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Abstract: Given a set of facilities F and a query point q, a k-farthest neighbor (kFN) query returns the
k farthest facilities f1, f1, · · · , fk from q. This study considers the moving k-farthest neighbor (MkFN)
query that constantly retrieves the k facilities farthest from a moving query point q in a road network.
The main challenge in processing MkFN queries in road networks is avoiding the repeated retrieval
of candidate facilities as the query point arbitrarily moves along the road network. To this end, this
study proposes a moving farthest search algorithm (MOFA) to compute valid segments for the query
segment in which the query point is located. Each valid segment has the same k facilities farthest from
the query locations in the valid segment. Therefore, MOFA retrieves candidate facilities only once for
the query segment and computes valid segments using these candidate facilities, thereby avoiding
the repeated retrieval of candidate facilities when the query point moves. An empirical study using
real-world road networks demonstrates the superiority and scalability of MOFA compared to a
conventional solution.

Keywords: moving k-farthest neighbor query; spatial databases; batch processing algorithm;
road network

1. Introduction

Given a positive integer k, query point q, and set of facilities F, the k-farthest neighbor
(kFN) query retrieves the k facilities farthest from the query point q, whereas the k-nearest
neighbor (kNN) query retrieves the k facilities closest to the query point q. kFN queries
are the logical opposite of kNN queries. This study considers moving k-farthest neighbor
(MkFN) queries in road networks. MkFN queries constantly retrieve the k facilities farthest
from a moving query point q. The kFN search has real-world applications, including com-
putational geometry, artificial intelligence, pattern recognition, and information retrieval
methods [1–12]. A farthest neighbor (FN) search specifically determines the smallest radius
of a circle centered on a point q that covers all facilities. Consider a real-world scenario
involving a team of commandos on a mission in which the leader requests that no member
of the team should be more than 1 km away from him. Naturally, the leader should pay
close attention to the farthest team members to monitor their activities and ask them not
to move too far away. As another example of the FN search, locating obnoxious facilities
such as waste incinerators is often performed in a manner that will maximize the distance
between residential areas and these facilities.

Given a positive integer k = 2, the moving query point q, and set of five facilities
F = { f1, f2, f3, f4, f5} (Figure 1), the MkFN query should constantly retrieve the two facili-
ties farthest from the moving query point q in the road network. Suppose that the query
point q locations at timestamps t1 and t2 are represented by qt1 and qt2 , respectively. f1 and
f2 are the two facilities farthest from qt1 , and f4 and f5 are the two facilities farthest from
qt2 . A simple solution for MkFN queries in road networks involves computing the network
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distance from a query point q to each facility f in F. An additional O(|F| · log|F|) time is
required to retrieve the k facilities farthest from q. However, this simple solution cannot be
used in practical applications because kFN queries should be regularly evaluated to refresh
the query results while q moves continuously. Therefore, this study proposes a moving
farthest search algorithm called MOFA that enables the efficient evaluation of MkFN queries
in road networks. MOFA computes the valid segments for the query segment in which the
query point q moves such that it does not repeatedly retrieve candidate facilities whenever
q moves. To this end, MOFA quickly retrieves the candidate facilities for the query segment
and computes the valid segments using the candidate facilities. Each query location in the
valid segment has the same k facilities farthest from the query location.
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Figure 1. Example of MkFN queries in a road network.

Figure 2 presents an example of an MkFN query, where q moves along query segment
qsqe. First, the moving query point q submits a query segment qsqe to the location-based
service (LBS) server, instead of the current q location. Next, the LBS server returns a set
of valid segments for qsqe, where each valid segment has the same k facilities farthest
from each query location in the valid segment. This study assumes that query points (e.g.,
vehicles and pedestrians) move, while facilities (e.g., garbage incinerators and chemical
plants) are stationary. To the best of our knowledge, this is the first attempt to study the
efficient processing of MkFN queries in road networks.
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(1) � submits a query segment ���� to the server 

(2) Server returns a set of valid segments for ���� 

LBS server 

Figure 2. Interaction between the moving query point q and location-based service (LBS) server while
q moves along qsqe.

The main contributions of this study are summarized below.
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• This study proposes MOFA to compute valid segments for the query segment in which
a query point moves.

• MOFA retrieves candidate facilities once and has a stable query processing time that
is independent of the query frequency.

• An extensive empirical evaluation is performed using real-world road networks to
demonstrate the superiority of MOFA compared to a conventional solution.

The remainder of this paper is organized as follows. Section 2 reviews the related
research. Section 3 describes the MkFN query problem and notation used in this study.
Section 4 describes the clustering of facilities and calculation of distances between facility
clusters and a border point. Section 5 presents MOFA for MkFN query processing in road
networks, and Section 6 evaluates an example of MkFN query using MOFA. Section 7
presents the empirical results obtained using MOFA and conventional algorithms with
different setups, and Section 8 summarizes our conclusions.

2. Related Works

Many studies have been conducted on the efficient processing of spatial queries based
on the FN search [1–12].

Reverse FN (RFN) query [3–5,7–9,13]. Given a set of facilities F and a query point q,
an RFN query retrieves the facilities in F that have q as their farthest neighbor. Recently,
RFN queries have attracted increasing attention based on their applicability. Several studies
have been conducted to efficiently evaluate RFN queries in Euclidean spaces [3,4,8,9,13]
and road networks [5,7].

