-l-:_JE algorithms

Article

XALI in the Context of Predictive Process Monitoring: An
Empirical Analysis Framework

Ghada El-khawaga 1'%*(0, Mervat Abu-Elkheir 3

check for
updates

Citation: El-khawaga, G.;
Abu-Elkheir, M.; Reichert, M. XAl in
the Context of Predictive Process
Monitoring: An Empirical Analysis
Framework. Algorithms 2022, 15, 199.
https://doi.org/10.3390/a15060199

Academic Editors: Sally McClean,
Adele Marshall and Ian McChesney

Received: 12 May 2022
Accepted: 6 June 2022
Published: 8 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Manfred Reichert !

Institute of Databases and Information Systems, Ulm University, 89081 Ulm, Germany;
manfred.reichert@uni-ulm.de

Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt

Faculty of Media Engineering and Technology, German University in Cairo, New Cairo 11511, Egypt;
mervat.abuelkheir@guc.edu.eg

* Correspondence: ghada.el-khawaga@uni-ulm.de

Abstract: Predictive Process Monitoring (PPM) has been integrated into process mining use cases as
a value-adding task. PPM provides useful predictions on the future of the running business processes
with respect to different perspectives, such as the upcoming activities to be executed next, the final
execution outcome, and performance indicators. In the context of PPM, Machine Learning (ML)
techniques are widely employed. In order to gain trust of stakeholders regarding the reliability
of PPM predictions, eXplainable Artificial Intelligence (XAI) methods have been increasingly used
to compensate for the lack of transparency of most of predictive models. Multiple XAI methods
exist providing explanations for almost all types of ML models. However, for the same data, as
well as, under the same preprocessing settings or same ML models, generated explanations often
vary significantly. Corresponding variations might jeopardize the consistency and robustness of
the explanations and, subsequently, the utility of the corresponding model and pipeline settings.
This paper introduces a framework that enables the analysis of the impact PPM-related settings
and ML-model-related choices may have on the characteristics and expressiveness of the generated
explanations. Our framework provides a means to examine explanations generated either for the
whole reasoning process of an ML model, or for the predictions made on the future of a certain
business process instance. Using well-defined experiments with different settings, we uncover how
choices made through a PPM workflow affect and can be reflected through explanations. This
framework further provides the means to compare how different characteristics of explainability
methods can shape the resulting explanations and reflect on the underlying model reasoning process.

Keywords: predictive process monitoring; machine learning explainability; XAI; outcome prediction;

process mining; machine learning

1. Introduction
1.1. Problem Statement

Predictive process monitoring (PPM) is a use case of process mining [1], which sup-
ports stakeholders by providing predictions about the future of a running business process
instance [2,3]. A process instance represents one specific execution instance out of all
possible ones enabled by a business process model. Both process mining and PPM aim
at informing stakeholders on how a business process is currently operating or expected
to operate in near future. However, using ML models as prediction black-boxes does not
help achieve this purpose. As stakeholders engagement is at the center of process mining
tasks, performance as well as accuracy are no longer sufficient as metrics for evaluating
a PPM prediction task. Stakeholders also need to assess the validity of the reasoning
mechanisms being at the heart of the predictive model, as the model is predicting the future
state of running business process instances. Justifying predictions to their recipients, in
turn, increases the users’ trust, engagement and advocacy of PPM mechanisms.

Algorithms 2022, 15, 199. https:/ /doi.org/10.3390/a15060199

https:/ /www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15060199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-7801-7310
https://orcid.org/0000-0003-0958-7322
https://orcid.org/0000-0003-2536-4153
https://doi.org/10.3390/a15060199
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15060199?type=check_update&version=1

Algorithms 2022, 15, 199

2 0of 29

The need to justify predictions prompted the introduction of eXplainable Artificial
Intelligence (XAI) [4], with methods and mechanisms proposed to provide explanations
of predictions generated by an ML model [5-12]. These explanations are expected to
reflect how a predictive model is influenced by different choices made through a given
PPM workflow. Moreover, PPM tasks employ specific mechanisms that allow aligning
process mining artefacts to ML models requirements. Different XAI methods exist to
address explainability needs in the context of PPM, but the assumption remains that
these methods should provide simple and consistent explanations for a given prediction
scenario. However, explanations may vary due to changes in scenario settings or due to
their underlying generation mechanisms. Studying how explanations of XAI methods
may vary is therefore a crucial step to understand the settings suitable for employing
these methods, as well as the way to interpret explanations in terms of the underlying
influencing factors.

With the increasing number of XAI methods which address different purposes and
users needs through varying techniques, there is a need to compare different XAI methods
outcomes given the same PPM workflow settings. Note that such a comparison is beneficial
to identify combinations of techniques that if adopted through a PPM project can maximize
the gains of applying XAI methods. Contrasting and differentiating XAI methods enables
us to discover situations for which certain methods are better able to highlight data or ML
models characteristics through generated explanations than others. Such differentiation
is crucial to facilitate the selection of XAI methods, which not only suit the input charac-
teristics, but are, in addition, well-fitting to the purpose of explaining PPM outcomes and
to the target audience. Providing a guidance on XAI methods available choices based on
experimental studies is a step towards integrating explainability as an indispensable stage
of any project involving generation of predictions.

1.2. Contributions

With an attempt to address the need to understand and gain insights into the applica-
tion of XAI methods in the context of PPM, this paper provides:

* A framework for comparing the explanations produced by XAI methods globally and
locally (i.e., for the entire event log or for selected process instances), separated and
against each other. The comparison framework uses different PPM workflow settings
with predefined criteria based on the underlying data, predictive models and XAI
methods characteristics.

* An empirical analysis of explanations generated by three global XAl methods, as well as
two local XAI methods for predictions of two predictive models over process instances
from 27 event logs preprocessed with two different preprocessing combinations.

Section 2 provides background information on basic topics needed for understanding
this work. In Section 3, we highlight the basic research questions investigated in this
paper. In Sections 4 and 5, we discuss the experimental settings, experiment results, and
experiment observations. Section 6 highlights the lessons learned and provides conclusions
that allow answering the basic research questions. Related work is discussed in Section 7.
Finally, we conclude the paper in Section 8.

2. Preliminaries

This section introduces basic concepts and background knowledge necessary to under-
stand our work. Section 2.1 introduces PPM and associated steps to carry on predictions of
information relevant to a running business process. Then, we discuss available explain-
ability methods with an in-depth look into those methods that address tabular data which
constitutes the focus of this work.

2.1. Predictive Process Monitoring

Predictive Process Monitoring (PPM) addresses a critical process mining use case
providing predictions about the future state of a running business process execution

Algorithms 2022, 15, 199

30f29

instance via building predictive models. Examples of PPM tasks include the next activity
to be carried out, time-related information (e.g., elapsed time, remaining time till the end),
outcome of the process instance, execution cost, or executing resource [1]. Event logs
constitute the input to PPM tasks. More precisely, they document the execution history of a
process as traces, each of which representing execution data belonging to a single business
process instance. A trace contains mandatory attributes, such as case identifier, event class,
and timestamp [1]. A trace may contain dynamic attributes representing information about a
single event. Resources fulfilling tasks and documents associated with each event constitute
examples of dynamic attributes. Besides dynamic attributes there are static attributes, which
have constant values for all events of a given trace.

2.1.1. PPM Workflow

According to the previously reported survey results [2,3], a PPM task follows two
stages, offline and online. Each stage has steps, and the two stages together with their
corresponding steps constitute a PPM workflow.

1. PPM Offline Stage. This stage starts with constructing a prefix log from the input event
log. A prefix log is needed to provide a predictive model with incomplete process
instances (i.e., a partial trace) for the training phase of an ML model. Therefore,
prefixes can be generated by truncating process instances in an event log up to a
predefined number of events. Truncating a process instance can be done up to the
first k events of its trace, or up to k events with a gap step (g) separating each two
events, where k and g are user-defined. The latter prefixing approach denoted as
gap-based prefixing.

Prefix preprocessing sub-steps include bucketing and encoding. Prefix bucketing groups
the prefixes according to certain criteria (e.g., number of activities or reaching a certain
state during process execution). The former criteria are defined by the bucketing tech-
nique [3]. Single, state-based, prefix length-based, clustering, and domain knowledge-
based are examples of prefix bucketing techniques. Encoding is the second sub-step
of prefix preprocessing. Prefix encoding involves transforming a prefix to a numerical
feature vector that serves as input to the predictive model, either for training or mak-
ing predictions. Encoding techniques include static, aggregation, index-based, and
last state techniques [2,3].

In the following step, a predictive model is constructed. Depending on the PPM task, an
appropriate predictive model is chosen. The prediction task type may be classification
or regression. Next, the predictive model is trained on encoded prefixes representing
completed process instances. For each bucket, a dedicated predictive model needs
to be trained, i.e., the number of predictive models depend on the chosen bucketing
technique. Finally, the performance of the predictive model needs to be evaluated.

2. PPM Online Stage. This stage starts with a running process instance that has not
completed yet. Buckets formed in the offline stage are recalled to determine the
suitable bucket for the running process instance, based on the similarity between the
running process instance and the prefixes in a bucket. The running process instance
is then encoded according to the encoding method chosen for the PPM task. The
encoded form of the running process instance constitutes the input for the prediction
method after having determined the relevant predictive model from the models
created in the offline stage. Finally, the predictive model generates a prediction for the
running process instance according to the predefined goal of the PPM task.

2.2. eXplainable Artificial Intelligence

PPM inherits the challenges faced by ML approaches, as a reasonable consequence
of employing the latter approaches. One of these challenges concerns the need to gain
user trust in the generated predictions,which promotes growing interest in the field of
explainable artificial intelligence (XAI). An explanation is “a human-interpretable description
of the process by which a decision maker took a particular set of inputs and reached a particular

Algorithms 2022, 15, 199

40f29

conclusion” [13]. In the context of our research, the decision maker is an ML-based predictive
model. Transparency is considered a crucial aspect of explainability. Model transparency
can be an inherent characteristic or be achieved through an explanation. Transparent models
are understandable on their own and satisfy one or all model transparency levels [14]. Linear
models, decision trees, Bayesian models, rule-based learning, and General Additive Models
(GAM) [4] may all be considered as transparent (i.e., interpretable) models. Note that
the degree of transparency realised through an explanation may be affected by several
factors, e.g., the incompleteness of the problem formulation or understanding, the level
of complexity of an explainability solution, and the number as well as length of cognitive
chunks made available to the user through an explanation.

