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Abstract: This paper advances a volatility-regime-switching mechanism to investigate the intensity
and direction of the volatility spillover effect in carbon–energy markets. Switching between a
low-volatility (LV) and high-volatility (HV) regime, our mechanism involves a four-state system
(i.e., LV-LV, HV-LV, LV-HV and HV-HV). Our findings are listed as follows: First, the highest EUA–
WTI correlation occurs when both are in an HV regime (i.e., HV-HV), revealing the intensity of
the volatility spillover effect. Second, when EUA and WTI are experiencing an opposite volatility
regime (one in LV and the other in HV), a higher EUA–WTI correlation is observed when WTI is
in an HV regime. This result implies that the direction of the volatility spillover effect is from the
energy market to the carbon market. Third, the regime-switching model involving the non-uniform
volatility–correlation relations outperforms the conventional GARCH and DCC models in volatility
forecasting and portfolio construction.
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1. Introduction

Carbon markets have attracted attention following concerns around climate change [1].
Thanks to the European Union Emissions Trading System, established in 2005, carbon assets
have become an available investment option for investors. Firms, particularly firms with
high energy consumption, are also concerned about carbon markets since their costs rely on
carbon and energy prices. For policymakers, carbon markets provide them with information
to form appropriate policies to manage carbon emissions and energy consumption.

The literature has examined the connectedness between carbon and energy markets
and has offered evidence of their correlations (see [2] for a summary). This study con-
tributes to the carbon–energy literature in three ways. First, we develop a theoretical
perspective on the volatility–correlation relationships in carbon–energy markets to break
down the fundamental channel and the volatility spillover effect, two significant factors
causing the link between the two markets. The fundamental channel is based on real and
economic ties between the two markets. Economic growth stimulates energy consumption
and, thus, produces carbon emissions. Given this common factor (i.e., economic growth),
the correlation between carbon and energy markets is straightforward. Beyond the funda-
mental channel, this study highlights the volatility spillover effect and presumes that this
effect increases the carbon–energy correlation. Moreover, we re-examine the direction of
the volatility spillover effect in carbon–energy markets using a regime-switching approach.
In brief, if the carbon–energy correlation grows due to a high volatility condition of the
energy market; volatility spillover is from the energy market to the carbon market. By
contrast, if a high carbon–energy correlation is observed when the carbon market faces a
high-volatility condition, the volatility spillover direction is from the carbon market to the
energy market. To date, the existing carbon–energy market literature has not considered
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these dynamic volatility–correlation relationships. In this study, we address these relation-
ships and use them to re-examine the intensity and direction of the volatility spillover effect
in carbon–energy markets.

Second, to examine the dynamic volatilities and correlations in carbon–energy markets,
most studies [3–5] adopt the conventional time-dependent approaches, including the
GARCH (Generalized Autoregressive Conditional Heteroskedasticity) and DCC (Dynamic
Conditional Correlations) models. While the GARCH and DCC models are the most
popular methodologies used for market volatilities and correlations, they suffer from some
limitations. First, the GARCH-based volatilities cannot control discrete volatility jumps
in markets [6,7]. Second, prior studies use a two-step estimation method for the DCC
models, which implicitly assumes independence between volatilities and correlations (see
Section 2.2). This study employs a regime-switching approach to identify volatility state
combinations in carbon–energy markets and jointly analyzes their correlation dynamics.
Our one-step estimation method mitigates the sample selection bias due to a two-step
estimation process [8].

Third, we conduct two practical tests: volatility forecasting and portfolio construction,
to offer evidence to support the use of our regime-switching approach against the conven-
tional time-varying approaches, including the GARCH and DCC models. Our empirical
results show that carbon–energy correlations significantly diverge across various volatil-
ity state groupings. Accordingly, this study conducts two practical tests: portfolio risk
forecasting and portfolio construction. We argue that volatilities and correlations are the
two critical elements for risk management; thus, the consideration of volatility–correlation
relationships may enhance the performance of the tasks. To the best of our knowledge,
prior studies have not conducted these two practical tests on carbon–energy market data.

We proceed with the study as follows: First, in Section 2, we review related studies
and then develop our research questions. Next, we introduce the models used in this study,
including the conventional GARCH and DCC models and our proposed regime-switching
model, in Section 3. In addition, we explain why our proposed regime-switching approach
is more appropriate than the traditional GARCH and DCC models in detecting the intensity
and direction of the volatility spillover effect in carbon–energy markets. In Section 4, we
report the estimation results. Next, Section 5 discusses the results and conducts the two
practical tests: volatility forecasting and portfolio construction. Finally, we conclude the
paper in Section 6.

2. Literature Review and Research Question Development
2.1. Studies on Carbon–Energy Correlations

Climate change issues are triggering research interest in carbon–energy correlations in
the past decade [9]. Carbon–energy correlations are critical for investors, energy-intensive
industries, and policymakers. The literature has offered significant evidence of carbon–
energy correlations. For example, Chevallier [10] demonstrates that economic activities
(proxied by industrial productions) and energy prices may drive carbon prices. Tan and
Wang [11] show the impact of energy prices and macroeconomic risk factors (proxied
by a stock market index, the commodity price, and US Treasury bill yield) on carbon.
Zhao et al. [12] investigate the relationship between energy prices and carbon prices and
indicate that one may use energy prices to predict carbon prices. Lin and Jia [13] examine
the impact of the carbon price on economic outputs and suggest that the effect is more
pronounced in energy industries than in other industries.

