) + Φ̂l(k))(‖I − Rθ∆i(k)∆T
i (k)‖)]

−Φ̃T
u (k)Φ̃u(k)}

(70)

Re-arrange the terms in Equation (70). In addition, using Φ̃ = Φ− Φ̂ and Equation (27):
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∆LP2(k) = tr{{[( 1
2 I − γI

p

∑
i=1

ω̃j(Zdis(k))

×(‖I − Rθ∆i(k)∆T
i (k)‖))(Φ̃T

l (k) + Φ̃T
u (k))

− 1
2 Rθ BT

θ ey(k)
p

∑
i=1

ω̃j(Zdis(k))∆i(k)

+γ(
p

∑
i=1

ω̃j(Zdis(k))(‖I − Rθ∆i(k)∆T
i (k)‖))

×(ΦT
l (k) + ΦT

u (k)))]

×[( 1
2 I − γI

p

∑
i=1

ω̃j(Zdis(k))(‖I − Rθ∆i(k)∆T
i (k)‖))

×(Φ̃l(k) + Φ̃u(k))

− 1
2 Rθ BθeT

y (k)
p

∑
i=1

ω̃j(Zdis(k))∆i(k)

+γ(
p

∑
i=1

ω̃j(Zdis(k))(‖I − Rθ∆i(k)∆T
i (k)‖))(Φl(k) + Φu(k)))]}

− 1
2 trΦ̃T

l (k)Φ̃l(k)} − 1
2 trΦ̃T

u (k)Φ̃u(k)

(71)

∆LP2(k) = tr{{[( 1
2 I − γI

p

∑
i=1

ω̃j(Zdis(k))

×(‖I − Rθ∆i(k)∆T
i (k)‖))

2 ‖ Φ̃l(k) + Φ̃u(k) ‖2

−Rθ BT
θ ey(k)

p

∑
i=1

ω̃j(Zdis(k))∆i(k)( 1
2 I − γI

p

∑
i=1

ω̃j(Zdis(k))

×(‖I − Rθ∆i(k)∆T
i (k)‖))(Φ̃l(k) + Φ̃u(k))

+2γ(
p

∑
i=1

ω̃j(Zdis(k))(‖I − Rθ∆i(k)∆T
i (k)‖))

×( 1
2 I − γI

p

∑
i=1

ω̃j(Zdis(k))(‖I − Rθ∆i(k)∆T
i (k)‖))

× ‖ Φ̃l(k) + Φ̃u(k) ‖2

+ 1
4 R2

θ B2
θ ‖ ey(k) ‖2

× ‖
p

∑
i=1

ω̃j(Zdis(k))∆i(k) ‖2

− 1
2 Rθ BT

θ ey(k)γ ‖
p

∑
i=1

ω̃j(Zdis(k)) ‖2 ∆i(k)

×(‖I − Rθ∆i(k)∆T
i (k)‖))(Φl(k) + Φu(k)))

+γ2 ‖
p

∑
i=1

ω̃j(Zdis(k)) ‖2 (‖I − Rθ∆i(k)∆T
i (k)‖)

2

× ‖ (Φl(k) + Φu(k)) ‖2

− 1
2 trΦ̃T

l (k)Φ̃l(k)} − 1
2 trΦ̃T

u (k)Φ̃u(k)}

(72)
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Arranging Equation (72) and applying Cauchy–Schwarz inequality criteria:

∆LP2(k) ≤ tr{{[( 1
4 I2 − (γI

p

∑
i=1

ω̃j(Zdis(k))

×(‖I − Rθ∆i(k)∆T
i (k)‖))2) ‖ Φ̃l(k) + Φ̃u(k) ‖2

+ 1
4 R2

θ B2
θ ‖ ey(k) ‖2‖

p

∑
i=1

ω̃j(Zdis(k))∆i(k) ‖2

+γ2 ‖
p

∑
i=1

ω̃j(Zdis(k)) ‖2 (‖I − Rθ∆i(k)∆T
i (k)‖)2

× ‖ (Φl(k) + Φu(k)) ‖2

− 1
2 trΦ̃T

l (k)Φ̃l(k)} − 1
2 trΦ̃T

u (k)Φ̃u(k)}

(73)