Several approaches are proposed under the umbrella of explainability. Explanations
construction approaches can be categorised along several dimensions (cf. Figure 1). We use
dashed rectangles to highlight those techniques that we further consider for studying in our
comparative framework. In the following, we illustrate these explainability dimensions.

Technigues)
Ccategories

Examples
W [}
——————————
Zimplification LIME
WL
e o o e o] e
——————————
Explainability Shap 1
dimensions P I ===
— Feature relevance FOF |
o] | s
Permutation Importance ||
— How to explain e ——————— -
Influential instances |
1 Example
Counterfactuals |
— Visualisation —| Saliency maps |
————————
1 P
Global —1 Permutation importance ||
L e A T e TR A e T
—— How mudch to explain
———————
'n 1 s e s s i i
Local — LIME]
e e o o o o e] e e . s
Transparency
level
'l - Visual — Heatmaps |
Black box —1 How to present =
model o Verbal Teut {eg. in recommender
systems)
B I e ————
5, Text/numerical
L Analytic — metrics/figures]
= b d | H
L]
3 o T—
E — When to eaplain =g i e—— ——————
o I s
= — Post-hor P e R e
SHAP 1
- e e
e — Movice users
=
E Decision makers &
.E eaperienced users
—_ L Whaom —
E— L]
=
I Rulez-based bearning |
{ GAMs |
' |

B ian model
Transparent 1 E
del [ep———
ik '] Linear muodel 1

Decision tree |

Figure 1. Explainability taxonomy in ML.

Algorithms 2022, 15, 199

50f29

How to explain. This dimension is concerned with the approach used to explain how
a predictive model derives its predictions based on the given inputs. Corresponding
approaches have been categorised along different perspectives including design
goals and evaluation measures, transparency of the explained model and explanation
scope [14,15], granularity [16], and relation to the black-box model [17]. For example, a
group of approaches tend to generate an explanation by simplification. These approaches
simplify a complex model by using a more interpretable model called a surrogate or
proxy model. The simplified model is supposed to generate understandable predictions
that achieve an accuracy level comparable to the black-box one. Another group
of approaches study feature relevance. They aim to trace back the importance of a
feature for deriving a prediction. Another family of approaches tend to explain by
example. Approaches from this category tend to select representative samples that
allow for insights into the model’s internal reasoning [14,16]. The final category in
this dimension explains through visualisation, i.e., intermediate representations and
layers of a predictive model are visualised with the aim to qualitatively determine
what a model has learned [16].

Approaches belonging to this XAI dimension are further categorised into model-
agnostic or model-specific methods. Model-agnostic approaches are able to explain any
type of ML predictive models, whereas model-specific approaches can only be used
on top of specific models.

How much to explain. An explanation may be generated at various levels of granu-
larity. An explanation effort can be localised to a specific instance, i.e., local explanation,
and it can provide global insights into which factors contributed to the decision of a
predictive model, i.e., to generate global explanations. The scope of an explanation and,
subsequently, the chosen technique depend on several factors. One of these factors is
the purpose of the explanation, e.g., whether it shall allow debugging the model or
gaining trust into its predictions. Target stakeholders constitute another deterministic
factor. For example, an ML engineer prefers gaining a holistic overview of the factors
driving the reasoning process of a predictive model, whereas an end user is only
interested in why a model made a certain prediction for a given instance.

How to present. Choosing the form according to which an explanation is presented
is determined by the way the explanation is generated, the characteristics of the
end user (e.g., level of expertise), the scope of the explanation, and the purpose of
generating an explanation (e.g., to visualise effects of feature interactions on decisions
of the respective predictive model). Three categories of presentation forms were
introduced in [15]. The first category comprises visual explanations that use visual
elements like saliency maps [10] and charts to describe deterministic factors of a
decision in accordance with the respective perspective to be explained of a model.
Verbal explanation provides another way of presenting explanations where natural
language is used to describe model reasoning (e.g., in recommender systems). The
final form of presentation is analytic explanation where a combination of numerical
metrics and visualisations are used to reveal model structure or parameters, e.g., using
heatmaps and hierarchical decision trees.

When to explain. This dimension of an explainability approach is concerned with
the point in time an explanation shall be provided. Agreeing on explainability being
a subjective topic and depending on the receiver’s understanding and needs, we
may regard explainability provisioning from two perspectives. The first perspective
considers explainability as gaining an understanding of decisions of a predictive
model, being bounded by model characteristics. Adopting this perspective imposes
explainability through mechanisms put in place while constructing the model to
obtain a white-box predictive model, i.e., intrinsic explanation. On the other hand,
using an explanation method to understand the reasoning process of a model in terms
of its outcomes is called post-hoc explanation. The latter provides an understanding in
terms of the whole reasons behind the mapping process between inputs and outputs.

Algorithms 2022, 15, 199

6 of 29

Moreover, it provides a holistic view of input characteristics which led to predictive
model decisions.

5. Explain to Whom. Studying the target group of each explainability solution becomes
necessary to tailor the explanations and to present them in a way that maximizes the
interpretability of a predictive model, forming a mental model of it. The receivers of an
explanation should be at the center of attention when designing an explainability so-
lution. These receivers can be further categorised into different user groups including
novice users, decision makers and experienced users, system practitioners, and regula-
tory bodies [14,15]. Targeting each user group with suitable explanations contributes
to achieve the explanation process purpose. The purpose of an explanation may be
to understand how a predictive model works or how it makes decisions, or which
patterns are formed in the learning process. Therefore, it is crucial to understand each
user group, identify its relevant needs, and define design goals accordingly.

The various dimensions of explainability are tightly interrelated, i.e., a particular choice
in one dimension might affect the choices made in other dimensions. Making choices on
the different dimensions of the presented taxonomy is guided by several factors, which
include the following: (1) enhancing understandability and simplicity of the explainability
solution; (2) the availability of software implementations of explainability methods and
whether these implementations are model-agnostic or specific; (3) the type of output of
each explanation method and the subsequent choice of a suitable presentation type which
suits the target group. When facing explanations that serve different user groups with
different explainability goals, putting explainability evaluation techniques in place becomes
a necessity.

3. Research Questions

The goal of this research is to study how explanations are affected by underlying PPM
workflow-related choices. It is crucial to study the different characteristics of XAI methods
that influence the final outcome of explanation process. Overall, this leads to the following
research questions (RQ)s:

RQ: How can different XAI methods be compared? Conducting a benchmark study
that allows comparing all available explainability approaches is not likely to be possible [18].
This is due to the varying characteristics of these approaches in terms of the dimen-
sions (cf. Section 2.2). However, as many techniques have been proposed for evaluating
explanations [18,19], a constrained study would be useful to compare the relative perfor-
mance of explainability methods that have been applied in the context of PPM approaches.
In addition, the consistency of explainability methods applied to PPM results needs to be
studied in order to shed light on one of the potential vulnerabilities of XAl methods, namely
sensitivity of explanations, i.e., how several conditions can affect the ability of XAI meth-
ods to generate the same explanations again under the same settings. An example of the
conditions affecting the reproduction of explanations is the inability to regenerate the same
neighborhood of the process instance to be explained in presence of high-dimensionality
data. To this end, we subdivide RQ into the following sub-research questions:

RQ1: To what extent are explanations consistent when executing an explanation method
several times using the same underlying settings?.

RQ2: How are the explanations generated by an XAI method affected by predictive model choices?

Explainability methods vary by the extent to which an explanation can be generalised
over several data samples that belong to the same vicinity (i.e., the same neighborhood
which defines underlying similarities unifying data samples belonging to it). Explainability
methods also vary in the granularity of the explanations they provide and their suitability
to explain a number of data samples independent of whether they are small or large,
i.e., independent of whether the explainability method is local or global. However, the
number of explained data samples comes with computational costs. Therefore, we add
another sub-research question to compare explainability methods with respect to their
execution time:

Algorithms 2022, 15, 199

7 of 29

RQ3: How do explainability methods differ in terms of execution time? How does needed
time differ with respect to different dataset characteristics, preprocessing choices, and
chosen predictive models?

4. XAI Comparison Framework

This section describes dimensions of the framework we propose and use to compare
basic XAI methods. For the basic infrastructure of a PPM outcome prediction task, we
are inspired by the work of Teinemaa et al. [3,20]. We preserve the settings used in [3] to
observe their impact given the reported performance of studied predictive models and
preprocessing techniques from an explainability perspective.

Figure 2 shows the components of our framework organized under dimensions re-
sembling an ML model creation pipeline aligned with the PPM offline workflow, and
incorporating an explainability-related dimension. These dimensions provide means to
categorise our experiments with the aim of answering the research questions introduced in
Section 3. These dimensions are further discussed in this section. We apply all available
combinations in each dimension, in a dedicated experiment, while fixing other options
from other dimensions.

Data Dimension (before preprocessing)

Data characteristics analysis (Correlation- Mutual
Information - Profilling)

Single (Bucketing)+ Aggregation (Encoding)
Prefix (Bucketing) + Index (Encoding)

ML Model Dimension
¥GBoost = Logistic Regression (LR)

XAl Dimension (Global)

» XAl methods (Permutation Importance - SHAF - ALE)
« Compare execution times « Check stability

XAl Dimension (Local)

= XAl methods (LIME - SHAP)

Figure 2. XAI Comparison Framework Components.

4.1. Framework Composition

In this subsection, we describe the building blocks of our comparison framework,
including data, chosen preprocessing techniques, selected predictive models, and XAl algo-
rithms. Categorising our setups and the techniques we use (cf. Figure 2) is accomplished
with the aim of studying the impact of modifying different parameters at each dimension
on the resulting explanations.

4.1.1. Data Dimension

This dimension involves studying the complete characteristics of the data to be used
in the experiments whose outcomes shall highlight potential implications on the reasoning
process of an ML model. The complete set of experiments in this dimension include
constructing data profiles of the used event logs, studying Mutual Information (MI) between
input features and the target, and studying correlations between the features. The complete
outcomes of the analyses are made available in a complementary study we conducted [21].
The data perspective in our experiments on the proposed framework build on using three

Algorithms 2022, 15, 199

8 of 29

real-life event logs that are publicly available from the 4TU Centre for Research Data [22].
The chosen event logs vary in the considered domain (healthcare, government and banking),
the number of traces (representing process instances), and the number of events per trace.
The event logs further vary in the number of static and dynamic attributes, the number of
categorical attributes and, as a result, the number of categorical levels available through
each categorical attribute. The three basic event logs we used are as follows:

* Sepsis. This event log belongs to the healthcare domain and reports cases of Sepsis as
a life threatening condition.