In addition to testing the carbon–energy correlations based on the return spillover
effect (i.e., the first moment), a few recent studies have turned their attention to the volatil-
ity spillover effect (i.e., the second moment). Notably, most of these studies employ the
conventional GARCH and DCC models to examine this effect [14–19] (some researchers de-
velop other methodologies to address the volatility spillover effect. For instance, Wang and
Guo [20] and Tan et al. [9] follow Diebold and Yilmaz [21] to construct the spillover index for
carbon–energy markets. Ji et al. [22] employ the VAR model to test the effect.). While these
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prior studies have documented the volatility spillover effect in carbon–energy markets, we
argue that the conventional GARCH and DCC models have certain shortcomings. First,
the GARCH-based models fail to control for structural changes in volatility (i.e., volatility
jumps) and, thus, encounter the high-persistence issue in volatility estimation and low
accuracy in volatility prediction [23,24]. Second, with regard to the DCC models, prior
empirical studies invariably employ a two-step approach to estimate the model parameters.
Specifically, in the first step, they estimate the univariate GARCH model for each asset
(e.g., carbon and energy assets in this study). After calculating the residual of the univariate
asset, they estimate the DCC models in the second step. This two-step approach implicitly
assumes that volatility estimation is irrelevant to correlation estimation and, thus, cannot
address their relationships [25]. Therefore, this study uses a regime-switching approach to
address the volatility–correlation relationships and adopts a one-step estimation approach
(see Section 3.1). Moreover, we use the proposed volatility–correlation relationships to
develop a theoretical hypothesis regarding the intensity and direction of the volatility
spillover effect in carbon–energy markets (see the subsequent subsection).

2.2. Research Question Development

Our research aims to contribute to the carbon–energy correlation literature. We develop
combinations of market volatility states in carbon–energy markets and differentiate two
cross-market channels: fundamental and volatility spillover. Further, we use our proposed
dynamic volatility–correlation relationships to examine the intensity and direction of
the volatility spillover effect in carbon–energy markets. Our conjectures are explained
as follows: First, as defined in the literature, the fundamental channel is based on real
and economic links between the paired markets. Researchers point out three effects:
aggregated demand effect, substitution effect, and production restrain effect, supporting
the fundamental link. Beyond the fundamental channel, recent studies turn their attention
to the volatility spillover effect in carbon–energy markets. Two models may explain the
volatility spillover effect. The first model is the cross-market rebalancing model proposed
by Kodres and Pritsker [26]. They hypothesize that cross-market shocks occur because
investors optimally adjust their investment in one market to respond to shocks in another
market. The second model is the social learning model proposed by Trevino [27]. He
hypothesizes that cross-market contagions occur because investors fear a crisis in one
market after observing a crisis in the other market.

This study addresses two derivative questions regarding the two cross-market chan-
nels. The first question is how does one distinguish the impacts of the two channels
(i.e., fundamental and volatility spillover) on carbon–energy correlations? The second ques-
tion is how does one detect the direction of the volatility spillover channel in carbon–energy
markets? We argue that the key to answering the two questions is carbon–energy market
volatility conditions. Below, we list our conjectures. First, financial crises go along with
high market volatility [28–31]. Accordingly, we argue that the volatility spillover effect will
be maximal when carbon–energy markets encounter a high-volatility condition. Moreover,
considering the difference between a low-volatility (LV) and a high-volatility (HV) regime
for each market, we may develop a four-volatility-state system for carbon–energy markets:
i.e., LV-LV, HV-LV, LV-HV, and HV-HV.

Next, we conduct two comparative analyses to answer our two research questions
on carbon–energy correlation dynamics. The first comparative analysis is based on the
LV-LV versus HV-HV state. The HV-HV state reflects extreme economic and/or financial
distresses, causing both carbon and energy markets to experience volatile price movements
(4.5% of our test sample, see Table 6). By contrast, the LV-LV state presents the situation
when both carbon and energy markets live in a common and non-volatile state (64.54% of
our test sample, see Table 6). We argue that the impact of the volatility spillover effect on
carbon–energy correlations primarily shows up in the HV-HV state. On the other hand,
under the LV-LV state, the carbon–energy correlations are mainly driven by the fundamental
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channel. Accordingly, the comparative analysis between the LV-LV and HV-HV states may
offer a test on the intensity of the volatility spillover effect.

To examine the direction of the volatility spillover (the second research question
in our study), we conduct a comparative analysis between the other two states: HV-LV
versus LV-HV. These two volatility states reflect that only one market (carbon or energy) is
experiencing an HV condition. If carbon–energy correlations stimulate when the energy
market is under an HV state, it shows that the volatility spillover direction is from the energy
market to the carbon market. On the other hand, if we observe a higher carbon–energy
correlation when the carbon market faces an HV state, the result implies that the volatility
spillover path is from the carbon market to the energy market. The subsequent subsection
uses the regime-switching model to identify a low-volatility (LV) and a high-volatility
(HV) regime for each carbon and energy market. Next, we develop a four-volatility-state
system for the non-uniform volatility–correlation relationships. Finally, we employ these
relationships to re-examine the intensity and direction of the volatility spillover channel in
carbon–energy markets. It should be noted that we adopt a one-step estimation process to
determine all the volatility and correlation parameters in the models.