Combining Equations (69) and (73) and using ey(k) =
p

∑
i=1

ω̃j(Zdis(k))Cdez(k), the

following equation is extracted below:

∆LP(k) ≤‖
(

p

∑
i=1

ω̃k(Zdis(k))

)
‖2‖ Ad̄ ‖2

× ‖ ez(k) ‖2 + ‖
(

p

∑
i=1

ω̃m(Zdis(k))

)
‖2

+ ‖
(

p

∑
i=1

ω̃j(Zdis(k))

)
‖2‖ Π ‖2

+2 ‖ φ2
1 ‖ ez(k) ‖

+2 ‖ φ2
2 ‖ ez(k) ‖

+2 ‖ φ2
3 ‖ − ‖ ez(k) ‖2

+tr{{ 1
4 ‖ Φ̃l(k) + Φ̃u(k) ‖2

−γ2 ‖
p

∑
i=1

ω̃j(Zdis(k)) ‖2 ‖I − Rθ∆i(k)∆T
i (k)‖2

× ‖ Φ̃l(k) + Φ̃u(k) ‖2

+ 1
4 R2

θ B2
θ ‖

p

∑
i=1

ω̃j(Zdis(k)) ‖2

× ‖
p

∑
i=1

ω̃j(Zdis(k))Cd ‖2‖ ez(k) ‖2

+γ2 ‖
p

∑
i=1

ω̃j(Zdis(k)) ‖2 ‖I − Rθ∆i(k)∆T
i (k)‖2

× ‖ (Φl(k) + Φu(k)) ‖2

− 1
2 trΦ̃T

l (k)Φ̃l(k)} − 1
2 trΦ̃T

u (k)Φ̃u(k)}

(74)
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Now, the boundary conditions for the following terms can be set:

‖
(

p

∑
i=1

ω̃m(Zdis(k))

)
‖2≤ ω2

1 ,

‖
(

p

∑
i=1

ω̃k(Zdis(k))

)
‖2‖ Ad̄ ‖2≤ A2

d̄max ,

γ2 ‖
p

∑
i=1

ω̃j(Zdis(k)) ‖2 ‖I − Rθ∆i(k)∆T
i (k)‖2

× ‖ (Φl(k) + Φu(k)) ‖2≤ Ψd ,

‖
(

p

∑
i=1

ω̃j(Zdis(k))

)
‖2‖ Π ‖2≤ L2

max ,

‖
p

∑
i=1

ω̃j(Zdis(k)) ‖2‖ ∆i(k) ‖2≤ ∆2
max ,

‖
p

∑
i=1

ω̃j(Zdis(k)) ‖2‖ Cd ‖2≤ C2
dmax

(75)

using Equation (74) and conditions (75), also ‖ Φ̃l(k) + Φ̃u(k) ‖2≥‖ Φ̃l(k) ‖2 + ‖ Φ̃u(k) ‖2

∆LP(k) ≤ A2
d̄max
‖ ez(k) ‖2

+ω2
1 + L2

max + 2φ2
1 ‖ ez(k) ‖

+2φ2
2 ‖ ez(k) ‖ +2φ2

3− ‖ ez(k) ‖2

−tr[ 1
4 + γ2 ‖

p

∑
i=1

ω̃j(Zdis(k)) ‖2

×‖I − Rθ∆i(k)∆T
i (k)‖2] ‖ Φ̃l(k) + Φ̃u(k) ‖2

+ 1
4 R2

θ B2
θ ∆2

maxC2
dmax
‖ ez(k) ‖2

(76)

∆LP(k) ≤ −(1− A2
d̄max
− 1

4 R2
θ B2

θ ∆2
maxC2

dmax
)