* Traffic fines. This event log is governmental and is extracted from an Italian informa-
tion system for managing road traffic fines.

e BPIC2017. This event log documents load application process in a Dutch financial
institution.

Several labelling functions allow classifying each process instance into one of two
classes, i.e., a binary classification task [3]. Applying different labelling functions results in
sub-versions for some of the event logs. These labelling variations result in three extracted
logs from the Sepsis event log (Sepsis 1, 2, 3), and three logs extracted from the BPIC2017
event log (BPIC2017_(Refused, Accepted, Cancelled)). These different labelling functions
increased the number of used event logs from three to seven event logs. Table 1 shows
basic statistics of the event logs used in our experiments. These event logs are cleaned,
transformed, and labelled according to the rules defined by the framework available in [3].

Table 1. Event logs statistics.

Short Av, Lon, Max #Cat #Cat
& & #Trace %Pos #Event #Static #Dynamic #Cat #Num Levels Levels
Event Log #Traces Trace Trace Trace Prfx . . .
Variants Class Class Col Cols Cols Cols (Static (Dynamic
Len. Len. Len. Len.
Cols) Cols)
Sepsisl 776 5 14 185 20 703 0.0026 14 24 13 28 14 76 38
Sepsis2 776 4 13 60 13 650 0.14 14 24 13 28 14 76 39
Sepsis3 776 4 13 185 31 703 0.14 14 24 13 28 14 76 39
Traffic fines 129,615 2 4 20 10 185 0.455 10 4 14 13 11 54 173
BPIC2017_Accepted 31,413 10 35 180 20 2087 0.41 26 3 20 12 13 6 682
BPIC2017_Cancelled 31,413 10 35 180 20 2087 0.47 26 3 20 12 13 6 682
BPIC2017_Refused 31,413 10 35 180 20 2087 0.12 26 3 20 12 13 6 682

4.1.2. Preprocessing Dimension.

We make two choices about bucketing and encoding preprocessing techniques. To
bucket the traces of chosen event logs, we apply single bucketing and prefix-length bucket-
ing, with a gap of 5 events. Moreover, we apply aggregation and index-based encoding
techniques. Usually both encoding techniques are coupled with static encoding to trans-
form static attributes into a form in which they can serve as input to a predictive model.
As a result, we obtain two combinations of bucketing and encoding techniques i.e., single-
aggregation and prefix-index. As index encoding leads to dimensionality explosion due to
the need to encode each categorical level of each feature as a separate column, we apply
this encoding on certain event logs, i.e., Sepsis (the three derived event logs), Traffic_fines
and BPIC2017_Refused.

4.1.3. Ml Model Dimension

In this work, we include two predictive models, i.e., XGBoost-based and a Logistic
regression (LR) that extends the transparency properties of linear regression. In LR, to each
predictor, i.e., feature, a weight is assigned. These weights can be used to indicate how the
predictive model has utilized relevant features during its reasoning process. XGBoost is an
ensemble-based boosting algorithm that has proven to be efficient in the context of several
PPM tasks [2,3]. XGboost is supported by a mechanism to query the model and retrieve a
ranked list of important features upon which the model has based its reasoning process.

Algorithms 2022, 15, 199

9 of 29

4.1.4. XAI Dimension

We choose certain explainability methods (how), at both explainability levels (how
much), presented in a certain form (presentation) at a certain stage of the predictive model
lifetime (when). The XAI methods chosen in this work all fall under the model-agnostic
category. In turn, we conduct a complementary study [21] using model-specific methods. To
address the research questions of this study (cf. Section 3), we consider only model-agnostic
XAI methods. Making choices in this dimension are impacted by certain factors:

e Ability of the explainability method to overcome the shortcomings of other methods
that explain the same aspects of the reasoning process of a predictive model. For
example, Accumulated Local Effects (ALE) [12] adopts the same approach as in Partial
Dependence Plots (PDP) method [6]. Unlike PDP however, ALE takes the effects of
certain data characteristics (e.g., correlations) into account when studying features
effects [4].

* Comprehensiveness regarding the explanation coverage when using both local and
global explainability methods. Through local explanations the influence of certain
features can be observed. In turn, through global explanations the reasoning process
a predictive model has followed can be inspected. This approach allows reaching
conclusions that may provide a holistic view of both the data and the model applied
on the data. It is hard to find a single explainability method that provides explanations
at both levels. However, one of the applied methods (i.e., SHAP [5]) starts at the local
level by calculating contributions of the features on a prediction. SHAP aggregates
these contributions at a global level to give an impression of the impact a feature has
on the whole predictions based on a given dataset.

* Availability of a reliable implementation of the explainability method. This imple-
mentation should enable the integration of the explainability method with the chosen
predictive model as well as in the underlying PPM workflow.

Table 2 categorizes each explainability method we apply in the experiments accord-
ing to the dimensions of an explanation (cf. Section 2.2). The information in the whom
column which corresponds to the user groups dimension of the explanations, is case-
dependent. Information given in this column is initial and is highly flexible according
to several factors including users expertise, application domain and the purpose of the
explainability experiment.

Table 2. Explainability dimensions applied on inspected XAI methods.

XAI Method How (Explain) Specificity How Much (ngz‘r"t) When Whom
Permutation Feature Feature Model-Agnostic Global Numerical Post-hoc Systems practitioners
Importance (PFI) importance & Y p

Systems practitioners,

ALE Feature effects Model-Agnostic Global Analytic Post-hoc decision makers &

experienced users
Feature . . Novice users, system

SHAP contributions Model-Agnostic Global& Local Analytic Post-hoc practitioners

Novice users, systems
LIME Simplification Model-Agnostic Global Analytic Post-hoc practitioners, decision

makers & experienced users

XAI dimension constitutes two levels, which are realized using global and local
experiments, based on the coverage of the explainability method applied, and the type of
XAI method used. After executing each group of experiments, we compare the results of
the different XAI methods at the level they are applied on.

Global Explainability Analysis

In this set of experiments, we aim to understand how a predictive model learns
patterns from the training subset of the event log to which it is fitted. We use training

Algorithms 2022, 15, 199

10 of 29

subsets in order to understand how much the model relies on each feature for making
predictions. This can be achieved by studying the change in model accuracy after modifying
a certain feature value. To this end, training subsets are more qualified to provide insights
into this aspect.

As aforementioned, Permutation Feature Importance (PFI), ALE and SHAP (the global
form) are the model-agnostic methods we used. To check stability of the executions, we run
the whole comparison framework with different settings twice. Stability checks following
this definition are expensive to run, due to expensive computational costs. These costs are
affected by the number of datasets with different sizes and the number of explainability
methods applied. Note that some of the datasets experience dimensionality explosion
after the preprocessing phase which complicates subsequent explainability steps. As a
result, running the complete framework in the context of stability checks could not be
accomplished more than twice. Using smaller event logs in future research might enable
more systematic stability check over higher number of runs.

To compare the outcomes of all XAI methods we followed the steps illustrated in
Algorithm 1. For PFI and SHAP methods, we study highly correlated features and their
importance according to the XAI methods. In addition, we study how the applied model-
agnostic XAl methods analyse the importance of features denoted as important to the
predictive models through their model-specific explanations, i.e., coefficients in case of LR
and features importance in case of XGBoost. In addition to the aforementioned comparisons,
we compare the execution times for all applied XAl methods, including time for initiating
the explainer and computing features importance as well. We included the training time of
the predictive model as the execution time for model-specific methods.

Algorithm 1: Global Explanations Comparison

Input: Trained predictive models, explainer objects

Output:Compared feature importance for different predictive models using
different XAI methods

Get features with the highest importance for available predictive models;

while feature set is not empty do

if XAl is PFI then
Plot the change in feature effect on model predictions over a number of

iterations;
else

if XAl is ALE then
Plot the feature effects on available predictive models against each

other;
else

if XAl is SHAP then
L Plot the dependence plot of the feature according to the available

predictive models

Local Explainability Analysis

In this set of experiments, we apply two model-agnostic XAI methods, namely
LIME [11] and SHAP [5], and analyse their outcomes separately. We apply variable and
coefficient stability analysis [19] on LIME to study the stability of important feature sets
and their coefficients across several runs.

5. Results and Observations

To validate our framework, we conducted experiments that use combinations of all
choices available in each dimension. All experiments were run using Python 3.6 and the
scikit-learn library [23] on a 96 core of a Intel(R) Xeon(R) Platinum 8268 @2.90 GHz with
768 GB of RAM. The code of executed experiments is available through our Github reposi-

Algorithms 2022, 15, 199

11 of 29

tory (https://github.com/GhadaElkhawaga/PPM_XAI_Comparison (accessed on 6 June
2022)) to enable open access for interested practitioners. It is important to view explanations
in the light of all contributing factors, e.g., input characteristics, the effect of preprocessing
inputs, and the way how certain predictive model characteristics affect its reasoning pro-
cess. In [21], we study the effect of different input characteristics, preprocessing choices,
and ML models characteristics and sensitivities on the resulting explanations. This section
illustrates the observations we made during the experiments set out in Section 4. Due to
lack of space, we focus on the most remarkable outputs illustrated by figures and tables.
Further results can be generated by running the code of the experiments, which can be
accessed via our Github repository. We believe that code publicity enables experiments
replication and code reusability to introduce further improvements.

5.1. Global Methods Comparability

This subsection presents an analysis of PFI, ALE, and SHAP results. We execute two
runs of each XAI method to query LR and XGBoost models trained over the event logs
preprocessed with single aggregation and prefix index combination. Results are compared
to get insights into their stability. Then, we follow the steps in Algorithm 1 to compare how
each method highlighted the influence of the most important features (according to each
predictive model) on predictions generation.

Permutation Feature Importance (PFI). The basic idea of PFI is to measure the aver-
age between the prediction error after and before permuting the values of a feature [4]. Each
of the two PFI execution runs included 10 permutation iterations. The mean importance of
each feature is computed. PFI execution led to the following observation:

Observation 1: In single-aggregated event logs, the results of the two runs are consistent with
respect to feature sets and the weights of these features. In prefix-indexed event logs, the two runs
are consistent in all event logs with exceptions in logs with longer prefixes.

An exception is present in prefix-indexed event logs derived from BPIC2017_Refused.
In the latter event logs, the dissimilarity between the feature sets across the two runs
increases with increasing length of the prefixes. This observation can be attributed to the
effect of the increased dimensionality in the event logs with longer prefixes. For prefix-
indexed event log, weights of important features change with increasing prefix length.