Approximate FN query [1,10,11,14]. Given an approximation ratio c (c > 1) and success
probability δ, a c-approximate FN query retrieves the c-approximate farthest neighbors with
a confidence of at least δ. Approximate FN search algorithms are considered acceptable
in high-dimensional spaces because it is typically not feasible to return the exact farthest
neighbors in a large set of points. Huang et al. [10,14] developed a reverse-query-aware
locality-sensitive hashing scheme for high-dimensional c-approximate FN searches over
external memory. They also proposed a heuristic variant that applied data-dependent object
selection to reduce the number of data objects. Liu et al. [11] proposed a c-approximate FN
algorithm called reverse incremental locality-sensitive hashing for high-dimensional data
that employs a continuous search strategy for each projection dimension.

Aggregate FN query [2,6]. Given a set of query points Q and an aggregate function (e.g.,
min, max, and sum), the aggregate FN query retrieves a facility f from a set of facilities F
such that the aggregate distance from f to all query points in Q is maximized. Gao et al. [2]
studied the aggregate FN query in Euclidean space and proposed the smallest-bounding
and best-first algorithms. Wang et al. [6] presented effective solutions to aggregate FN
queries in road networks.

Moving spatial query [15–18]. Various types of moving spatial queries have been studied
extensively, including kNN [15–17] and range [18] queries. Nutanong et al. [17] developed
an incremental safe region-based technique known as the V∗-diagram to process moving
kNN queries in Euclidean space and in undirected spatial networks. Yung et al. [18]
proposed an algorithm for computing the boundaries, which are referred to as safe exits,
of the safe regions of moving-range queries in road networks. The associated studies
considered different problem scenarios from those in our study, and their solutions were
found to be inappropriate for our problem scenarios.

Spatial access methods based on Euclidean distance cannot process MkFN queries
in road networks because network distance evaluation is much more expensive than
Euclidean distance evaluation. Solutions for the MkNN search [15–17] are not applicable to
MkFN query settings because MkFN queries focus on the farthest neighbors, rather than the
nearest neighbors. This is an extended version of a preliminary conference report presented
at the KSCI Summer Conference 2021 [19]. The preliminary conference report [19] describes
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the key concepts of MOFA without empirical evidence. Therefore, in this study, MOFA was
thoroughly analyzed and an empirical evaluation was performed. This study also differs
from our previous studies [20,21] in several aspects. Cho [20] considered kFN join queries
in a spatial network. The kFN join query focuses on evaluating a snapshot of the kFN query
for each query point in Q. Cho and Attique [21] presented the group processing of multiple
kFN (GMP) algorithms to efficiently process multiple kFN queries in road networks. The
GMP algorithm exploits shared computation techniques to rapidly process snapshot kFN
queries for multiple query points with distinct query conditions. Unlike our previous
studies [20,21] on snapshot kFN queries, this study focuses on computing valid segments
for continuous kFN queries of a moving query point.

Table 1 compares our problem scenario with those in previous studies to identify the
differences between them.

Table 1. Comparison between our problem scenario and those of previous studies.

References Space Domain Query Type

[3,4,8,9,13] Euclidean space Reverse FN query
[1,4,10–12,14] Euclidean space FN query
[2] Euclidean space Aggregate FN query
[5,7] Road network Reverse FN query
[6] Road network Aggregate FN query
[20] Road network FN join query
[21] Road network Multiple FN query
This study Road network Moving FN query

3. Notation and Formal Problem Description

Definition 1. kFN query [1–8]. Given a set of facilities F, positive integer k, and query point q,
the query point q retrieves the set of k facilities farthest from q, which is denoted as Φ(q).

Definition 2. MkFN query. Given a set of facilities F, positive integer k, and moving query point
q, the moving query point q constantly retrieves the set of k facilities farthest from q. We assume
that qsqe is a query segment in which q moves. Then, the MkFN query result can be represented as
Φ(qsqe) = {〈q, Φ(q)〉|q ∈ qsqe}.

Definition 3. Road network and network distance [22–26]. A road network G is modeled as a
weighted undirected graph G = 〈V, E, W〉, where V is a set of road intersections, E is a set of road
segments, and W represents the distance matrix. The network distance d(q, f ) between q and f ,
where q and f are two points on G, is the sum of the lengths of the road segments along the shortest
path between q and f . The terms “network distance” and “length of the shortest path” are used
interchangeably.

4. Clustering Facilities and Computing Distances

Section 4.1 discusses grouping nearby facilities into clusters. Section 4.2 discusses
calculating the largest and smallest distances from the border point of the query segment
to a facility cluster.

4.1. Clustering Facilities into Facility Clusters

Figure 3 presents an example MkFN query q, where k = 2 and F = { f1, f2, · · · , f6}.
This example is used to elaborate the solution process. The example MkFN query requires
that the moving query point q constantly retrieves the two facilities farthest from itself.
The vertex list in which query point q moves is referred to as the query segment for q. In this
example, v1v2 is the query segment for q (Figure 3). For ease of identification, the query
segment is shown in bold.
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Figure 3. Example of an MkFN query q in a road network.

Figure 4 illustrates the segmentation of a road network. In this figure, the intersection
vertices corresponding to road intersections are marked using dashed circles. The example
road network contains six intersection vertices v1, v2, v3, v4, v5, and f5. The degrees are
represented by numbers in parentheses. In this study, a road network is split into vertex
lists using intersection vertices. Therefore, facility segments adjacent to an intersection
vertex are grouped into a facility cluster, as illustrated in Figure 5.
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Figure 4. Segmentation of an example road network using road intersections.