3. Research Models

Prior studies commonly use GARCH models to examine dynamic conditional vari-
ances and DCC models to examine dynamic conditional correlations. Nonetheless, the pure
time-varying process involved in these models cannot identify nonlinear volatility jumps
and state-dependent correlations [32,33]. In this section, we propose a regime-switching
approach to handle these nonlinearities and test our hypotheses regarding the intensity
and direction of the volatility spillover effect. For comparative analysis purposes, we start
this section by first introducing the conventional time-varying approaches (i.e., GARCH
and DCC) as a benchmark against our proposed regime-switching approach.

3.1. Bivariate GARCH Model

The bivariate GARCH model commonly used in the existing studies on the research
of carbon–energy markets is presented below:

rEUA
t = µEUA + ϕEUA·rEUA

t−1 + eEUA
t (1)

rWTI
t = µWTI + ϕWTI ·rWTI

t−1 + eWTI
t (2)

et

∣∣∣∣Φt−1 =

[
eEUA

t
eWTI

t

]
∼ BN (0, Ht) (3)

Ht =

[
hEUA

t hEUA,WTI
t

hEUA,WTI
t hWTI

t

]
(4)

where rEUA
t and rWTI

t , respectively, represent the daily returns on EUA (carbon market) and
WTI (energy market) observed on day t. Since our focus is on the second moment (i.e., vari-
ances and correlations), we adopt a relatively straightforward first-order autoregressive
process for our mean equations, i.e., Equations (1) and (2).

Next, we intoduce the equations for the second moment. As depicted in Equation (3),
the residual returns, eEUA

t and eWTI
t , follow a bivariate normal distribution (BN). The

elements of the conditional variance–covariance matrix (Ht) follow the standard time-
varying GARCH specifications:

hEUA
t = ωEUA + αEUA·(eEUA

t−1 )
2
+ βEUA·hEUA

t−1 (5)

hWTI
t = ωWTI + αWTI ·(eWTI

t−1 )
2
+ βWTI ·hWTI

t−1 (6)

hEUA, WTI
t = ρ×

(
hEUA

t ·hWTI
t

)1/2
(7)
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where hEUA
t and hWTI

t represent the time-varying conditional variances of EUA (energy
market) and WTI (energy market) returns, respectively, and hEUA, WTI

t is the time-varying
conditional covariance of the two returns.

3.2. DCC Model

To capture the dynamic conditional EUA–WTI correlation, the existing studies mainly
follow Engle [34] to use the DCC model as follows:

hEUA, WTI
t = ρt ×

(
hEUA

t ·hWTI
t

) 1
2 (8)

ρt = qt /
√

1 + q2
t (9)

where
qt = τ + π·qt−1 + λ·eEUA

t−1 ·eETI
t−1 /

√
hEUA

t−1 ·hETI
t−1 (10)

Equation (10) depicts the adopted DCC model consisting of three components: (1) the
constant unconditional correlation (τ), (2) the lagged conditional correlation as a linear
function of qt−1, and (3) the cross-product term of the lagged standardized residuals. With
the transformation function represented by Equation (9), we ensure that the conditional
correlation ρt lies between −1 and 1. In particular, ρt has the same sign as qt. The larger the
magnitude of qt, the closer ρt approaches 1 or −1. It is worth noting that the CCC (constant
conditional correlation) model is a special case of the DCC model under the restriction
of π = λ = 0 in Equation (10).

3.3. Bivariate SWARCH Model

The GARCH (see Equations (5) and (6)) and DCC models (see Equations (9) and (10))
accommodate the variance- and correlation-clustering behaviors, respectively (the persis-
tence of variance/correlation over time), which are commonly observed in the financial
markets. This study proposes a regime-switching approach to investigate our hypothe-
sis of intensity and direction of volatility spillover effect in carbon–energy markets (see
Section 2.2). In particular, we extend Hamilton and Susmel’s (1994) Markov-switching
Autoregressive Conditional Heteroskedasticity (SWARCH) model to investigate the regime-
switching pattern for market volatility (i.e., switching between a low- and high-volatility
regime) and the regime-switching volatility–correlation relations. Considering the two
asset positions in the carbon–energy portfolio, we develop a bivariate SWARCH model
as follows:

hEUA
t = gEUA

sEUA
t
×
[

ωEUA + αEUA·(eEUA
t−1 )

2
/gEUA

sEUA
t−1

]
(11)

hWTI
t = gWTI

sWTI
t
×
[

ωWTI + αWTI ·(eWTI
t−1 )

2
/gWTI

sWTI
t−1

]
(12)

We explain the state-dependent nature involved in Equations (11) and (12) as follows:
First, the state variables, st

EUA and st
WTI, have two possible outcomes: 1 or 2. Second, under

Regime I (i.e., the state variable = 1), the conditional variance of EUA is g1
EUA times ARCH

(1) process, and the conditional variance of WTI is g1
WTI times ARCH (1) process. Under

Regime II, (i.e., the state variable = 2), the conditional variance of EUA is g2
EUA times ARCH