Accumulated Local Effects (ALE). ALE [12] calculates the change of the predictions
as a result of changing the values of a feature, while taking features interactions into
account [4]. This implies dividing feature values into quantiles [24] and calculating the
differences in the predictions for feature values with a little shift above and below the
feature value within a quantile. The described mechanism complicates calculating ALE
effects for categorical features, especially one-hot encoded features. However, recently
the common Python implementation of ALE was modified to compute ALE effects for
one-hot encoded features using small values around 0 and 1 [24]. Despite the workaround,
computing ALE effects for categorical attributes can be criticised for being inaccurate, as
the values of these features do not maintain order [4,24], i.e., they are nominal features. As
another issue, after running ALE over a given event log, effects of each feature are not in
a form that yields a rank directly. Therefore, we ranked features based on the entropy of
their computed effects.

While comparing two execution runs of ALE over the analysed event logs, we make
the following observation:

Observation 2: The encoding technique applied plays a critical role with respect to (dis)similarity
between feature ranks in the two execution runs. As an overall observation, ALE tends to be unstable
over two runs.

https://github.com/GhadaElkhawaga/PPM_XAI_Comparison

Algorithms 2022, 15, 199

12 of 29

In single-aggregated event logs, there is no similarity between the most influencing
features in two execution runs. In contrast, in prefix-indexed event logs, this observation
is not valid in all cases. For example, in prefix-indexed versions of all Sepsis logs, there is
no similarity between features ranks in both execution runs. In turn, in Traffic_fines and
BPIC_Refused encoded with the same combination, the top ranked features are categories
derived from the same categorical attributes. Due to the inefficiency of ALE to compute
effects of categorical attributes, we lean towards a conclusion that a rank, where categories
derived from categorical attributes dominate, tends to be highly affected by collinearity
between categories of such features. This conclusion is valid especially in event logs
encoded with a technique that increases the number of categorical attributes exponentially,
i.e., index encoding. In aggregation encoding, where results from two runs disagree, ranks
tend to be more reliable. Aggregation encoding tends to increase the number of ordinal
categorical attributes and preserve the existence of numerical attributes. Therefore, feature
ranks of a single run tend to be less affected by collinearity. These observations are valid
regardless of the underlying predictive model, which enables neutralising the effect of
characteristics of the used predictive model.

SHapley Additive exPlanations (SHAP). SHAP is an explanation method belonging
to the class of feature additive attribution methods [5]. These methods use a linear expla-
nation model to compute the contribution of each feature to a change in the prediction
outcome with respect to a baseline prediction. Afterwards, a summation of the contri-
butions of all features approximates the prediction of the original model. To maintain
comparability of the global XAI methods used in our experiments, we constructed a SHAP
explainer model on training event logs independently of another SHAP explainer model
constructed on relevant testing event logs. The concluded observations made in this sec-
tion are drawn based on the training SHAP explainer model, whereas the observations
based on the testing SHAP explainer model are discussed in Section 5.1.1 along with other
observations concerning local XAI methods.

Observation 3: While comparing the two execution runs, results did not depend on the preprocess-
ing technique used, but differed depending on the predictive model being explained.

When explaining predictions of the LR model, performing two executions of the SHAP
method did neither result in different feature sets nor different ranks based on SHAP values,
regardless the used preprocessing combination. In turn, explaining predictions of XGBoost
model reveals the first most contributing feature as being the same across both execution
runs, while the rest of the feature set is the same, but differs with respect to features’ ranks.
An exception is present in the feature set of the three Sepsis event logs, where feature ranks
are the same across both runs.

5.1.1. Comparability

Our study on how PFI, ALE and SHAP analysed the effects or contributions of the
most important feature for each predictive model, led to some interesting observations:

Observation 4: The cardinality of categorical features has an effect on the explanations generated
by permutation-based methods, which depend on measuring the prediction errors after changing a
feature value. The effect of the used preprocessing combination depends on the used predictive model.

For features with lower number of categories, PFI is unable to capture the effect of
shuffling feature values on predictions. The effect of shuffling a feature value is static
in predictions generated using LR on most event logs, approaching zero in most cases.
However, a slight change across PFl iterations can be observed in event logs preprocessed
with single aggregation techniques. This observation indicates an effect of the encoding
technique along with the interactions between the features. Shuffling values in PFI aims to

Algorithms 2022, 15, 199

13 of 29

break dependencies between the features [4]. However, with a low cardinality of a feature,
the chances of reducing dependencies decreases over a few number of iterations.

PFI over XGBoost is presenting slightly higher shuffling effects in prefix-indexed
event logs than in LR. This effect is slightly changing over shuffling iterations in the same
event logs. However, the increase of changes in XGBoost predictions over iterations of
shuffled feature values are observed in prefix-indexed event logs to be higher than in single-
aggregated ones. Figure 3 shows PFI scores for the Traffic_fines event log, which was prepro-
cessed with single aggregation (Figure 3(1-a),(2-a)) and prefix index (Figure 3(1-b),(2-b)).
Figure 3(1-a),(1-b) represent change in prediction errors for both predictive models while
changing the top important features to XGBoost. Finally, Figure 3(2-a),(2-b) represent the
same for the top two important features to LR.

— xcB (1) Important to XGBoost

R (1-a) (agg__max_event_nr) (1-b) (index__concept:name_4_Send Appeal to Prefecture)

000030 7 0.0030 - \/\/\/
0.00025 00025
0.00020 -

0.0020 =

0.00015 4 0.0015

0.00010 0.0010

0.00005 0.0005

0.00000 =

0.0000 -

T T T T T
2 4 6 8 10

lterations

T T T T T
2 4 6 8 10

Iterations

Importance Values

(2-2) (agg__sum_timesincelastevent) (2-b) (index__concept:name_5_Send Appeal to Prefecture)

0.125 +

0.100 0.0004

0.075 o

0.050 4 0.0003

(@) Traffic Fines (single aggregation)

0.025
0.0002

(b) Traffic Fines (prefix index) length:6

0.000
—0.025 7 0.0001

-0.050

~0.075 - 0.0000
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10

lterations # lterations

(2) Important to Logistic regression

Figure 3. PFI scores over Traffic_fines event log.

Dependence plots in SHAP represent an illustrative way presenting the effect of low
cardinality in some features. These plots offer analyses of the effect of changing a feature’s
values on SHAP values while taking the interaction effect of another feature into account.
As opposed to PFI, this facility enables us to acquire more information from categorical
features. For example, Figure 4 shows SHAP values of a feature CreditScore_other according
to both XGBoost and LR predicting outcomes over BPIC2017_Refused event log prepro-
cessed with single aggregation combination. Note that this feature is indicated as the most
important one according to LR coefficients and as one of the top five important features
based on the XGBoost gain criterion. This feature is a binary feature. However, it has
multiple categorical levels due to being encoded based on its frequency of occurrence in
a process instance. SHAP values of the feature form a nonlinear curve in XGBoost, and a
linear one in LR. In both sub-figures, a point corresponds to a process instance. A point is
colored according to its value of an interacting feature, which in this case is std_event_nr.
According to LR, shap values increase linearly with increasing CreditScore_other values.
The interacting feature values are increasing, as well. However, as a result of having all
points of the same CreditScore_other value with identical shap value, it is unclear whether
all points of the same CreditScore_other have the same std_event_nr value. In turn according

Algorithms 2022, 15, 199

14 of 29

to XGBoost, there is an interaction between both features resulting in having points with
the same CreditScore_other value to obtain different shap values. These shap values de-
crease as the values of std_event_nr increase for points with the same CreditScore_other value.

Observation 5: In all event logs, ALE plots for LR are linear themselves.

An exception to this observation is present in the Traffic_fines event logs preprocessed
with single aggregation. In Figure 5a, the importance of the feature sum_timesincelastevent,
as indicated by LR coefficients, is confirmed by the change in ALE scores with a sudden
decrease with increasing feature values. Although Figure 5 also shows a drecrease in XG-
Boost predictions, the expected decrease is stable and not steep after sum_timesincelastevent
is reaching a value of (0.5 x 10°) unlike the case with LR model. However, in both cases
ALE plot is interpolating as a result of the big gap in feature distribution. Note that the
deciles on the x-axis represent interval edges at which ALE scores are calculated. In turn, in
between the deciles are parts in which the ALE plot is interpolating. Absence of data might
be an issue in non-linear models, where the ALE plot is interpolating and hence results
might be unreliable in such regions.

(a) Dependence_plot of (agg__CreditScore_other) in (xgboost) (b) Dependence_plot of (agg__CreditScore_other) in (logit)

44 .
5 ‘ 5

= 40 .

7} [} .
£] £

° ° M

o o

£ L4 £ . X
L% — O . —
4] < L 204 <
5 = ol ° o
3 ° £ 3 £
o g 5 : g
\ -3 3, . -3 3,
()] (=)

IS l I l l i) s ° b
© 5 7] (S . 7]
5 | 5 |
2 o = . o
[-2 o [-2 O
o © o i ©
3 3 .

> -4 > .

g g =
< -1 < ° -1
)) .

—61 .

.
- -40

T T T T T T T T 0 T T T T T T T T
2.5 5.0 7.5 10.0 125 15.0 175 20.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
agg__ CreditScore_other agg__ CreditScore_other

Figure 4. SHAP Dependence plots of BPIC2017_Refused (single aggregation) event log.

Traffic_fines (Single_aggregation)

—— XGB
61 —— LR 1

(e — +4 o . o > o > —

ALE

ALE scores

I I I : : |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 4 6 8 10
le6

(@) Values of agg_sum_timesincelastevent (b) Values of agg_max_event_nr

Figure 5. ALE plot of Traffic_fines event log.

Algorithms 2022, 15, 199

15 of 29

Observation 6: As expected, explaining how a predictive model uses a feature in predicting out-
comes of an event log with class imbalance does not reveal a lot of information.

This observation is confirmed in results of the three XAI methods, especially when
explaining LR reliance on important features. Results of event log Sepsis1 shown in
Figures 6-8 represent an example of this observation.