Figure 5 illustrates the clustering method for grouping facilities into facility clusters.
The clustering method first groups facilities in a vertex list into a facility segment. Adjacent
facility segments are then grouped into a facility cluster. First, the facilities f1, f2, and f3 in
a vertex list v3 f2v5 are connected to form a facility segment f1 f2 f3. Similarly, the facilities
f4 and f5 in the vertex list f5v4 are connected to form a facility segment f4 f5. Therefore,
there are three facility segments f1 f2 f3, f4 f5, and f6 (Figure 5a). Next, the two facility
segments f4 f5 and f6 are connected using the intersection vertex f5 to form a facility cluster
{ f4 f5, f5 f6}. Therefore, a set of facilities F = { f1, f2, · · · , f6} changes into a set of facility
clusters F = {{ f1 f2 f3}, { f4 f5, f5 f6}}. In the proposed method, facility segments constitute
a facility cluster, which is represented by a set of facility segments.
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Figure 5. Clustering method for grouping facilities into facility clusters: (a) grouping facilities into
facility segments; (b) grouping facility segments into facility clusters.

4.2. Computing Distances between a Facility Cluster and a Border Point of the Query Segment

The largest and smallest distances between a facility cluster FC and a border point
qb of the query segment qsqe are computed, where qb ∈ {qs, qe}. The smallest and largest
distances between FC and qb are represented by dmin(qb, FC) = min{d(qb, f )| f ∈ FC} and
dmax(qb, FC) = max{d(qb, f )| f ∈ FC}, respectively. The smallest distance between qb and
FC is evaluated as dmin(qb, FC) = min{d(qb, fb)| fb ∈ B(FC)}, where fb is a border point
of FC. However, the largest distance between qb and FC is evaluated as dmax(qb, FC) =
max{dmax(qb, fl fm)| fl fm ∈ FC}, where fl fm is a facility segment in FC, and dmax(qb, fl fm)
is the largest distance between qb and fl fm.

The largest and smallest distances between a facility cluster FC and a border point qb
of the query segment are computed using the example in Figure 5, where qb∈{v1, v2} and
F={{ f1 f2 f3}, { f4 f5, f5 f6}}. Figures 6–9 illustrate the computations of dmax(v1, { f1 f2 f3}),
dmax(v1, { f4 f5, f5 f6}), dmax(v2, { f1 f2 f3}), and dmax(v2, { f4 f5, f5 f6}), respectively.

1.5 2.5 

��  

��  

~ 
~ 

1 

~ 
~ 

��  ��  

21 21 

23.5 

�� 

22 

Figure 6. dmax(v1, f1 f2 f3) = 23.5 and dmin(v1, f1 f2 f3) = 21.

Figure 6 depicts the computation of dmax(v1, f1 f2 f3). The distances from v1 to end-
points f1 and f3 of f1 f2 f3 are d(v1, f1) = 21 and d(v1, f3) = 21, respectively, because the
path from v1 to f1 ( f3) is v1 → v3 → f1 (v1 → v2 → v4 → v5 → f3). Imagine a point
f in f1 f2 f3. The distance from v1 to f is then evaluated to d(v1, f ) = min{d(v1, f1) +
len( f1 f ), d(v1, f3) + len( f3 f )} = min{21 + len( f1 f ), 21 + len( f3 f )} because the path from
v1 to f should be v1 → f1 → f or v1 → f3 → f . Let x = len( f1 f ). Accordingly,
len( f3 f ) = 5− x because len( f1 f ) + len( f3 f ) = 5. The distance from v1 to f can be rep-
resented as d(v1, f ) = min{21 + x, 21 + (5− x)} for 0 ≤ x ≤ 5. As shown in Figure 6,
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the largest and smallest distances from v1 to f1 f2 f3 are evaluated as dmax(v1, f1 f2 f3) = 23.5
and dmin(v1, f1 f2 f3)= 21, respectively. The star sign (F) in Figure 6 is used to signify
dmax(v1, f1 f2 f3) = 23.5.

Figure 7 illustrates the dmax(v1, { f4 f5, f5 f6}) computation. Naturally, the largest distance
between v1 and { f4 f5, f5 f6} is evaluated as dmax(v1, { f4 f5, f5 f6}) = max{dmax(v1, f4 f5),
dmax(v1, f5 f6)}. Figures 7a,b present the dmax(v1, f4 f5) and dmax(v1, f5 f6) computations, re-
spectively. The distance from v1 to f4 ( f5) is d(v1, f4) = 12 (d(v1, f5) = 8) because the shortest
path from v1 to f4 ( f5) is v1 → v2 → f5 → f4 (v1 → v2 → f5). Imagine a point f in f4 f5. The dis-
tance from v1 to f is computed as d(v1, f ) = min{d(v1, f4) + len( f4 f ), d(v1, f5) + len( f5 f )}
= min{12+ len( f4 f ), 8+ len( f5 f )}; therefore, the largest and smallest distances from v1 to
f4 f5 are calculated as dmax(v1, f4 f5) = 12 and dmin(v1, f4 f5) = 8, respectively (Figure 7a).
The same method in Figure 6 can be used to compute the largest and smallest distances
from v1 to f5 f6 (Figure 7b). The detailed procedure for the largest and smallest distance
computation from v1 to f5 f6 is omitted for simplicity. The shortest path from v1 to f5 ( f6)
is v1 → v2 → f5 (v1 → v2 → f5 → f6), and the distance from v1 to f5 ( f6) is d(v1, f5) = 8
(d(v1, f6) = 11). Therefore, the largest and smallest distances between v1 and { f4 f5, f5 f6}
are computed as dmax(v1, { f4 f5, f5 f6})= 12 and dmin(v1, { f4 f5, f5 f6})= 8, respectively.