(1) process, and the conditional variance of WTI is g2
WTI times ARCH (1) process (some

researchers [35–38] propose the use of the Markov-switching GARCH (MS-GARCH) model
to handle regime-switching conditional variance. However, the MS-GARCH model suffers
from an ad hoc assumption in merging the state-dependent conditional variances into a
single value that does not depend on the regime path. Augustyniak [39] employs certain
simulation methods to show that the estimates obtained from this collapsing procedure are
biased and inconsistent. In the present study, we attempt to extend our empirical analysis by
using a bivariate MS-GARCH model to capture the dynamic variance/correlation structure



Algorithms 2022, 15, 264 6 of 16

of stock and cryptocurrency returns. However, we cannot obtain valid estimation results
since the Hessian matrix is singular and, thus, cannot be inverted. While the literature
suggests that the MS-GARCH model offers an efficient way to model regime-switching
conditional variance, it is not practical to apply a bivariate version of it to model conditional
correlation given the technical problems as mentioned above. As such, in our empirical
analysis, we adopt the bivariate SWARCH model, which is found to be robust in capturing
regime-switching conditional correlations through their relationships with conditional
variances). Third, Without loss of generality, we follow Ramchand and Susmel [40] to
normalize g1

EUA = g1
WTI = 1. Therefore, the conditional variances under Regime II are

g2
EUA and g2

WTI times the variances under Regime I for EUA and WTI returns. Last, based
on our subsequent empirical analysis (presented in Section 4), the estimated g2

EUA and
g2

WTI coefficients are significantly larger than unity. Accordingly, we define Regime I as the
low-volatility (LV) regime and Regime II as the high-volatility (HV) regime.

Given the two separate volatility regimes for EUA and WTI, we generate four different
possible states of the EUA–WTI market: (1) st

EUA = 1 and st
WTI = 1, (2) st

EUA = 1 and
st

WTI = 2, (3) st
EUA = 2 and st

WTI = 1, and (4) st
EUA = 2 and st

WTI = 2. Next, we develop the
conditional covariance between the EUA and WTI returns as follows:

hEUA, WTI
t = ρsEUA

t ,sWTI
t
×
(

hEUA
t ·hWTI

t

)1/2
(13)

According to Equation (12), when both the carbon and the energy markets are in their
LV state (i.e., st

EUA = 1 and st
WTI = 1), the conditional correlation is ρ1,1. When both markets

are in their HV state (i.e., st
EUA = 2 and st

WTI = 2), the correlation becomes ρ2,2. When the
two markets are in opposite volatility states (i.e., one market in the HV state while the other
in the LV state), the correlation is ρ1,2. (when st

EUA = 1 and st
WTI = 2) or ρ2,1. (when st

EUA =
2 and st

WTI = 1). Our four-state conditional covariance framework can be considered as a
generalized version of that of Edwards and Susmel [41], where a two-state correlation is
defined by the two regimes of a single asset.

Finally, to model the switching between the two states separately for each of the two
markets, we adopt a first-order Markov chain process, and its transition probabilities are
specified as:

P
(

sEUA
t = 1

∣∣∣sEUA
t−1 = 1

)
= pEUA

11 , P
(

sEUA
t = 2

∣∣∣sEUA
t−1 = 2

)
= pEUA

22 (14)

P
(

sWTI
t = 1

∣∣∣sWTI
t−1 = 1

)
= pWTI

11 , P
(

sWTI
t = 2

∣∣∣sWTI
t−1 = 2

)
= pWTI

22 (15)

where pEUA
11 is the probability for the carbon market to remain in Regime I from time t − 1

to time t, whereas pEUA
22 is the probability to remain in Regime II. A similar definition is

applied to the energy market.

4. Data and Estimation Results
4.1. Data

This study employs the EUA (European Union Allowances) spot price for the carbon
price and the WTI (West Texas Intermediate) crude oil spot price for the energy market
price. Next, we empirically use the data to test the non-uniform volatility–correlation
relationships in carbon–energy markets. The testing period is between 16 March 2009 and
24 November 2021, consisting of 3311 daily observations (the WTI oil price on 20 April
2021 is negative, which causes the return rates (logarithmic change) on the 20th and 21st
of April 2021 to be incalculable. Thus, we exclude the two days in our analysis). The data
source is DATASTREAM.

Table 1 presents the basic statistics of EUA (carbon market) and WTI (energy market).
Panel A presents the results of the levels, and Panel B shows the results of the return
rates (logarithmic change). Since the price levels of EUA and WTI are non-stationary (see
Table 2), we use the return rates for the following analyses. Panel B of Table 1 shows that
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the EUA–WTI correlation is positive and significant (0.1791 with p-value < 0.01), implying
that carbon and energy markets are connected.

Table 1. Basic statistics of EUA and WTI.

EUA WTI

Panel A: Natural log level

Mean 2.4113 4.1823
Q1 1.8213 3.9300

Median (Q2) 2.9143 4.4894
Q3 2.3116 4.2015

S.D. 0.7081 0.3417
Skewness 0.4987 −0.6036
Kurtosis 2.4039 3.4786

Correlation −0.1626

Panel B: Return rate (Logarithmic change)

Mean 0.0574 0.0376
Q1 −1.3462 −1.0658

Median (Q2) 1.5629 1.1675
Q3 0.0000 0.0000

S.D. 3.0350 2.6399
Skewness −0.9978 0.6581
Kurtosis 21.3959 29.6411

Correlation 0.1791
Notes: The sample consists of 3311 daily observations from 16 March 2009 to 24 November 2021. The WTI oil
price on 20 April 2021 is negative, which causes incalculable return rates (logarithmic change) on 20 and 21 April
2021. We exclude the two days in our analysis. The data source is DATASTREAM.