In Figure 6, despite the plotted features are indicated as important to the predictive
models, after shuffling feature values over 10 iterations, there is no observed effect on
the prediction error. In turn, in Figure 7(1-a),(2-a), the feature is showing no contribution
to change in XGBoost predictions. This observation is represented by the zero SHAP
values scored by the categorical features Diagnose_other (Figure 7(1-b)) and Diagnose_S
(Figure 7(2-b)) in single-aggregated and prefix-indexed versions of Sepsis1, respectively.
While a change is observed in LR predictions as a contribution of Diagnose_other in the single
aggregation-encoded Sepsis1, without effect of the interaction with the feature mean_day.
However, in Figure 7(2-b), there is an effect of the interaction between Diagnose_S and
concept:name_11_Leucocytes. It is unclear whether this is the main affecting interaction, as all
points with the same value of Diagnose_S provide the same contribution in terms of same
SHAP values. ALE, as PFI and SHAP, is unable to reveal more information about Sepsis1.
In Figure 8, both predictive models are not affected by changes in analysed features values,
despite being highlighted as the most important features. In both sub-figures, the ALE
plot is linearly interpolating in between available data. However, in both sub-figures ALE
scores are nearly zero.

- XGB
— IR (1) Important to XGBoost)
(1-a) (agg_std_month) (1-b) (index__openCases_0)

0.04 0.04

0.02 0.02

0.00 0.00

—0.02 -0.02

O
M

= -0.04 - £ 004 7
o D
=] c
g] T T T T T Q T T T T T
GL) =] 2 4 6 8 10 < 2 4 6 8 10
o 8 [}
> > #lt i 2 i
< o erations E #lterations
@ g =
D ©)
c v Q
Z g & o
~ a (2-a) (static_ Diagnose_other) = (2-b) (static__Diagnose_S)
o E =
o T @
& <
%) 0.04 w 0.04 +
— —
<)

0.02 0.02 4

0.00 0.00

-0.02 -0.02

-0.04 —0.04

T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10

#lterations

(2) Important to Logistic regression #lterations

Figure 6. PFI scores over Sepsis1 event log.

Algorithms 2022, 15, 199 16 of 29

(1) Sepsis1 (single aggregation)

(1-a) Dependence_plot of (static_ Diagnose_other) in (xgboos})go (1-b) Dependence_plot of (static__Diagnose_other) in (logit)
0.8
L 0047 - - 25
@ [
< L 80 <
asl ‘6" 0.6 1
b b
o 0.02 4 o
& S oad 20 =
© ©
o - 70 g a S,
¢ o . 5 ey 8
© R ® H1s £
@ o @ |
S -60 0 S 0.0 =
L L =
g —0.02 4 14} <
2 3 02 10
> >
g - 50 g
& 002] G —0.4
’ -5
-0.6 ¢
r r : : ' r - 40 - r r r r -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
static__Diagnose_other static__Diagnose_other
(2) Sepsis1 (prefix index) length:16
(2-a) Dependence_plot of (static__Diagnose_S) in (xgboost) 00 (2) Dependence_plot of (static__Diagnose_S) in (logit) 10
0.5 ¢
0.04 4 "
w 80 wn 3
o o 04)
v] o
2 2 5
o 002+ o 0]
® c =
=} 8
| 70 @ lo3 o
= < 2 o
o ©
£ oo - . " g 05 £
s B 5 €
e 60 0 o0z g2
i} i} I
= 0024 = 5
E 2 8
Q Q
| go 5
< - 50 & K
—0.04 4 £
0.0 o
T T T T T T - 40 T T T T T T 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
static__Diagnose_S static__Diagnose_S
Figure 7. SHAP Dependence plots of Sepsis1 event log.
a) Sepsis1 (single aggregation))
(a) Sep (single aggreg) (b) Sepsis1 (prefix index) length: 16
005 — 005+ —
LR A
0,04 004
vy
E 0.03 003~
s}
v}
Lﬂ [002
wi
—
4 01 oo
- o — 0a0 =
e - | i 1, L LT
o 1 H 3 4 3 rid] 40 &0 40

Values of agg_std_month Values of index_open_cases_0

Figure 8. ALE scores of Sepsis1 event log.

As an example, consider the global analysis of BPIC2017_Accepted event log, which
is shown in Figures 9-11. The high cardinality of the analysed features along with the
high number of process instances expose the effect of value change on LR predictions,
especially using PFI as shown in Figure 9. The same factors are affecting important features
to XGBoost using SHAP and ALE as shown in Figures 10 and 11, especially with ALE
where the plot is less interpolating with more dispersion of data. In SHAP dependence
plots, SHAP values are following a non-linear form, while the interaction effect is clear
even in std_MonthlyCost feature which is more important to LR than XGBoost.

Algorithms 2022, 15, 199 17 of 29
(a) (agg__Action_other) (b) (agg__lifecycle:transition_other)
0.0012
0.10
0.0010
0.08
0.0008
0.06
0.0006
0.04
0.0004
0.02 4 0.0002
. 0.00 0.0000
% T T T T T T T T T T
5 2 4 6 8 10 2 4 6 8 10
>
]
o
<
©
i
=
S
g‘ (¢) (agg__std_MonthlyCost) o (d) (agg__std_event_nr)
£ o
0.00010
0.00008 | 11
0.00006 -2+
0.00004 34
0.00002 4
0.00000
s o
—0.00002
6 -
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
—— XGB Repetitions
= LR
Figure 9. PFI scores of BPIC2017_Accepted event log.
(1) Important to Logistic regression
(1-a) Dependence_plot of (agg__std_MonthlyCost) in (xgboost) (1-b) Dependence_plot of (agg__std_MonthlyCost) in (logit)
|- 8 2500 4 -
0.0 . ceee .
- 7000 .
B 0154 @ .
S - con = S 2000 A 7 L 200
= two points, similar feature k6000 § = = rd
S 0104 value, different shap value 3 = 3
S k7 S o
2 0.05 - 5000 8 = 1500 1 >
2 g = 300 5
td 2 1 e
o - T o 2
S 0.004 - o - 4000 GE) =y |
o el =, 2 1000 =
L 1 ° . 2 200 E
g oo Lottt L 3000 & Yy |
E] ° E| E] 4
S 0104 coocen et 2000 & $ 5001 ®
Q [> o
S - ® s - 100
v —0.15 4 «
. . - 1000
S oA
—0.20 1 -
-0 -0
o 500 1000 1500 2000 2500 [500 1000 1500 2000 2500
agg__std_MonthlyCost agg__std_MonthlyCost
(2) Important to XGBoost
(2-a) Dependence_plot of (agg__Action_other) in (xgboost) (2-b) Dependence_plot of (agg__Action_other) in (logit)
2.0
- 18 ©
3.0 154 . -5
- 16
fu. fo. .
2 55 2 -
=1 F= 1.0 4
S, - 14 5 o, . -4
s <= S -
2 20 = 2 c
k1 1> & T 054 . !
< @ < . c
| S | L
o 151 (o} =y -3 @
3 -10 8 & 0.0 . =
= 5 s =1
S 1o s &% : %
& | L -os54 ° L2 D
. ©
S os- I " § 2 .
53 8 1.0 .
2 l 2
Y 0.0 . L4 @ . L1
! [.
1.5+
.
705""ll|| -2 .
—2.0 -0

25 5.0 7.5

10.0

12,5

15.0

agg__Action_other

17.5

20.0

2.5

5.0

7.5

10.0

12.5

15.0

agg__Action_other

Figure 10. SHAP Dependence plots of BPIC2017_Accepted event log.

17.5

20.0

Algorithms 2022, 15, 199

18 of 29

0.125 A q
—— XGB
0.100 A LR -
0.075 A 1
0.050 A 1

0.025 A b
<

ALE scores

0.000 — T i—
—0.025 A 1

—0.050 - 1

g Y T B R T
5 10 15 20 0 500 1000 1500 2000 2500
(a) Values of agg__Action_other (b) Values of agg__std_MonthlyCost

Figure 11. ALE scores of BPIC2017_Accepted event log.

5.1.2. Execution Times

For applied XAI methods, the execution times are computed for SHAP, ALE and PFI
over the training event logs. Prediction times of LR and XGBoost are included as the time
for computing the importance of the features to the predictive models. Execution times are
presented in Tables 3 and 4. More precisely, the execution times of event logs preprocessed
with single aggregation and prefix index combination respectively are displayed. Note
that in the event log column in Table 4, each event log is augmented with the length of
its prefixes.

Table 3. Execution times (in seconds) of XAI methods on event logs preprocessed using single
aggregation combination.

Event Log XGBoost Logistic Rregression (LR)
Prediction SHAP ALE PF1 Prediction SHAP ALE PF1
Sepsisl 8.71 0.20 15.5605 10.54 0.1265 0.00645 8.00679 4.773
Sepsis2 16.74 2.87 13.3611 12.32 0.061 0.00687 5.77876 4.8206
Sepsis3 30.53 9.55 19.15117 19.71 0.092 0.00585 8.2588 6.4126
Traffic_fines 4285.7 91,145.55 6516.123 4834.37 10.395 0.6789 5769.03 139.29
BPIC2017_Accepted ~ 3794.15 288.73 147,845.645 2179.73 29.89 2.638 144,387.72 1782.8
BPIC2017_Cancelled 10,000.33 34,131.79 149,374.35 11421.7 36.36 2.666 144,490.6677 955.43
BPIC2017_Refused 5294.84 764.84 148,574.512 2992.14 25.278 2.655 144,083.7028 554.774
Table 4. Execution times (in seconds) of XAI methods on event logs preprocessed using prefix
index combination.
Event Log XGBoost Logistic Rregression (LR)
Prediction SHAP ALE PFI Prediction SHAP ALE PFI
Sepsisl_1 0.388 0.0098 3.575 6.61 0.013 0.00051 0.346 3.16
Sepsisl_6 0.75 0.0116 9.059 5.509 0.025 0.00045 1.1537 3.7387
Sepsisl_11 1.112 0.012 15.948 7.01 0.021 0.00075 2.137 4.166
Sepsisl_16 0.496 0.0055 19.394 6.59 0.015 0.00031 2.421 3.6
Sepsis2_1 0.77 0.1797 3.804 6.41 0.01 0.00022 0.2696 3.26
Sepsis2_6 1.74 0.138 8.757 11.249 0.0075 0.00052 1.08999 592
Sepsis2_11 1.203 0.028 15.122 7.52 0.007 0.000558 2.36226 4.38
Sepsis3_1 0.475 0.101 3.4351 8.725 0.0678 0.00013 0.2655 4.366
Sepsis3_6 0.999 0.0704 8.93579 6.566 0.0684 0.00045 1.1067 5.8
Sepsis3_11 1.73 0.0416 16.015989 6.943 0.0947 0.00055 2.2307 4.788
Sepsis3_16 0.6166 0.0083 18.9257 7.216 0.067483 0.0003 1.7351 5.054
Sepsis3_21 0.426 0.00284 20.954 6.6596 0.041555 0.00016 1.4537 5.134
Sepsis3_26 0.245 0.00017 22.42477 7.23 0.029335 0.00008 1.49295 5.749
Sepsis3_31 0.16 0.00111 24.785 8.676 0.026648 0.000072 1.5815 6.022
Traftic_fines_1 1999.87 74,009.516 335.4324 2632.54 0.903 0.21602 72.1658 32.99
Traffic_fines_6 157.018 10.881 233.545 47.776 0.422 0.05684 78.58 20.71
BPIC2017_Refused_1 113.23 212.403 21.412 319.73 0.07 0.0125 5.84036 27.45
BPIC2017_Refused_6 847 414.45 860.8566 515.45 1.0348 0.21099 345.113 84.71
BPIC2017_Refused_11 2521.397 341.585 9184.41 2012.69 2.488 0.7547 3744.7 461.968
BPIC2017_Refused_16 3775.526 279.275 29,963.995 6542.17 3.8 1.99307 12,625.59 2331.89

Algorithms 2022, 15, 199

19 of 29

In terms of the underlying preprocessing technique, the overall numbers across all
XAI methods show that event logs preprocessed with prefix index combination are faster
to be explained than those preprocessed with single aggregation.