(a) 
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��  ��  

8 

~ 
~ 

~ 
~ 

��  

11 ��  

3 

(b) 

Figure 7. dmax(v1, { f4 f5, f5 f6}) = 12 and dmin(v1, { f4 f5, f5 f6}) = 8; (a) dmax(v1, f4 f5) = 12 and
dmin(v1, f4 f5) = 8; (b) dmax(v1, f5 f6) = 11 and dmin(v1, f5 f6) = 8.
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Figure 8. dmax(v2, f1 f2 f3) = 19 and dmin(v2, f1 f2 f3) = 16.

Figure 8 demonstrates the dmax(v2, f1 f2 f3) computation. Note that the shortest path
from v2 to f1 ( f3) is v2 → v4 → v3 → f1 (v2 → v4 → v5 → f3), and the distance from v2 to f1
( f3) is d(v2, f1) = 17 (d(v2, f3) = 16). The same method in Figure 6 can be used to compute
the largest and smallest distances from v2 to f1 f2 f3 (Figure 8). The detailed procedure
for computing the largest and smallest distances from v2 to f1 f2 f3 is omitted for simplic-
ity. The largest and smallest distances between v2 and f1 f2 f3 are dmax(v2, f1 f2 f3) = 19
and dmin(v2, f1 f2 f3)= 16, respectively. The star sign (F) in Figure 8 is used to signify
dmax(v2, f1 f2 f3)= 19.



Algorithms 2022, 15, 223 8 of 17

(a) 

��  

��  

3 

��  

��  

7 

4 

(b) 

��  ��  

3 ��  

3 

��  6 

Figure 9. dmax(v2, { f4 f5, f5 f6}) = 7 and dmin(v2, { f4 f5, f5 f6}) = 3; (a) dmax(v2, f4 f5) = 7 and
dmin(v2, f4 f5) = 3; (b) dmax(v2, f5 f6) = 6 and dmin(v2, f5 f6) = 3.

Figure 9 presents the dmax(v2, { f4 f5, f5 f6}) computation. The largest distance between v2
and { f4 f5, f5 f6} is evaluated as dmax(v2, { f4 f5, f5 f6}) = max{dmax(v2, f4 f5), dmax(v2, f5 f6)}.
Figures 9a,b depict the dmax(v2, f4 f5) and dmax(v2, f5 f6) computations, respectively. The dis-
tance from v2 to f4 ( f5) is d(v2, f4) = 7 (d(v2, f5) = 3) because the shortest path from v2 to
f4 ( f5) is v2 → f5 → f4 (v2 → f5). The same method in Figure 6 can be used to compute the
largest and smallest distances from v2 to f4 f5 (Figure 9a). Thus, the largest and smallest
distances from v2 to f4 f5 are dmax(v2, f4 f5) = 7 and dmin(v2, f4 f5) = 3, respectively. The de-
tailed procedure for computing the largest and smallest distances from v2 to f4 f5 is omitted
for simplicity.

The distance from v2 to f5 ( f6) is d(v2, f5) = 3 (d(v2, f6) = 6) because the shortest path
from v2 to f5 ( f6) is v2 → f5 (v2 → f5 → f6). The same method in Figure 6 can be used to
compute the largest and smallest distances from v2 to f5 f6 (Figure 9b). Thus, the largest and
smallest distances from v2 to f5 f6 are dmax(v2, f5 f6) = 6 and dmin(v2, f5 f6) = 3, respectively.
The detailed procedure for computing the largest and smallest distances from v2 to f5 f6 is
also omitted for simplicity. Therefore, the largest and smallest distances between v2 and
{ f4 f5, f5 f6} are dmax(v2, { f4 f5, f5 f6})= 7 and dmin(v2, { f4 f5, f5 f6})= 3, respectively.

5. MOFA Algorithm for MkFN Query Processing in Road Networks

Algorithm 1 presents the MOFA algorithm, which has three steps. The first step
groups facilities into facility clusters using the clustering method described in Section 4.1;
therefore, a set F of facilities changes to a set F of facility clusters. The second step retrieves
the candidate facilities for a query segment qsqe, which are retrieved from border points
qs and qe. To this end, the f ind_candidates function is called from qs (qe), whose result is
stored to Σ(qs) (Σ(qe)). In the third step, the valid segments for qsqe are computed using
the candidate facilities in Σ(qs)∪Σ(qe). Note that Φ(qsqe) includes valid segments for qsqe
and the k facilities farthest from them.

Algorithm 1 MOFA(k, qsqe, F).
Input: k: number of FNs requested for q, qsqe: query segment, F: set of facilities
Output: Φ(qsqe): query result for qsqe, i.e., Φ(qsqe) ={〈q,Φ(q)〉|q∈qsqe}