Table 2. Unit root tests.

EUA WTI

Panel A: Price level (Natural logarithm)

ADF 0.1902 −2.4291
Phillips–Perron 0.2785 −2.3620

ADF-GLS 0.0606 −1.6053
NGP 0.1487 −5.7049

Panel B: Return rate (Logarithmic change)

ADF −42.9309 *** −19.1259 ***
Phillips–Perron −56.9186 *** −57.7969 ***

ADF-GLS −2.5954 *** −2.7100 ***
NGP −4.4264 −7.3027 *

Notes: This study employs four unit root tests for the log levels and return rates (first difference) of EUA and
WTI, including the ADF test [42], Phillips–Perron test [43], ADF-GLS test [44], and the NGP test [45]. We use the
maximum lag length for 15-order by Schwarz Info Criterion when conducting the unit root test. The ***, **, and
* denote the significance in the 1%, 5%, and 10%. The data source is consistent with Table 1. Overall, the test
results indicate that EUA and WTI price levels are non-stationary while their return rates are stationary.

4.2. Unit Root Tests

Table 2 presents the results of the unit root tests on EUA and WTI, including their
price levels and return rates. First, the unit root cannot be rejected for the price levels of
EUA and WTI. This result implies EUA and WTI price levels are non-stationary time series.
Second, the presence of unit root is rejected in EUA and WTI return rates, which means
they are stationary time series. Therefore, EUA and WTI return rates are employed for our
subsequent analyses.

4.3. Illustration of Volatility Jumps

Figure 1 graphs the daily return rate series of EUA and WTI. To illustrate volatility
regimes, we use a 21-trading-day rolling window to calculate their volatilities and graph
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them in Figure 2. The figure shows that return volatilities on EUA and WTI are non-constant
and show some specific peaks (i.e., prominent movements). These peaks offer evidence of
volatility regimes (i.e., HV versus LV) in carbon–energy markets. For instance, the peak
identified in May 2020 corresponds to the economic and financial distresses due to the
COVID-19 pandemic.

4.4. Bivariate GARCH Model

Table 3 presents the estimated results of the bivariate GARCH-CCC model. The two
estimated GARCH parameters (αEUA and βEUA for EUA, and αWTI and βWTI for WTI) are
positive and significant (p-value < 1%). These results support non-constant volatilities in
carbon–energy markets. Notably, the sum of the two estimated GARCH parameters is near
to unity (e.g., αEUA = 0.1226 and βEUA = 0.8777). This result implies a volatility-clustering
phenomenon in the GARCH-based volatility, in that a high/low volatility follows another
high/low volatility.
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Figure 2. Volatility of return rates on EUA carbon price and WTI crude oil price.

4.5. DCC Model

To examine carbon–energy correlation dynamics, we incorporate the DCC setting
into the bivariate GARCH model and present the estimated results in Table 4. The table
shows that the two estimated DCC parameters, π and λ, are positive and significant
(p-value < 0.01). This result supports the correlation-clustering phenomenon—a high/low
correlation follows with another high/low correlation.

4.6. Bivariate SWARCH Model

Table 5 presents the estimated results of the bivariate SWARCH model with state-
varying correlations. This model employs a regime-switching approach to address the
non-uniform volatility–correlation relationships that may help us re-examine the intensity
and direction of the volatility spillover effect in carbon–energy markets (see Section 2.2).
First, the estimated volatility scale parameters (i.e., g2

EUA and g2
WTI) are significantly larger

than the unity. In particular, g2
EUA is 6.7405, and its standard deviation is 0.4385. Moreover,
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g2
WTI is 8.1736, and its standard deviation is 0.8642. Since their 99% confidence intervals do

not cover the value of one (g1
EUA = g1

WTI = 1), we recognize Regime II as a high-volatility
(HV) regime and Regime I as a low-volatility (LV) regime.

Table 3. Estimated results of the bivariate GARCH-CCC model.

Coefficient S.D. t-Statistic p-Value

EUA Equation
µEUA 0.1290 0.0358 3.6034 0.0002
ϕEUA −0.0037 0.0032 −1.1563 0.1238
ωEUA 0.1047 0.0241 4.3444 0.0000
αEUA 0.1226 0.0110 11.1455 0.0000
βEUA 0.8777 0.0102 86.0490 0.0000

WTI Equation
µWTI 0.0937 0.0268 3.4963 0.0002
ϕWTI 0.0036 0.0131 0.2748 0.3917
ωWTI 0.1687 0.0327 5.1590 0.0000
αWTI 0.1370 0.0120 11.4167 0.0000
βWTI 0.8393 0.0143 58.6923 0.0000

Correlation
ρ 0.1716 0.0167 10.2754 0.0000
Log-likelihood function −14,890.8106

Notes: This table presents the estimation results of the bivariate GARCH-CCC model for EUA and WTI returns.
See Table 1 for sample descriptions and data sources.

Table 4. Estimated results of the bivariate GARCH-DCC model.