Observation 7: We conclude that the chosen bucketing technique is a determinant factor affecting
execution duration of global explanations generation.

As illustrated by [2,3], in index encoding, with increasing prefix length, the number of
features increases, while the number of process instances decreases in an event log. The
reduced number of process instances in a prefix index-preprocessed event log compared to
a single-aggregated event log can justify the faster execution times on the former logs. De-
spite enabling faster executions, as expected, prefix-indexed event logs with longer prefixes
show longer execution times over all XAI methods than event logs with shorter prefixes.

Observation 8: The overall numbers show that explaining decisions of a LR model takes less time
compared to the use of an XGBoost-based model.

This observation has provedn to be true when regarding the results across differ-
ent event log sizes and preprocessing settings as well as over different XAI methods.
A justification of this observation may be that all studied global XAI methods involve
querying the underlying model. The boosting mechanism employed in XGBoost compli-
cates the prediction process, and hence it demands more time to produce predictions or,
subsequently, explanations.

Observation 9: When regarding execution times of different XAl methods, it can be observed
that SHAP has the fastest executions over almost all event logs, regardless the used preprocessing
techniques (with few exceptions).

An exception to this observation is the execution time of SHAP over the shortest prefix
version of Traffic_fines event log being preprocessed with prefix index combination and
having an XGBoost model trained over its process instances. SHAP values for this event
log are the slowest among all XAI methods.

Observation 10: The slowest XAl method differs based on the preprocessing techniques used, with
ALE performing worst in most cases.

In prefix-indexed event logs, PFI achieves the worst performance for most event logs
when combining it with LR, and ALE shown the worst performance in combination with
XGBoost. In turn, in single aggregation-based event logs, ALE provides the least efficient
XAI method to be combined with either predictive models. PFI performs worst in smaller
event logs with relevant small numbers of features compared to other logs, e.g., in the
three Sepsis event logs. Figures Al and A2 in Appendix A provide a visualisation of the
execution times of XAI methods on event logs using prefix index and single aggregation
preprocessing combinations, respectively.

5.2. Local Methods Comparability

LIME and SHAP, which are the two local XAl methods used in this study, share the
underlying mechanism. Both are feature additive attribution methods [5]. LIME is looking
for the weights of features in order to indicate their importance, While SHAP calculates
contributions of features to shifting the current process instance prediction towards or apart
from a base prediction. To gain insights into how LIME and SHAP results can differ while
explaining the same process instances, we compared their explanations of both predictive
models reasoning, i.e., LR and XGBoost, over a selected set of process instances from each
event log preprocessed with both preprocessing combinations. After analysing the resulting
explanations, the following observations can be made:

Algorithms 2022, 15, 199

20 of 29

Observation 11: It could be rarely observed when both methods match in their attributions to
important features or in the strength and direction of the effect features have on driving the current
prediction towards or away from the base prediction.

It is supposed that whenever both XAl methods explain the prediction generated by the
same predictive model for the same process instance, a similarity between the explanations
exists. However, the former observation is valid across all event logs regardless the
preprocessing combinations used. If both methods agree on a subset of features, they
do not have the same importance ranks. Note that in LIME the goal is to identify a set of
features which are important in confirming the current prediction or driving the prediction
towards the other class in case of binary classification tasks. In turn in SHAP the purpose
is to order features descending based on their SHAP values, i.e., their contributions in
driving the current prediction away or towards the base prediction over the whole event
log. As example consider the two explanations from Figure 12, which shows the LIME
explanation (cf. Figure 12a) and the SHAP decision plot (cf. Figure 12b) of prediction made
by LR of the same process instance of Traffic_fines event log preprocessed with prefix index.
In Figure 12a, important features are listed in descending order along with their values in
the event log based on the coefficients of these features in the approximating model created
by LIME. On the bottom of Figure 12a, again these features are listed with the percentage of
their contributions. Note that the color code of these features represents whether a feature
is driving the prediction towards the currently predicted class or towards the other class.
In this case, the currently predicted class is “deviant”.

Figure 12b shows the decision plot highlighting the features with the highest shap
values in descending order. The line at the center represents the base prediction or model
output. The zigzag line represents the current prediction and stricks the top at exactly the
current prediction value. Prediction units are in log odds. The pattern at which the zigzag
line is going towards and outwards from the line at the center represents contributions of
features at the y-axis to reducing/increasing the difference between the base and current
predictions. In addition, feature values are stated in brackets over the zigzag line at
the point where the line intersects with the horizontal line. It can be observed that the
decision plot is indicating that the current prediction of the LR model is highly affected by
collinear features.

—40000 -30000 —20000 -10000 0
Feature Value index__timesincelastevent_5 (665,220)
— sal_3_G 0.00 index__timesincecasestart_1 < 185,820)
index__timesincelastevent_1 (185,820)
index _timesincecasestart_1 185820.00 index__timesincelastevent_4 (1,440)
= = = index__timesincecasestart_5 (944,640)
index__timesincelastevent_1 185820.00)
index__timesincecasestart_2 (193,020)
index__timesincelastevent_2 (7,200)
Prediction probabilities regular index__timesincecasestart_3 (277,980)
index_ dismissal 3 G
regular - index__timesincelastevent_3 (84,960)
index__org:resource_0.
deviant [N 1.00 "~ index__timesincecasestart_4 (279,420)
index__timesincelastev. .
0.5 index__open_cases_0 (9,063)
index__timesincecasest R
003 index__open_cases_4 (10,841)
index__timesincecasest. R
0.03 index__open_cases_5 (9,932)
index__timesincelastev .
X index__open_cases_3 (10,836)
index__open_cases_2 (10,579)
(a) L|ME explanation index__timesincemidnight_3 (1,380)
index__timesincemidnight_5 (1,320)
. . index__timesincemidnight_1 1,380
Variable stability: 36.67% — ght. (1.380)
Coefficient stability: 100% index__timesincemidnight_2 (1,380)
index__month_4 (1)
—40000 -30000 ~20000 -10000 0

Model output value

(b) SHAP decision plot

Figure 12. LIME vs. SHAP explanations of LR prediction for one instance in Traffic_fines preprocessed
with prefix index combination.

Algorithms 2022, 15, 199

21 of 29

Observation 12: In explanations of both methods, dynamic attributes are dominating feature sets.

This observation about the explanations can be justified by having all event logs, except
for the three dervied from Sepsis event log, with a larger number of static attributes and
a relatively lower number of dynamic ones (cf. Table 1). Therefore as expected, dynamic
attributes are dominating feature sets provided by local explanations. This observation
may be justified by the fact that both employed encoding techniques are able to increase
the number of features derived from dynamic ones, especially in event logs for which the
dynamic features dominate.

Another example of an explanation is presented in Figure 13. It shows LIME (Figure 13a)
and SHAP (cf. Figure 13b) explanations of a prediction generated by an XGBoost model for
a process instance of the BPIC2017_Cancelled event log while being preprocessed with single
aggregation combination. In both explanations, CreditScore_other is the most or second
important feature. In LIME, this feature is the only one driving the prediction towards
the currently predicted class. Meanwhile in SHAP, the same feature has the highest SHAP
value that drives the current prediction away from the base prediction. This means that
this feature has the highest impact according to both explanations.

agg_ CreditScore_other (20)

Feature Value agg_Action_other 20)
agz_conceptname A Cancelled 0.00 agg__max_FirstwithdrawalAmount (4,000)

agg__orgiresource_User_53 (10)

agg Action other 20.00
agg concept:name W_Complete application5.00

agg_orgiresource_User_64 (e

o agg__max_MonthlyCost (152.82)
agg max_FirstWithdrewalAmount 5000.00)

agg_concept:name O Create Offer 1.00

agg__EventOrigin_other (20)
agg_ std_open_cases (87.802)
agg_ max_OfferedAmount (5,000)
Prediction probabilifies regular agg_min_timesincemidnight (473)
agg_ conceptname

rogular 03 agg__concept:name_O_Create Offer (1)

deviant 0.69

iz CreditSoore othe. agg__max_NumberOfTerms / (36)
036
age Action other> agg__concept:name_A_Submitted / (1)
0 agg__mean_month (10)
2gg_ conceptaame |
008l agg_ org:resource_other (3)

000 <agg max First .
ST oo static__case:ReguestedAmount / (5,000)
0.00<agg_consept
ool

(1,939)

agg__concept:name_W_Complete application < (5)
agg__min_open_cases)
\

agg_std_hour (2.363)
agg__max_timesincemidnight \ (1)019)

-15 -1.0 -05 0.0 05 1.0
Model output value

(a) LIME explanation

Variable stability: 93.7%

Coeffcient stability: 91.48% (b) SHAP Decision plot

Figure 13. LIME vs. SHAP explanations of XGBoost prediction for one process instance in
BPIC2017_Cancelled preprocessed with single aggregation combination.

As mentioned in Section 4.1, stability measures, namely Variable Stability Index (VSI)
and Coefficient Stability Index (CSI), are applied on LIME explanations. VSI [19] measures
to what extent the same set of important features will be generated if LIME is executed
several times over the same event log under the same conditions. In turn, CSI [19] measures
the stability in coefficients of features within the important feature set over several runs
of LIME.