1: // Step 1: Facilities are grouped into facility clusters, which is explained in Section 4.1.
2: F ← cluster_ f acilities(F)
3: // Step 2: Candidate facilities for qsqe are retrieved by border points, which is detailed in Algorithm 2.
4: Σ(qs)← f ind_candidates(k, qs, len(qsqe), F) // Candidate facilities for qsqe are retrieved by qs.
5: Σ(qe)← f ind_candidates(k, qe, len(qsqe), F) // Candidate facilities for qsqe are retrieved by qe.
6: // Step 3: valid segments for qsqe are evaluated using the candidate facilities in Σ(qs)∪Σ(qe), which is detailed in Algorithm 3.
7: Φ(qsqe)← compute_valid_segments(k, qsqe, Σ(qs) ∪ Σ(qe))
8: return Φ(qsqe) // Φ(qsqe) is a set of valid segments, each of which has a set of k facilities for the valid segment.
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Algorithm 2 fetches a set of candidate facilities for the query segment qsqe. The set
of candidate facilities for qsqe, Σ(qb), is initially set to the empty set (Line 1). The can-
didate distance is initially set to dcand(qb) = 0 and used to determine whether or not
f is a candidate facility for qsqe. The largest distance from qb to each facility cluster in
F is computed and elaborated in Section 4.2. We then arrange the facility clusters in a
descending order based on their largest distance to qb. The arranged facility clusters are
investigated one by one. The remaining facility clusters to be examined do not need to
be accessed if dmax(qb, FC) < dcand(qb), that is, the largest distance from qb to the next
facility cluster FC is smaller than the candidate distance. This is because the remaining
facilities cannot be candidate facilities for qsqe. Otherwise (i.e., dmax(qb, FC) ≥ dcand(qb)),
each facility f in FC must be investigated to determine whether or not f is a candidate
facility for qsqe. For this, d(qb, f ) should be computed. If qb is enclosed by FC, the dis-
tance from qb to f is calculated using a graph traversal algorithm such as the A* search
algorithm [27]; otherwise (i.e., unless qb is enclosed by FC), the distance is evaluated as
d(qb, f )←min{d(qb, fb)+d( fb, f )| fb ∈ B(FC)} because a border point fb of FC must be in
the path from qb to f , i.e., qb → fb → f . Accordingly, d(qb, f )≥dcand(qb). Unnecessary
facilities f should be removed from Σ(qb); thus, each facility f in Σ(qb) is examined to
verify that f is a candidate facility for qsqe. f is removed from Σ(qb) if it does not satisfy
the qualification of a candidate facility. Finally, the set of candidate facilities for qsqe, Σ(qb)
is returned either if all of the facility clusters are investigated or if dcand(qb) > dmax(qb, FC)
(Line 11 and 12), i.e., the candidate distance is larger than the largest distance from qb to the
facility cluster FC.

Algorithm 2 f ind_candidates(k, qb, len(qsqe), F).

Input: k: number of FNs requested for q, len(qsqe): length of qsqe, qb: border point of qsqe, F: set of facility clusters
Output: Σ(qb): set of candidate facilities for qsqe, which are obtained from qb

1: Σ(qb)← ∅ // The set of candidate facilities for qsqe is initially set to the empty set.
2: dcand(qb)← 0 // dcand(qb) determines whether f is a candidate facility for qsqe or not.
3: // Section 4.2 elaborates the calculation of the largest distances between qb and facility clusters in F.
4: for each facility cluster FC∈F do
5: compute dmax(qb, FC)
6: // The facility clusters FC are arranged for qb in a decreasing order based on dmax(qb, FC).
7: F ← arrange_ f acility_clusters(F) // F keeps the ordered facility clusters for qb.
8: // Facility clusters are examined consecutively.
9: for each ordered facility cluster FC∈F do

10: // Note that dcand(qb) is updated in Line 23.
11: if dcand(qb) > dmax(qb, FC) then
12: go to line 24 // The facilities in FC cannot be candidate facilities for qsqe.
13: // Each facility f in FC is accessed to retrieve candidate facilities for qsqe.
14: for each facility f ∈ FC do
15: // If qb is inside FC, then d(qb, f ) is calculated by a graph search algorithm.
16: if qb ∈ FC then
17: d(qb, f ) is calculated by a graph traversal algorithm such as [27]
18: else
19: d(qb, f )←min{d(qb, fb)+d( fb, f )| fb ∈ B(FC)} // Note that the path from qb to f is qb → fb → f .
20: // If d(qb, f ) ≥ dcand(qb), then f should be included in Σ(qb).
21: if d(qb, f ) ≥ dcand(qb) then
22: Σ(qb)← Σ(qb) ∪ { f } // Σ(qb) collects candidate facilities for qsqe.
23: dcand(qb)← d(qb, fkth)− len(qsqe) // fkth is the current kth FN of qb.
24: // Unnecessary facilities are eliminated from Σ(qb).
25: for each facility f∈Σ(qb) do
26: // If d(qb, f ) < dcand(qb), then f is no longer a candidate facility for qsqe.
27: if d(qb, f ) < dcand(qb) then
28: Σ(qb)← Σ(qb)− { f } // f is removed from Σ(qb).
29: return Σ(qb) // The set of candidate facilities for qsqe, Σ(qb), is returned.



Algorithms 2022, 15, 223 10 of 17

Algorithm 3 computes the valid segments for qsqe by using candidate facilities in
Σ(qs) ∪ Σ(qe). The computation of the valid segments for the example MkFN query is
presented in detail in Section 6.2. First, Φ(qsqe) is initially set to the empty set. While
q moves along qsqe, the distance from q to each candidate facility f in Σ(qs) ∪ Σ(qe) is
calculated, i.e., {(q, d(q, f ))|q ∈ qsqe, f ∈ Σ(qs) ∪ Σ(qe)}). Subsequently, (q, d(q, f )) is
plotted in the two-dimensional space. For each query point q in qsqe, the kth FN fkth and
its distance to q are identified among the candidate facilities in Σ(qs) ∪ Σ(qe) as follows:
{(q, d(q, fkth))|q ∈ qsqe, fkth ∈ Σ(qs) ∪ Σ(qe)}. The valid segments in qsqe are computed
while q moves along qsqe. Each valid segment has the same k facilities farthest from the
valid segment. Specifically, for each qi and qj in the same valid segment qlqm, both qi and
qj have the same k facilities farthest from them, that is, ∀qi, qj∈qlqm, Φ(qi)=Φ(qj). Finally,
the set of valid segments for qsqe, Φ(qsqe) is returned.

Algorithm 3 compute_valid_segments(k, qsqe, Σ(qs) ∪ Σ(qe)).