Coefficient S.D. t-Statistic p-Value

EUA Equation
µEUA 0.1122 0.0383 2.9295 0.0017
ϕEUA −0.0159 0.0085 −1.8706 0.0307
ωEUA 0.0840 0.0221 3.8009 0.0001
αEUA 0.1037 0.0107 9.6916 0.0000
βEUA 0.8949 0.0103 86.8835 0.0000

WTI Equation
µWTI 0.0607 0.0348 1.7443 0.0406
ϕWTI −0.0196 0.0105 −1.8667 0.0310
ωWTI 0.1033 0.0232 4.4526 0.0000
αWTI 0.0991 0.0100 9.9100 0.0000
βWTI 0.8838 0.0118 74.8983 0.0000

Time-varying correlation
τ 0.0026 0.0016 1.6250 0.0521
π 0.9751 0.0102 95.5980 0.0000
λ 0.0110 0.0035 3.1429 0.0008
Log-likelihood function −14,834.1637

Notes: This table presents the estimation results of the bivariate GARCH-DCC model for EUA and WTI returns.
See Table 1 for sample descriptions and data sources.

Second, as shown in Table 5, all the estimated correlations (i.e., ρ1,1, ρ2,1, ρ1,2, and ρ2,2)
are positive and significant (p-value < 1%) but display considerable divergence. Moreover,
the assumption of an equal correlation (i.e., ρ1,1 = ρ2,1 = ρ1,2 = ρ2,2 = ρ) is rejected at a
1% significance level. These results confirm the non-uniform correlations across various
volatility regimes in carbon–energy markets.
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Table 5. Estimated results of the bivariate SWARCH model with state-varying correlations.

Coefficient S.D. t-Statistic p-Value

EUA Equation
p11

EUA 0.9729 0.0055 176.8909 0.0000
p22

EUA 0.9316 0.0141 66.0709 0.0000
µEUA 0.1138 0.0413 2.7554 0.0029
ϕEUA −0.0139 0.0093 −1.4946 0.0675
ωEUA 3.4121 0.1807 18.8827 0.0000
αEUA 0.0242 0.0172 1.4070 0.0797
g2

EUA 6.7405 0.4385 15.3717 0.0000

WTI Equation
p11

WTI 0.9841 0.0039 252.3333 0.0000
p22

WTI 0.9309 0.0164 56.7622 0.0000
µWTI 0.0434 0.0361 1.2022 0.1146
ϕWTI −0.0262 0.0153 −1.7124 0.0434
ωWTI 2.2234 0.1218 18.2545 0.0000
αWTI 0.1704 0.0286 5.9580 0.0000
g2

WTI 8.1736 0.8642 9.4580 0.0000

State-varying correlations
ρ1,1 0.1751 0.0255 6.8667 0.0000
ρ2,1 0.1109 0.0391 2.8363 0.0023
ρ1,2 0.2977 0.0556 5.3543 0.0000
ρ2,2 0.3609 0.0637 5.6656 0.0000

LR statistic for ρ1,1 = ρ2,1 = ρ1,2 = ρ2,2 15.0222 ***
Log-likelihood function −14,890.1349

Notes: This table presents the estimation results of the bivariate SWARCH model with state-varying
correlations for EUA and WTI returns. To test the significance, we implement an identical correlation,
i.e., ρ1,1 = ρ2,1 = ρ1,2 = ρ2,2 = ρ, into the model and calculate the value of the log-likelihood function of the re-
stricted model. Then, we use the difference between the two models (one with four-state correlations vs. one
with an identical correlation) to develop the likelihood ratio (LR) statistic. The LR statistic follows a chi-square
distribution with three (=4 − 1) degrees of freedom. *** denotes significance at the 1% level. See Table 1 for sample
descriptions and data sources.

5. Discussion and Practical Tests
5.1. Volatility Spillover Effect: Intensity and Direction

In addition to research modeling, this study uses the volatility–correlation relation-
ships to re-detect the intensity and direction of the volatility spillover effect in carbon–
energy markets (see Section 2.2). Figure 2 graphs the estimated probabilities of various
volatility states derived by the bivariate SWARCH model. To identify the specific state for
each point in time, we use a maximum value criterion. Specifically, if the HV-HV state’s
estimated probability is higher than that of the other three states, we define this point
in time as an HV-HV state. Next, the observation percentage for each volatility state is
calculated and presented in Table 6. First, the state of EUA = LV and WTI = LV (LV-LV) is
the most common (64.54%), whereas the state of EUA = HV and WTI = HV (HV-HV) is
the most uncommon (4.50%). Last, 19.98% of the observations are identified as the state of
EUA = HV and WTI = LV (HV-LV) and the state of EUA = LV and WTI = HV (LV-HV) is
identified in 11.00% of our observations.

Next, we conduct two comparative analyses to examine the intensity and direction
of the volatility spillover effect. The first comparative analysis is based on LV-LV versus
HV-HV. Under the LV-LV state, the volatility spillover effect becomes minimal because
both EUA (carbon market) and WTI (energy market) face a low-volatility regime. Thus, the
carbon–energy correlation is mainly driven by the fundamental channel. On the other hand,
the volatility spillover effect becomes maximal under the HV-HV state. Accordingly, the
carbon–energy correlation under the HV-HV state reflects both the fundamental channel
and the volatility spillover effect. Returning to Table 5, ρ1,1 is 0.1751 (or 17.51%) and ρ2,2
is 0.3609 (or 36.09%). The rise in the correlation from the LV-LV state to the HV-HV state
reflects the intensity of the volatility spillover effect in carbon–energy markets.
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Table 6. Observation percentage of various volatility states.