Observation 13.1: For the randomly selected process instances from different event logs, as ex-
pected, Variable Stability Index (VSI) shows high instability in LIME explanations over several runs.

This observation can be justified by the high dimensionality of the analysed event logs.
According to [19], the underlying approximating model used by LIME, fits the generated
dataset based on multivariate distribution of features in the original dataset. The original
model is queried for labels of the newly generated dataset. Afterwards, the distance be-
tween the newly generated data points and the sample to be explained is measured. In case

Algorithms 2022, 15, 199

22 of 29

of high dimensionality, it is not possible to distinguish between distant and near points.
The latter phenomena will result in generating a dataset that will differ greatly from the
explained sample. As a result, the approximating model is expected to be locally inaccurate
compared to the original model [5,19], besides having a different approximating model
at each LIME run. Consequently, different feature sets will result whenever querying the
approximating model.

Observation 13.2: The VSI of LIME explanations of XGBoost predictions is higher in balanced
event logs. In case of LIME explanations of LR predictions, it is higher in imbalanced event logs.

For example, the VSI of the explanation of the instance in Figure 13 is 93.7%.

Observation 13.3: CSI measures are high for LIME explanations of XGBoost predictions for all
event logs, whereas the same measures are zeros for the explanations of the predictions by LR on
almost all imbalanced event logs.

This observation can be justified by the underlying collinearity of data and sensitivity
of linear models (in this case the approximating linear model) to such phenomena. Conse-
quently, the approximating model is expected to assign unstable coefficients to collinear
features at each run of LIME. Therefore, CSI measures are unstable.

6. Discussion

Explaining ML-based predictions becomes necessity to gain user acceptance and
trust in the predictions of any predictive models. We need to consider explainability as a
continuous process that should be integrated throughout the entire ML pipeline. A first
step towards such integration would be a study of the effect of different pipeline decisions
on the resulting explanations. Our main concern in this research is to study the ability
of an explanation to reflect how a predictive model is affected by different settings in the
ML pipeline. The experimental results described and analysed in Section 5 confirm the
following conclusions:

¢ Both studied encoding techniques load the event log with a large number of derived
features. However, the situation becomes worse in index-based encoding, as the
number of resulting features is increasing proportionally to the number of dynamic
attributes, especially the number of categorical levels of a dynamic categorical attribute.
Dimensionality explosion has an effect on the explanations generated in the same way
it has on predictions generation. On one hand, explaining high-dimensional event logs
becomes expensive in terms of computational resources, especially in XAI methods
that run multiple iterations to rank features based on their importance, for example
in case of PFL. We denote this as the horizontal effect of dimensionality. Furthermore,
other XAI methods can not work on lower cardinality features, (e.g., ALE), or can
work on it but will not yield useful insights. A high dimensional event log may hold
non-useful features that may have been used by the predictive model. However, it
cannot be used to explain the prediction generated. We denote this as the vertical
effect of dimensionality. However, SHAP is the only XAI method among the compared
ones that is able to mitigate the effect of lower cardinality and to produce meaningful
explanations while highlighting the effect of interactions between analysed features
in dependency plots. These effects are observed in explanations of process instances
from the preprocessed event logs using index encoding more than aggregation-based
preprocessed event logs.

* Increased collinearity in the underlying data is another problem resulting from encod-
ing techniques with varying degrees. The effect of collinearity can be observed in index-
based preprocessed event logs, while not being completely absent in aggregation-
based event logs. This collinearity is reflected through explanations of predictions on
process instances from prefix-indexed event logs as the length of a prefix increases.

Algorithms 2022, 15, 199

23 of 29

Another effect of collinearity is the instability of LIME explanations. This instability is
due to the approximating model affected by collinear features (in terms of unstable
feature coefficients) and high dimensionality (in terms of unstable feature sets).

e PFIshowed to be more stable and consistent along two execution runs, while SHAP sta-
bility is affected by the underlying predictive model while may be (in)sensitive to the
underlying data characteristics. ALE is mostly unstable and affected by its inability to
accurately analyse effects of changes in categorical attributes on predictions generated.

Observations made in the context of this study raise potential opportunities for further
research. Setting criteria for evaluating XAI methods is a demanding need to ensure
acceptance and trustworthiness of the XAl methods themselves. Measurements should
be put in place to ensure stability and replicability of results across several runs of an
XAI method. Sensitivity of an XAl method to changes in underlying data or underlying
predictive model should be measured and an XAI method should be evaluated for. This
issue highlights the need to regard an explainability method as an optimisation problem
where different underlying choices affect the final outcome, as proven by the results of
our study.

7. Related Work

Some work available from related research areas is considered complementary to
the work we present in this paper. These research efforts enabled us to gain a solid
understanding of how different aspects of predictions explainability are studied in the
context of PPM, besides shedding light on possible research gaps.

7.1. Leveraging PPM with Explanations

The authors of [25] propose an approach that integrates Layer-wise Relevance Propa-
gation (LRP) to explain the next activity predicted with an LSTM predictive model. This
approach tends to propagate relevance scores backwards through the model to indicate
which previous activities were crucial to obtaining the resulting prediction. This approach
provides explanations for single predictions, i.e, local explanations.

Another approach explaining an LSTM decisions is present in [26]. However, in [26],
the authors claim that the approach is model-agnostic and independent from the cho-
sen predictive model. This approach predicts the execution of certain activities, besides
predicting remaining time and cost of a running process instance. The total number of
process instances where a certain feature is contributing either positively or negatively to
a prediction is identified at each timestamp for the whole dataset. This identification is
directed by SHAP values. The authors of [26] use the same approach in providing local
explanations for running process instances.

Explanations can be also used to leverage a predictive model performance as pro-
posed by [27]. Using LIME as a post-hoc explanation technique to explain the predictions
generated with Random Forest, In [27], the authors identify feature sets that contributed
to produce wrong predictions. After identifying these feature sets, their values are ran-
domised, provided that they do not contribute to generating right predictions for other
process instances. The resulting randomised dataset is then used to retrain the model again
till its perceived accuracy becomes improved.

7.2. Using Transparent Models in PPM Tasks

The proposals by [28,29] represent attempts to provide a transparent PPM approach,
supported by explanation techniques with the aim of providing a transparent predictive
model. In [29], the authors conduct experiments on three different predictive models to
predict the next activity only using control-flow information, the next activity supported
with dynamic attributes, and the next activity along with remaining time. The authors
of [29] use LSTM with attention mechanisms to provide attention values indicating attention
weights used to direct the attention of the predictive model to certain features. According
to [30,31], there is a lot of work in the field of Natural Language processing (NLP) about

Algorithms 2022, 15, 199

24 of 29

whether to use attention weights as explanations, as attention weights are not always
correlated to feature importance [30].

In [28], the authors propose a process-aware PPM approach to predict the remaining
time of a running process instance, while providing a transparent model. However, the
authors of [28] could not prove that the proposed approach provides comprehensible expla-
nations from the user perspective. In turn, the proposed approach includes discovering a
process model, training a set of classifiers to provide probabilities of gates in the discovered
process model, and training a set of regressors to perform the main prediction task. These
procedures are a source of computation overhead, which is not confirmed or disproved
by [28].

8. Conclusions

In this research, a framework has been proposed that enables comparing explanations
generated by a selected number of currently available XAI methods. The XAI methods
under analysis explain decisions of ML models generating predictions in the context of
PPM. Our study includes a comparison of the XAI methods at different granularity levels
(global and local XAlI), given different underlying PPM workflow decisions with respect to
data, preprocessing, and chosen models. A study of how an XAI method is able to reflect
the sensitivity of a predictive model towards underlying data characteristics is provided. In
turn, different XAI methods are compared according to different criteria including stability
and execution duration, over different granularities, i.e., globally and locally.

This study has revealed how explanations can highlight data problems through
analysing the model reasoning process. For example, we have uncovered issues result-
ing from collinearity between features, while having this collinearity being the product
of characteristics of the chosen preprocessing combination of techniques. It has further
emphasized based on experiments, the importance of feature selection after preprocessing
an event log. We have emphasized the effect of an XAI method vulnerabilities on the
quality of information provided by its relevant generated explanations, e.g., in the case of
ALE. Using our comparative framework, we highlighted the power of SHAP to unleash
important information about relation between features and also their impact on the target.
This conclusion is highlighted using experiments on SHAP in comparison to other XAI
methods, using its global and local method versions. Based on our experiments and results,
the phrase “garbage-in garbage-out” is not just valid in the case of predicting using machine
learning models, but also applies to explaining these predictions. It was proved whenever
predictions on imbalanced data are explained. Our study has highlighted situations where
data problems might not affect the accuracy of predictions, but do affect usefulness and
meaningfulness of explanations. Explainability should be seamlessly integrated into PPM
workflow stages as an inherent task not as a follow up effort.

Author Contributions: G.E.-k. drafted and revised the manuscript. G.E.-k. was responsible for
conceptualizing this work. G.E.-k. was responsible for the formal analysis, methodology, and writing
the original draft. M.R. was responsible for reviewing and editing this article. M.A.-E. and M.R.
validated and supervised this work. M.R. was responsible for funding acquisition. All authors have
read and agreed to the published version of the manuscript.

Funding: This study is carried out through fund provided as part of the cognitive computing in
socio-technical systems program granted to the last author as the supervisor of the first author as a
PhD candidate.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets used in the context of our experiments are available at 4TU
Centre for Research Data: https:/ /data.4tu.nl/Eindhoven_University_of_Technology (accessed on 6
June 2022) and the code is accessible through https://github.com/GhadaElkhawaga/PPM_XAI_
Comparison (accessed on 6 June 2022).

https://data.4tu.nl/Eindhoven_University_of_Technology
https://github.com/GhadaElkhawaga/PPM_XAI_Comparison
https://github.com/GhadaElkhawaga/PPM_XAI_Comparison

Algorithms 2022, 15, 199

25 of 29

Conflicts of Interest: The authors declare no conflict of interests.

Abbreviations

The following abbreviations are used in this manuscript:

ML Machine Learning

PPM Predictive Process Monitoring
XAI eXplainable Artificial Intelligence
GAM General Additive Model

RQ Research Question

MI Mutual Information
LR Logistic Regression
PFI Permutation Feature Importance

PDP Partial Dependence Plots

ALE Accumulated Local Effects

SHAP SHapley Additive exPlanations
VSI Variable Stability Index

CSI Coefficient Stability Index

LRP Layer-wise Relevance Propagation

Appendix A
This appendix reports the following:

¢ Execution times comparison over prefix-indexed event logs with respect to different
prefix lengths (Figure Al).

e Comparison of Execution times of XAl methods over single-aggregated event logs
classified based on predictive models (Figure A2).