Input: k: number of FNs requested for q, qsqe: query segment, Σ(qs) ∪ Σ(qe): set of candidate facilities for qsqe
Output: Φ(qsqe): set of valid segments for qsqe

1: Φ(qsqe)← ∅ // Φ(qsqe) is initially set to the empty set.
2: for each candidate facility f ∈ Σ(qs) ∪ Σ(qe) do
3: evaluate d(q, f ) while q moves along qsqe, i.e., {(q, d(q, f ))|q ∈ qsqe, f ∈ Σ(qs) ∪ Σ(qe)}
4: plot (q, d(q, f )) into the two-dimensional space
5: for each query point q ∈ qsqe do
6: identify the kth FN fkth while q moves along qsqe, i.e., {(q, d(q, fkth))|q ∈ qsqe, fkth ∈ Σ(qs) ∪ Σ(qe)}
7: compute k facilities farthest from q while q moves along qsqe, i.e., Φ(q) = { f |d(q, f ) ≥ d(q, fkth), f ∈ Σ(qs) ∪ Σ(qe)}
8: identify and add valid segment to the query result, i.e., Φ(qsqe)← Φ(qsqe) ∪ {〈qlqm, Φ(ql)〉}
9: return Φ(qsqe) // The set of valid segments for qsqe, Φ(qsqe), is returned.

6. Evaluation of the Example MkFN Query Using MOFA

In Section 6.1, the candidate facilities for the query segment v1v2 is found in the
example MkFN query. In Section 6.2, the valid segments for the query segment v1v2
are computed.

6.1. Finding the Candidate Facilities for the Query Segment v1v2

Table 2 summarizes the computation of the candidate facilities at border points v1
and v2 of the query segment v1v2 and includes the largest distances between the border
points and the facility clusters in F, candidate distances, and sets of candidate facilities
at the border points. Recall that the kFN queries are issued only at the border points
of the query segment, in which the query point q stays to find the candidate facilities
for the query segment. Thus, for the example MkFN query, MOFA evaluates the kFN
queries at border points v1 and v2 to find the candidate facilities for v1v2. First, the kFN
query is evaluated at v1. The largest distances between v1 and the facility clusters in F are
calculated. Subsequently, the facility clusters FC are arranged in a descending order based
on dmax(v1, FC). Figure 10 depicts that the facility clusters { f1 f2 f3} and { f4 f5, f5 f6} are
sorted using their largest distance to v1 as follows: F={{ f1 f2 f3}, { f4 f5, f5 f6}}. { f1 f2 f3} is
investigated, followed by { f4 f5, f5 f6}. After exploring { f1 f2 f3}, v1 chooses f1, f2, and f3
as the candidate facilities for v1v2 because the distance from v1 to the second FN ( f1 or
f3) is 21, and the candidate distance for v1 is dcand(v1) = 16. The distances from v1 to f1,
f2, and f3 are d(v1, f1) = 21, d(v1, f2) = 22, and d(v1, f3) = 21, respectively (Figure 6).
The other facility cluster { f4 f5, f5 f6} does not need be explored because dcand(v1) = 16 is
larger than dmax(v1, { f4 f5, f5 f6}) = 12 (Figure 10). Finally, a set of candidate facilities at v1
is evaluated as Σ(v1)={ f1, f2, f3}.
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Figure 10. Arrangement of the facility clusters based on their largest distance to v1.

Table 2. Summary of the computation of the candidate facilities for v1v2.

qb { f1 f2 f3} { f4 f5, f5 f6} dcand(qb) Σ(qb)

v1 dmax(v1, { f1 f2 f3}) = 23.5 dmax(v1, { f4 f5, f5 f6}) = 12 dcand(v1) = 16 Σ(v1)={ f1, f2, f3}
v2 dmax(v2, { f1 f2 f3}) = 19 dmax(v2, { f4 f5, f5 f6}) = 7 dcand(v2) = 12 Σ(v2)={ f1, f2, f3}

In the same manner, the kFN query is evaluated at v2 to find the candidate facilities
for the query segment v1v2. The largest distances between v2 and the facility clusters in
F are calculated. The facility clusters FC are then arranged in a descending order based
on dmax(v2, FC). Figure 11 shows that the facility clusters { f1 f2 f3} and { f4 f5, f5 f6} are
sorted using their largest distance to v2 as follows: F={{ f1 f2 f3}, { f4 f5, f5 f6}}. { f1 f2 f3} is
investigated, followed by { f4 f5, f5 f6}. After exploring { f1 f2 f3}, v2 chooses f1, f2, and f3
as the candidate facilities for the query segment v1v2 because the distance from v2 to the
second FN f1 is 17, and the candidate distance for v2 is dcand(v2) = 12. The distances from v2
to f1, f2, and f3 are d(v2, f1) = 17, d(v2, f2) = 18, and d(v2, f3) = 16, respectively (Figure 8).
The other facility cluster { f4 f5, f5 f6} does not have to be explored because dcand(v2) = 12
is larger than dmax(v2, { f4 f5, f5 f6}) = 7 (Figure 11). Finally, a set of candidate facilities at
v2 is evaluated as Σ(v2)={ f1, f2, f3}.
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Figure 11. Arrangement of the facility clusters based on their largest distance to v2.