× ‖ ez(k) ‖2 +2(φ2
1 + φ2

2) ‖ ez(k) ‖

−tr[ 1
4 + γ2 ‖

p

∑
i=1

ω̃j(Zdis(k)) ‖2

×‖I − Rθ∆i(k)∆T
i (k)‖2] ‖ Φ̃l(k) + Φ̃u(k) ‖2

+Ψd ++ω2
1 + L2

max + 2φ2
3

(77)

Now, ∆LP(k) ≤ 0, if and only if
(1)

(1− A2
d̄max
− 1

4 R2
θ B2

θ ∆2
maxC2

dmax
) ‖ ez(k) ‖2≥

2(φ2
1 + φ2

2) ‖ ez(k) ‖

and (2)

[ 1
4 + γ2 ‖

p

∑
i=1

ω̃j(Zdis(k)) ‖2 ‖I − Rθ∆i(k)∆T
i (k)‖2]

≥ (Ψd ++ω2
1 + L2

max + 2φ2
3)
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which yields

‖ ez(k) ‖≥
2(φ2

1 + φ2
2)

(1− A2
d̄max
− 1

4 R2
θ B2

θ ∆2
maxC2

dmax
)

‖ Φ̃l(k) + Φ̃u(k) ‖≥√√√√√ (Ψd++ω2
1+L2

max+2φ2
3)

1
4+γ2‖

p

∑
i=1

ω̃j(Zdis(k))‖2‖I−Rθ ∆i(k)∆T
i (k)‖2]

It is now proved by the theorem that the system states are bounded, which is very
important from a stability concern of the fault detector system. If during any point the
system states are not stable, the fault detector will generate unstable results, thus decreasing
the effectiveness of the entire process. It also validates that the fault detection estimator is
reliable with precise online learning of the fault magnitude.

4. Validation and Results

The drilling process parameters illustrated in [48] were implemented for drilling
process simulation to verify the efficacy of the created theory and to confirm the notion of
the new fault detection technique. The parameters are shown in Table 1:

Table 1. Parameters.

Parameter Value Units

mxx 27 kg

mzz 172 kg

mθθ 0.13 kgm2

kyy 1.3× 106 N/m

kzθ 1.2× 1012 N/rad

cxx 2500 Ns/m

czz 5000 Ns/m

cθθ 5000 Nms/rad

myy 28.7 kg

mzθ 2.6 kgm

kxx 1.4× 106 N/m

kzz 7.69× 108 N/m

kθθ 5.79× 109 Nm/rad

cyy 2500 Ns/m

czθ 5000 Ns/rad

ψ 200 rad/s
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Simulation of the Drilling Process for Verification

Equation (7) can be represented along x, y, z and θ components as follows:

ẍ = Fx
mxx

+ ux
mxx
− cxx

mxx
ẋ

− kxx−mxxψ2

mxx
x + 2ψẏ + ψ cxx

mxx
y

ÿ =
Fy

myy
+

uy
myy
− cyy

myy
ẏ

− kyy−myyψ2

myy
x− 2ψẋ− ψ

cyy
myy

x

z̈ = Fz
mzz

+ uz
mzz
− czz

mzz
ż

− kzz−mzzψ2

mzz
z− mzθ

mzz
θ̈ − czθ

mzz
θ̇ − kzθ−mzθψ2

mzz
θ

θ̈ = Fθ
mθθ

+ uθ
mθθ
− cθθ

mθθ
θ̇

− kθθ−mθθ ψ2

mθθ
θ − mθz

mθθ
z̈− cθz

mθθ
ż− kθz−mθzψ2

mθθ
z

(78)

where ẍ, ÿ, z̈ and θ̈ are the accelerations along x, y, z and the θ component. In Figures 2 and 3,
the block diagrams depict the simulation of the drilling process without and with faults,
respectively. By utilizing Equation (78), the acceleration signals along x, y, z, and θ direc-
tions are obtained. These accelerations are then fed to the numerical integrator for the
generation of velocity and position signals. These signals are used for the vibration analysis
of the drill bit. The vibration signals along x, y, z, and θ directions will vary in the events of
the fault in the drill tool. For simplicity, the analysis results along x and y directions are
demonstrated. The nonlinear cutting forces implemented for the simulation process along
x and y directions are given by [56]:

Fx = +
N
2π
{ζ1∆x3 + η1∆y3 + ζ2∆x2

+η2∆y2 + ζ3∆x + η3∆y + 3γ1∆x2∆y

+3γ2∆x∆y2 + 2γ3∆x∆y + γ4}

Fy = − N
2π
{ζ∗1 ∆x3 + η∗1 ∆y3 (79)

+ζ∗2 ∆x2 + η∗2 ∆y2 + ζ∗3 ∆x + η∗3 ∆y

+3γ∗1 ∆x2∆y + 3γ∗2 ∆x∆y2

+2γ∗3 ∆x∆y + γ∗4}

Equation (79) is utilized to generate the cutting forces for the drilling process. The
cutting forces for a period of 2s along the components x and y and are represented using
Figures 4 and 5, respectively.

The accelerations in case of the real process can be calculated by installing accelerome-
ter sensors on the drilling machine. Types of sensors which can be used for the process can
be categorized as:

(a) Bidirectional sensor—For the computation of x and y components of accelerations;
(b) Axial sensor in order to calculate the acceleration along z direction;
(c) Rotational sensor in order to calculate the acceleration along the θ direction.
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Figure 2. Block diagram of drilling simulation without fault.

Figure 3. Block diagram of drilling simulation with induced fault.
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Figure 4. x-axis representation of cutting force.
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Figure 5. y-axis representation of cutting force.

The entire drilling mechanism is simulated using the software platform Matlab/Simulink.
The events of faults demonstrated using simulation are presented and consequently vali-
dated the fault detector scheme for successful detection of faults. For the drilling process
model, two subsystem Simulink blocks are used. One block with the defect and the second
block without the fault are used to compare the findings. Control signals and cutting
forces are the process model’s inputs. The simulation time was set for a period of 120 s.
The IT2-FLS toolbox designed by Taskin et al. [57] is implemented in order to actuate the
simulation process. The important features of the IT2-FLS toolbox are the main editor,
membership function editor, rule editor as well as the surface viewer. The membership
functions considered for the entire process are the Gaussian functions. Designing the type-2
fuzzy system, we first use the type-2 fuzzy logic system toolkit [57]. The computing cost
of calculating the type-2 fuzzy system output is high due to its iterative nature [58]. To
deal with these conditions, many TR approaches for decreasing the computational cost
of the type-2 fuzzy inference mechanism have been presented. In the fuzzy logic theory,
the Karnik–Mendel (KM) algorithms are iterative techniques.They are known to converge
monotonically and super exponentially quickly; however, convergence requires several
(typically two to six) iterations [59]. The TR methods were divided into two categories by
Wu: Enhancements to the KMs, which reduced the KM’s computational cost, and Alter-
native TR approaches, which are closed-form approximations to the KM algorithm [60].
Because of its novelty and adaptability, the KM approach is the most popular [61]. A
type-2 fuzzy logic system toolbox supports type reduction and defuzzification procedures:
(1) Karnik–Mendel Algorithm (KM); (2) Enhanced KM Algorithm (EKM); (3) Iterative Al-
gorithm with Stop Condition (IASC); (4) Enhanced IASC (EIASC); (5) Enhanced Opposite
Direction Searching Algorithm (EODS); (6)Wu–Mendel Uncertainty Bound Method (WM);
(7) Nie–Tan Method (NT); and (8) Begian–Melek–Mendel Method (BMM). It is possible
to state the antecedent MFs using the MF types that currently exist in the Matlab Fuzzy
Logic Toolbox in the type-2 fuzzy logic system toolbox. As a result, the LMF and UMF
Matlab functions can be implemented in the same style. However, each type of MF has
an additional parameter that represents the height of the related MF. A triangle MF, for
example, is defined by the parameters A2, B2 ,C2, and H2, which specify the MF’s left point,
centre point, right point, and height, respectively. In type-2 fuzzy systems, especially type-2
fuzzy controller design, the parameter H2 is commonly used to produce FOU. Gaussian
functions are used for the membership functions. Gaussian membership functions have
the advantage of being easier to design since they are easier to express and optimise, they
are always continuous, and they are faster for small rule bases. When the same number
of MFs and the same type-reduction and defuzzification approach are utilised, Gaussian
type-2 fuzzy logic systems are faster than trapezoidal type-2 fuzzy logic systems. Because
small rule bases are commonly employed in practise, Gaussian type-2 fuzzy logic systems
appear to be more cost-effective. The type-2 fuzzy system is defuzzified by implementing
the technique proposed in [36]. The fuzzy laws are chosen on the basis of Theorem 1