Observation Percentage

EUA = LV and WTI = LV 64.54%
EUA = HV and WTI = LV 19.98%
EUA = LV and WTI = HV 11.00%
EUA = HV and WTI = HV 4.50%

Total 100%
Notes: One key feature of the bivariate SWARCH model employed in this study is to provide the estimated
probabilities of a specific state for each time point. We use these estimated probabilities and a maximum value
criterion to define the volatility state. For example, if the HV-HV state’s estimated probability is higher than the
other three states, we identify this time point as an HV-HV state.

We use the other two volatility states to conduct the second comparative analysis,
which may detect the direction of the volatility spillover effect. As shown in Table 5, ρ2,1 is
0.1109 and ρ1,2 is 0.2977. The comparison shows that a higher carbon–energy correlation is
observed when the energy market (proxied by WTI) faces an HV regime rather than the
carbon market (proxied by EUA). This result implies that the volatility spillover direction
is from the energy market to the carbon market (e.g., Tang and Wang, 2017).

5.2. Portfolio Risk Forecasting

This section conducts our first practical test: portfolio risk forecasting. The risk of a
portfolio involves two key elements: volatilities and correlations. This study employs vari-
ous models for dynamic carbon–energy volatilities and correlations, including the GARCH,
DCC, and SWARCH models. The question arises: would state-dependent volatilities and
correlations involved in our bivariate SWARCH model help with portfolio risk forecasting,
compared with the simple time-dependent volatilities and correlations in the conventional
bivariate GARCH and DCC models?

To answer this question, we construct the equal-weighted energy–carbon volatilities
and correlations for each of the three models (bivariate GARCH-CCC, bivariate GARCH-
DCC, and bivariate SWARCH); we then calculate the model-implied variance of portfolio
return residuals at each time t over the sample period. It should be noted that, since there
are four different volatility state combinations at time t in our bivariate SWARCH model,
we first compute the model-implied standard deviation for each volatility state (i.e., LV-LV,
HV-LV, LV-HV, and HV-HV) and then determine the weighted average standard deviation
based on the probabilities of realizing the four state combinations.

We calculate MAE (Mean Absolute Error) and MSE (Mean Square Error), the two most
prominent forecasting performance measures, for each model and present the results in
Table 7. The table shows that the bivariate SWARCH model with state-varying correlations
is associated with the smallest MSE and MAE. Moreover, we use the GARCH-CCC model
as a benchmark to calculate the t-statistic for the difference in MSE and MAE. Notably,
the statistic is significant at 1% for the SWARCH model. Our conclusion is clear. Our
proposed regime-switching volatilities and correlations may help with EUA–WTI portfolio
risk forecasting.

The MSE and MAE are defined as follows:

MSE = T−1 ∑T
t=1 (r

2
p,t − σ2

p,t)
2
, MAE = T−1 ∑T

t=1 |r
2
p,t − σ2

p,t|

where rp,t is the return of the equal-weight portfolio of energy and carbon at time t, and
σp,t is the estimated standard deviation of the respective carbon–energy portfolio return
residuals according to each of the models.

5.3. Portfolio Construction

This section conducts our second practical test: portfolio construction. Again, portfolio
construction relies on volatilities and correlations. A direct question we ask is if our
proposed regime-switching approach may enhance portfolio construction effectiveness.
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To answer this question, we run a test and detail the test as follows: First, we employ a
minimum variance portfolio construction strategy [46,47]. In this strategy, the weight given
to each position in the EUA–WTI portfolio is calculated as follows:

wEUA
t = [hWTI

t − ρt(hEUA
t ·hWTI

t )1/2]/[hEUA
t + hWTI

t − 2·ρt(hEUA
t ·hWTI

t )1/2] (16)

wWTI
t = 1− wEUA

t (17)

where wt
EUA and wt

WTI represent the weight of EUA (carbon) and WTI (energy) asset
position, respectively. ht

EUA and ht
WTI denote the conditional variances of EUA and WTI,

respectively, and ρt is their correlation.
Second, we construct the portfolio and calculate the portfolio return at time t (rt

POT):

rPOT
t = wEUA

t ·rEUA
t + wWTI

t ·rWTI
t (18)

Finally, we calculate the portfolio’s return mean and volatility over the testing period.
Table 8 presents the results for each model. To test significance, the bivariate GARCH-
CCC model is used as a benchmark to calculate the t-statistic for the difference between
alternative models. As shown in Table 8, our proposed bivariate SWARCH model equipped
with state-dependent correlations constructs a carbon–energy portfolio with a higher mean
return and lower return volatility than the bivariate GARCH-CCC and -DCC models.
Notably, the difference in the portfolio’s mean return is insignificant (p-value > 10%),
whereas the difference in the portfolio’s return volatility is significant (p-value < 1%).

Table 7. Performance of EUA–WTI portfolio variance forecasting.