6.2. Computing the Valid Segments for the Query Segment v1v2

Figure 12 shows the changes in the distance from each candidate facility f to a query
point q in v1v2, where f ∈ { f1, f2, f3}. The distance from f1 to v1 (v2) is d( f1, v1) = 21
(d( f1, v2) = 17). Figure 12a demonstrates the change in the distance from f1 to q in v1v2.
The shortest path from f1 to q in v1v2 is either f1 → v1 → q or f1 → v2 → q. The distance
from f1 to q is evaluated as d( f1, q) = {min(d( f1, v1) + len(v1q), d( f1, v2) + len(v2q))|q ∈
v1v2} = {min(21 + len(v1q), 17 + len(v2q))|q ∈ v1v2}, where len(v1q) + len(v2q) = 5.
Similarly, the change in the distance from f2 to q in v1v2 can be drawn (Figure 12b), where
d( f2, v1) = 22 and d( f2, v2) = 18. In the same manner, the change in the distance from f3
to q in v1v2 can also be drawn (Figure 12c), where d( f3, v1) = 21 and d( f3, v2) = 16.

Figure 13 plots d(q, f1), d(q, f2), and d(q, f3) together, which are illustrated in
Figure 12a–c, respectively, to compute the valid segments in v1v2. Recall that the query
points in the valid segment have the same k FNs. The example MkFN query requires two fa-
cilities farthest from the query point q in v1v2; hence, the second FN must be identified from



Algorithms 2022, 15, 223 12 of 17

each query point q. Figure 13 shows that facility f1 is the second FN for the entire query seg-
ment v1v2, and facility f2 is farther from the query point q than the second FN f1. Therefore,
a valid segment can be found in v1v2, and the query result is Φ(v1v2) = {〈v1v2, { f1, f2}〉}.
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Figure 12. Changes in the distance from each candidate facility f to a query point q in v1v2: (a) change
of d(q, f1) for q ∈ v1v2; (b) change of d(q, f2) for q ∈ v1v2; (c) change of d(q, f3) for q ∈ v1v2.
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Figure 13. Plot of d(q, f1), d(q, f2), and d(q, f3) for q ∈ v1v2.

7. Empirical Evaluation

Section 7.1 describes the empirical settings considered in this study. Section 7.2
presents the experimental results. In this section, we empirically evaluate the proposed
MOFA and its conventional solution under various circumstances.

7.1. Empirical Settings

Table 3 describes the three real-world road networks [28] considered in our empirical
evaluation. These road networks are part of the road network in the United States and vary
in size. Ten query points were considered to measure query execution time. The query
points regularly evaluate kFN queries, and each query point moves within a query segment.
A data space can typically be considered as a unit square with its upper-left corner at the
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coordinate (0,0) and its lower-right corner at (1,1). Facilities were generated to simulate
highly skewed point of interest distributions. First, the centroids c1, c2, · · · , cm are randomly
populated within the data space, where m (1 ≤ m ≤ 10) denotes the total number of
centroids. The facilities around each centroid exhibit a Gaussian distribution with the
mean indicating the centroid and the standard deviation set to σ = 10−2. Table 4 lists the
empirical parameter settings. Each of these parameters was determined through a series of
experiments in which a single parameter was varied while the other parameters remained
constant at the bolded default values.

Table 3. Real road networks.

Road Network Description Vertices Edges Vertex lists

SJ City streets in San Joaquin, California 18,263 23,874 20,040
NA Highways in North America 175,813 179,179 12,416
SF City streets in San Francisco, California 174,956 223,001 192,276

A conventional algorithm regularly evaluates kFN queries for the moving query point
q. This method was considered as a benchmark to evaluate MOFA’s performance. All
algorithms were implemented using C++ in the Microsoft Visual Studio development
environment. All common subroutines of the algorithms were reused for similar tasks. For
this empirical study, it was assumed that all indexing structures of the algorithms were
stored in the main memory to rapidly process the MkFN queries. This assumption has often
been used in other studies [22,29] on online LBSs. Repeated evaluations were performed
to compute the average time required to answer MkFN queries. The TNR method [30]
was employed to quickly calculate the network distance between two points during query
processing. The empirical study was executed on a computer running the Windows 11
operating system equipped with an 8-core processor (i9-9900) running at 3.1 GHz with
32 GB of RAM.

Table 4. Empirical settings.

Parameter Range

Number of query points (|Q|) 10
Number of facilities (|F|) 1, 2, 3, 4, 5 (×103)
Number of FNs required (k) 1, 2, 4, 8, 16
Query frequency in the query segment (QF) 2, 4, 8, 10, 20
Distribution of facilities Gaussian distribution
Number of centroids for the facilities in F (|C|) 1, 3, 5, 7, 10
Standard deviation for the normal distribution (σ) 10−2

Road network SJ, NA, SF

7.2. Empirical Results

Figure 14 compares the proposed MOFA and conventional algorithm on the SJ road
network. Each chart presents the MkFN execution time and number of kFN queries required
to answer the MkFN query. The numbers in parentheses in Figures 14–16 refer to the number
of kFN queries required by MOFA and the conventional algorithm for answering the MkFN
query. MOFA requires only two kFN queries to be evaluated to compute the valid segments
for the query segment. However, the conventional algorithm requires kFN queries to be
regularly evaluated to refresh the query results as the query point moves. In other words,
the conventional algorithm evaluates a number of kFN queries linearly proportional to
the query frequency, whereas MOFA evaluates only two kFN queries, regardless of the
query frequency, as the query point moves within a query segment. Figure 14a presents
the query execution times of MOFA and the conventional algorithm when the number
of facilities varies from 1000 to 5000 (i.e., 103 ≤ |F| ≤ 5× 103). In all cases of |F|, MOFA
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outperforms the conventional algorithm. For this empirical study, 10 query points were
considered with each query point evaluating eight kFN queries while moving along its
query segment. Therefore, the MOFA and conventional algorithms evaluated 20 and 80 kFN
queries, respectively. Figure 14b presents the query execution times when the number of
FNs required varies from 1 to 16 (i.e., 1 ≤ k ≤ 16). For all cases of k, MOFA is approximately
four times faster than the conventional algorithm. The query execution times of MOFA
and the conventional algorithms are stable, regardless of k. This is because kFN query
evaluation sorts facility clusters based on their distances to the query point and processes
the sorted facility clusters. Figure 14c presents the query execution times when the query
frequency varies from 2 to 20 (i.e., 2 ≤ QF ≤ 20). The query execution time of MOFA is
stable and independent of the query frequency, whereas that of the conventional algorithm
increases with the query frequency. Figure 14d presents the query execution times when
the number of centroids for the facilities in F varies from 1 to 10 (i.e., 1 ≤ |C| ≤ 10). The
kFN query execution time tends to increase with the |C| value. This is because the facilities
become more widely distributed as the |C| value increases, resulting in an increase in query
execution time.

| |!"