concentrating on the condition limk→∞ ‖ ei(k) ‖2= 2η(k)ξ̃
π1(k)+π2(k)

. The learning rate used for
the fuzzy laws is Ψ1 = Ψ2 = 0.85. The conditions extracted from Theorem 2 for the fault
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detector estimator are Rθ = 0.99 and γ = 0.01. In Figures 6 and 7, the drill tool’s vibration
is plotted on the x and y axes. For better clarity of the plot representation, a 20-s interval
is shown. These vibration graphs show the pattern of vibration in the absence of induced
flaws. At 45 s following the commencement of the drilling process, an artificial fault is
induced along the x and y axes to the drilling operation simulation. The vibration of the
drill tool with the induced flaws is represented by Figures 8 and 9. These plots show how
plots with chatter change after 45 s, proving the fluctuation of vibration caused by induced
faults. The period between 40 s and 90 s is illustrated for the clarity of the charts.The
induced fault is a self generated sinusoidal signal. The defect detection in the drill tool is
shown in Figures 10 and 11 along x and y components. The charts show that there is no
change in the signal until 45 s, when it displays zero. At the instant of the detection of
fault, the change in vibration signal is detected instantly along x and y components. From
the vibration plots with induced faults (Figures 8 and 9), it is clear that the intensity of
the faults increases after a period of 65 s. However, from the fault detection estimator, the
variation of the plots is noticed instantly with the fault starting up, thus raising an alarm
and preventing the damage of drill tool. Hence, it is validated that the interval type-2
(IT2) Takagi–Sugeno (T–S) fuzzy based observer fault detection algorithm is successful as a
fault detector mechanism by the sounding alarm after a period of 45 s. The future work is
intended towards the investigation of faults along z and θ directions and comparing the
results with x and y directions, thus predicting remaining useful life (RUL) of the drilling
process system.
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Figure 6. Drilling Tool vibration along the x-direction.
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Figure 7. Drill Tool vibration along the y-direction.
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Figure 8. Drilling Tool vibration along the x-direction with the induced fault.
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Figure 9. Drilling Tool vibration along the y-direction with induced fault.
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Figure 10. Fault detection scheme along the x-axis.
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Figure 11. Fault detection scheme along the y-axis.

5. Conclusions

This work shows how to find faults in the drilling process using an interval type-2 (IT2)
Takagi–Sugeno (T–S) fuzzy-based observer fault detection system. In the face of system
uncertainty, the stability of the system using the fault detection estimator is validated. This
system uncertainty is tackled using the type-2 fuzzy logic system. Theorem 1 is developed
to validate the stability of Type-2 fuzzy modeling. The system states of the process are
proved to be bounded, which also validates the stability of the fault detection estimator
using Theorem 2. The stability requirements of Theorem 1 and Theorem 2 are fulfilled using
the Lyapunov stability candidate. The defect detection system’s effectiveness is verified
using numerical analysis, which also establishes theoretical features. The main intention of
this paper is to develop a control-based fault algorithm to detect an induced fault at the
correct instant with assured stability of the system. This type of unique way for detecting a
flaw in a drilling system has never been used before. The effective methodology can be
implemented in real-time for detecting faults during drilling operations. This is critical
for increasing the productivity and quality of the machining process, and it also helps
improve the surface finish of the work piece satisfying the customer needs and expectations.
Future work is intended towards the computation of Remaining Useful Life (RUL) of the
drilling devices.
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