MAE

Panel A: MAE (Mean Absolute Error)

Bivariate GARCH-CCC model 2.3185

Bivariate GARCH-DCC model 2.3143
(−1.0906)

Bivariate SWARCH model with state-varying correlations 2.1470
(−8.9225) ***

Panel B: MAE (Mean Square Error)

Bivariate GARCH-CCC model 9.9811

Bivariate GARCH-DCC model 9.9981
(0.3579)

Bivariate SWARCH model with state-varying correlations 8.5664
(−5.5544) ***

Notes: This study adopts MSE and MAE, the two commonly used forecasting performance criteria, to evaluate the
performance of various models in EUA–WTI portfolio variance forecasting. We adopt the bivariate GARCH-CCC
model as a benchmark and calculate the statistic for the difference in MSE and MAE (see the figure in parenthesis).
*** represents significance at the 1% level.

5.4. Issue of COVID-19 Pandemic

The issue of the COVID period is critical. As shown in Figure 2, a peak is identified in
May 2020, corresponding to the economic and financial distresses due to the COVID-19
pandemic. To test if the issue of the COVID-19 pandemic affects our conclusion, we exclude
the data after 2020 and rerun the models. The results are consistent with the following
notions: First, g2

EUA is 7.0437, and its standard deviation is 0.4887. Moreover, g2
WTI is

4.4603, and its standard deviation is 0.3060. These results imply Regime II (I) as a high
(low)-volatility regime, consistent with Table 5. Second, ρ2,2 (0.2363) is higher than ρ1,1
(0.1083), implying the intensity of the volatility spillover effect in carbon–energy markets.
Third, ρ1,2 (0.3418) is higher than ρ2,1 (0.0979), which means that the volatility spillover
direction is from the energy market to the carbon market. Overall, our conclusion on the
intensity and direction of volatility spillover effect in carbon–energy markets is robust to
the subperiod. However, as shown in Table 5, the estimate of ρ2,2 is 0.3609, which is higher
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than all the correlation estimates obtained with the subperiod data. The result implies the
COVID-19 pandemic enlarges carbon–energy market volatilities and correlations.

Table 8. Performance of EUA–WTI portfolio construction.

Panel A: Portfolio mean return

Mean return

Bivariate GARCH-CCC model 0.0436

Bivariate GARCH-DCC model 0.0427
(−0.3524)

Bivariate SWARCH model with state-varying correlations 0.0452
(0.1611)

Panel B: Portfolio return volatility

Return volatility

Bivariate GARCH-CCC model 1.7981

Bivariate GARCH-DCC model 1.7840
(−1.5996)

Bivariate SWARCH model with state-varying correlations 1.6392
(−7.2752) ***

Panel C: Sharpe ratios

Sharpe ratio

Bivariate GARCH-CCC model 0.0242
Bivariate GARCH-DCC model 0.0239

Bivariate SWARCH model with state-varying correlations 0.0276
Notes: This table lists the performance of portfolio construction (via a minimum variance strategy) for each
model. Two portfolio performance measures are adopted: mean return and return volatility. We use the bivariate
GARCH-CCC model as a benchmark to calculate the t-statistic for the difference (the figure in the parenthesis).
*** denotes significance at the 1% level.

6. Conclusions and Future Research Directions

The volatility spillover effect in carbon–energy markets has been documented in the
literature. Our study offers contributions to the literature in three respects. First, we
develop the non-uniform volatility–correlation relationships and use them to re-examine
the intensity and direction of the volatility spillover effect in carbon–energy markets.
Second, we develop a bivariate SWARCH model with four-state volatility combinations
and correlations. Third, we employ the realized data (EUA and WTI) to run the model
empirically using a one-step estimation process. Finally, we perform two practical tests,
portfolio volatility forecasting and portfolio construction, to validate our proposed regime-
switching approach.

Using a two-volatility-state setting for each carbon and energy market (HV versus LV),
we establish a four-volatility-state system for carbon–energy markets (i.e., LV-LV, HV-LV,
LV-HV, and HV-HV). We then develop the non-uniform volatility–correlation relationships
using these volatility state groupings. While existing studies have provided evidence of the
volatility spillover effect in carbon–energy markets, to the best of our knowledge, they have
neither addressed the non-uniform volatility–correlation relationships, nor used them to
empirically prove the intensity and direction of the volatility spillover effect. We fill these
gaps by developing a theoretical hypothesis, constructing a specific econometric method,
and conducting two practical risk management tests.

Our empirical findings are presented as follows: First, the carbon–energy correlation
under the HV-HV state is larger than that under the LV-LV state. This result offers evidence
of the volatility spillover effect in carbon–energy markets. Second, when the carbon and
energy markets are experiencing an opposite volatility regime (i.e., one in an HV regime
and the other in an LV regime), a higher carbon–energy correlation is observed when the
energy market is in an HV regime. This result indicates that the direction of the volatility
spillover effect is from the energy market to the carbon market. Third, our proposed
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regime-switching approach may offer better performance on carbon–energy portfolio risk
forecasting and portfolio construction than the conventional GARCH and DCC models.

Lastly, we address several future research directions. First, this study uses the equal-
weighted carbon–energy portfolio for the portfolio risk forecasting test (Section 5.2) and
the minimum variance portfolio for the portfolio construction test (Section 5.3). Future
research may consider value-weighted portfolios. Second, to address the non-normality
distribution issue, one may incorporate non-normal distributions, such as the t-distribution
or the GED distribution, into the models [48,49].
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