#|$|

Figure 14. Performance comparisons between MOFA and the conventional algorithm on the SJ road
network: (a) 103 ≤ |F| ≤ 5×103; (b) 1 ≤ k ≤ 16; (c) 2 ≤ QF ≤ 20; (d) 1 ≤ |C| ≤ 10.

Figure 15 compares the performance of MOFA and the conventional algorithm on the
NA road network. The empirical results obtained using the NA road network exhibit per-
formance patterns similar to those obtained using the SJ road network. Figure 15a presents
the query execution times for 103≤ |F| ≤ 5×103. MOFA is four times faster than the con-
ventional algorithm. Figure 15b presents the query execution times for 1 ≤ k ≤ 16. Again,
MOFA is four times faster than the conventional algorithm. The query execution times are
stable and independent of the k value. Figure 15c presents the query execution times for
2≤QF ≤ 20. MOFA is 1.0, 2.0, 4.2, 5.2, and 10.3 times faster than the conventional algorithm
when QF = 2, 4, 8, 10, and 20, respectively. Figure 15d presents the query execution times
for 1≤ |C| ≤ 10. MOFA is up to four times faster than the conventional algorithm.

Figure 16 presents the performance of MOFA and the conventional algorithm on the
SF road network. Figure 16a presents the query execution times for 103 ≤ |F| ≤ 5×103,
indicating that MOFA outperforms the conventional algorithm by up to four times when
|F| = 5000. Figure 16b presents the query execution times for 1 ≤ k ≤ 16, indicating that
MOFA outperforms the conventional algorithm by up to four times in terms of query execu-
tion time. The query execution times are stable and independent of the k value. Figure 16c
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presents the query execution times when 2≤QF ≤ 20, indicating that MOFA is 1.0, 2.0, 4.2,
5.2, and 10.3 times faster than the conventional algorithm when QF=2, 4, 8, 10, and 20,
respectively. Figure 16d presents the query execution times for 1≤ |C| ≤ 10, indicating that
MOFA is up to 4.2 times faster than the conventional algorithm when |C| = 10. In summary,
MOFA is faster than the conventional algorithm in all cases. In particular, the difference
in performance between MOFA and the conventional algorithm increases with the query
frequency. This confirms that MOFA benefits from the rapid retrieval of candidate facilities
at the border points of the query segment and from the computation of valid segments for
the query segment.

| | !

"# |$|

Figure 15. Performance comparisons between MOFA and the conventional algorithm on the NA
road network: (a) 103 ≤ |F| ≤ 5×103; (b) 1 ≤ k ≤ 16; (c) 2 ≤ QF ≤ 20; (d) 1 ≤ |C| ≤ 10.

| | !
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Figure 16. Performance comparisons between MOFA and the conventional algorithm on the SF road
network: (a) 103 ≤ |F| ≤ 5×103; (b) 1 ≤ k ≤ 16; (c) 2 ≤ QF ≤ 20; (d) 1 ≤ |C| ≤ 10.
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8. Conclusions

This study was motivated by the fact that moving query points such as pedestrians
and vehicles, arbitrarily move within a road network. Therefore, existing solutions based on
Euclidean distances cannot provide spatial queries for road network databases. This study
proposed a moving farthest search algorithm called MOFA to compute valid segments
for the query segment where a query point is located. MOFA performs an initial batch
processing of MkFN queries in road networks to retrieve candidate facilities once and then
computes the valid segments for the query segment. Empirical evaluation demonstrated
that MOFA significantly outperformed the conventional algorithm and provided stable
performance, regardless of the query frequency.
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Abbreviations
The following abbreviations are used in this manuscript:

Notation Definition

k Number of requested facilities farthest from q.
q Moving query point.
qsqe Query segment in which q moves.
f and F Facility and a set of facilities, respectively.

vivi+1 · · · vj
Vertex list, where vi and vj are either an intersection vertex or terminal vertex,
and the other vertices vi+1, . . . , vj−1 are intermediate vertices with a degree of two.

fl fl+1· · · f m Facility segment connecting facilities fl , fl+1,· · ·, fm in a vertex list (in short, fl fm).
FC and F Facility cluster and set of facility clusters, respectively.
B(FC) Set of border points of FC.
fb Border point of FC.
qb Border point of qsqe, where qb ∈ {qs, qe}.
Σ(qb) Set of candidate facilities for qsqe obtained from qb ∈ {qs, qe}.
Φ(q) Set of k facilities farthest from a query point q.

Φ(qsqe)
Set of k facilities farthest from each query location in qsqe, i.e.,
Φ(qsqe)={〈q, Φ(q)〉|q∈qsqe}.

d(q, f ) Network distance between two points q and f .
dmax(qb, FC) Largest distance between qb and FC.
dmin(qb, FC) Smallest distance between qb and FC.
len(q1q2) Segment length q1q2.
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