Algorithms 2022, 15, 199

26 of 29

30000 200
17.54
25000
15.0
20000 1251
15000 1 10.04
7.5
10000 1
5.0
5000
“] r___ér_:’/*’—«:
04 W 0.0
2 4 8 10 1 1 16 2 4 6 s 10 2 1 1
(a) BPIC2017_Refused (b) Sepsis1
25
14
12 A 207
10
1541
s

104

/./‘Q;:—o——o

Execution times (in seconds)

(c) Sepsis2

70000 A

60000 -

50000 -

40000 q

30000 -

20000 -

10000 -

o
L
9
[NE =

6

(e) Traffic_fines

51 &

5 10 15 20 25 30

(d) Sepsis3

@ pred_logit -‘- ale_logit =@ pred xgboost -‘- ale_xgboost

< shap_logit == perm logit =il shap_xgboost == perm xgboost

Prefix lengths

Figure Al. Execution times (in seconds) of XAI methods on event logs preprocessed using prefix

index combination.

Algorithms 2022, 15, 199 27 of 29

TaTeas6s 4537435
144490.67,
140000 140000 -
120000 120000 4
100000 100000 4
80000 80000 A
60000 60000 -
40000 40000 - 3413179
20000 20000 ~ 1000035 142178
18202 217973 s - ey
0- ¥ 0
pred shap ale perm pred shap ale perm
(a) BPIC2017_Accepted (b) BPIC2017_Cancelled
148574.51 I
140000 -
80000 -
120000
100000 4 60000 4
80000 -
60000 40000 -
40000
20000 -
20000 A
5294.84 enss eaay 299210 4285.70 5769.03 651612 4834.37
2528 265 1040 068 13920
0 | .
pred shap ale perm pred shap ale perm
(%] .
o) (c) BPIC2017_Refused (d) Traffic_fines
C
o
9] 16 1556 1674
,_qn) 16
144
< 14]
~ 12 A 1232
8 1054 12 4
101
e on 101
= 801
8
c 87
(@] 6 6l 578
S a7 482
5 4
9 “1

pred shap ale perm pred shap ale perm

(e) Sepsis1 (f) Sepsis2

. logit
mm xgboost

(g) Sepsis3

XAl Methods

Figure A2. Execution times (in seconds) of XAI methods on event logs preprocessed using single
aggregation combination.

Algorithms 2022, 15, 199 28 of 29

References

1. Van der Aalst, W. Process Mining: Data Science in Action, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016.

2. Verenich, I.; Dumas, M.; Rosa, M.L.; Maggi, EM.; Teinemaa, I. Survey and Cross-benchmark Comparison of Remaining Time
Prediction Methods in Business Process Monitoring. ACM Trans. Intell. Syst. Technol. 2019, 10, 34. [CrossRef]

3. Teinemaa, I.; Dumas, M.; Rosa, M.L.; Maggi, EM. Outcome-Oriented Predictive Process Monitoring: Review and Benchmark.
ACM Trans. Knowl. Discov. Data 2019, 13, 57. [CrossRef]

4. Molnar, Christoph: Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2019. Available online:
https:/ /christophm.github.io/interpretable-ml-book/ (accessed on 6 June 2022).

5. Lundberg, S.; Lee, S. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, Long Beach, CA, USA, 4-9 December 2017; pp. 4768-4777.

6. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001, 29, 1189-1232. [CrossRef]

7. Shrikumar, A.; Greenside, P; Kundaje, A. Learning important features through propagating activation differences. In Proceedings
of the 34th International Conference on Machine Learning, Sydney, Australia, 6-11 August 2017; pp. 145-3153.

8. Binder, A.; Montavon, G.; Lapuschkin, S.; Miiller, K.R.; Samek, W. Layer-Wise Relevance Propagation for Neural Networks with
Local Renormalization Layers. In Artificial Neural Networks and Machine Learning—ICANN;; Villa, A., Masulli, P, Rivero, A.J.P,
Eds.; Springer: Cham, Switzerland, 2016; Volume 9887, pp. 63-71.

9. Wachter, S.; Mittelstadt, B.; Russell, C. Counterfactual Explanations without Opening the Black Box: Automated Decisions and
the GDPR. Harv. J. Law Technol. 2018, 31, 841. [CrossRef]

10. Kindermans, PJ.; Hooker, S.; Adebayo, J.; Alber, M.; Schiitt, K.T.; Dahne, S.; Erhan, D.; Kim, B. The (Un)reliability of Saliency
Methods. In Explainable Al: Interpreting, Explaining and Visualizing Deep Learning; Samek, W., Montavon, G., Vedaldi, A., Hansen,
LK., Miiller, K., Eds.; Springer: Cham, Switzerland, 2019; Volume 11700, pp. 267-280.

11. Ribeiro, M.T.; Singh, S.; Guestrin, C. Why Should I Trust You? In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13-17 August 2016; pp. 1135-1144.

12. Apley, D.W,; Zhu,]. Visualizing the effects of predictor variables in black box supervised learning models. J. R. Stat. Soc. 2020, 82,
1059-1086. [CrossRef]

13. Doshi-Velez, F.; Kortz, M. Accountability of Al under the Law: The Role of Explanation, Berkman Klein Center Working
Group on Explanation and the Law, Berkman Klein Center for Internet & Society Working Paper. 2017. Available online:
http:/ /nrs.harvard.edu/urn-3:HUL.InstRepos:34372584 (accessed on 6 June 2022).

14. Arrieta, A.B.; Diaz-Rodriguez, N.; Del Ser,].; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lépez, S.; Molina, D.; Benjamins,
R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible Al Inf.
Fusion 2020, 58, 82-115. [CrossRef]

15. Mohseni, S.; Zarei, N.; Ragan, E.D. A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI
Systems. ACM Trans. Interact. Intell. Syst. 2021, 11, 1-45. [CrossRef]

16. Zhou, J.; Gandomi, A.H.; Chen, F; Holzinger, A. Evaluating the Quality of Machine Learning Explanations: A Survey on Methods
and Metrics. Electronics 2021, 10, 593. [CrossRef]

17. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A Survey of Methods for Explaining Black Box
Models. ACM Comput. Surv. 2019, 51, 1-42. [CrossRef]

18. Nguyen, A.; Martinez, M.R. On Quantitative Aspects of Model Interpretability. 2020. Available online: http://arxiv.org/pdf/20
07.07584v1 (accessed on 6 June 2022).

19. Visani, G.; Bagli, E.; Chesani, F,; Poluzzi, A.; Capuzzo, D. Statistical stability indices for LIME: Obtaining reliable explanations for
machine learning models. J. Oper. Res. Soc. 2021, 12, 1-11. [CrossRef]

20. Outcome-Oriented Predictive Process Monitoring Benchmark- Github. Available online: https://github.com/irhete/predictive-
monitoring-benchmark (accessed on 26 April 2022).

21. Elkhawaga, G.; Abuelkheir, M.; Reichert, M. Explainability of Predictive Process Monitoring Results: Can You See My Data
Issues? arXiv 2022, arXiv:2202.08041.

22. 4TU Centre for Research Data. Available online: https://data.4tu.nl/Eindhoven_University_of_Technology (accessed on 26
April 2022).

23. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.

24. Alibi Explain. Available online: https://github.com/SeldonlO/alibi (accessed on 26 April 2022).

25. Weinzierl, S,; Zilker, S.; Brunk, J.; Revoredo, K.; Matzner, M.; Becker,]. XNAP: Making LSTM-Based Next Activity Predictions
Explainable by Using LRP. In Business Process Management Workshops: International Publishing (Lecture Notes in Business Information
Processing); Ortega, A.D.R., Leopold, H., Santoro, EM., Eds.; Springer: Cham, Switzerland, 2020; Volume 397, pp. 129-141.

26. Galanti, R.; Coma-Puig, B.; de Leoni, M.; Carmona, J.; Navarin, N. Explainable Predictive Process Monitoring. In Proceedings of
the 2nd International Conference on Process Mining (ICPM), Padua, Italy, 4-9 October 2020; pp. 1-8.

27. Rizzi, W.; Di Francescomarino, C.; Maggi, FM. Explainability in Predictive Process Monitoring: When Understanding Helps

Improving. In Business Process Management Forum: Lecture Notes in Business Information Processing; Fahland, D., Ghidini, C.,
Becker, J., Dumas, M., Eds.; Springer: Cham, Switzerland, 2020; Volume 392, pp. 141-158.

http://doi.org/10.1145/3331449
http://doi.org/10.1145/3301300
https://christophm.github.io/interpretable-ml-book/
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.2139/ssrn.3063289
http://doi.org/10.1111/rssb.12377
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34372584
http://doi.org/10.1016/j.inffus.2019.12.012
http://doi.org/10.1145/3387166
http://doi.org/10.3390/electronics10050593
http://doi.org/10.1145/3236009
http://arxiv.org/pdf/2007.07584v1
http://arxiv.org/pdf/2007.07584v1
http://doi.org/10.1080/01605682.2020.1865846
https://github.com/irhete/predictive-monitoring-benchmark
https://github.com/irhete/predictive-monitoring-benchmark
https://data.4tu.nl/Eindhoven_University_of_Technology
https://github.com/SeldonIO/alibi

Algorithms 2022, 15, 199 29 of 29

28. Verenich, I.; Dumas, M.; La Rosa, M.; Nguyen, H. Predicting process performance: A white-box approach based on process
models. J. Softw. Evol. Proc. 2019, 31, 26. [CrossRef]

29. Sindhgatta, R.; Moreira, C.; Ouyang, C.; Barros, A. Exploring Interpretable Predictive Models for Business Processes. In Business
Process Management, LNCS; Fahland, D., Ghidini, C., Becker, J., Dumas, M., Eds.; Springer: Cham, Switzerland, 2020; Volume
12168, pp. 257-272.

30. Jain, S.; Wallace, B.C. Attention is not explanation. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 3-5 June 2019;
pp. 3543-3556.

31. Wiegreffe, S.; Pinter, Y. Attention is not not Explanation. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 3-7
November 2019; pp. 11-20.

http://doi.org/10.1002/smr.2170

	Introduction
	Problem Statement
	Contributions

	Preliminaries
	Predictive Process Monitoring
	PPM Workflow

	eXplainable Artificial Intelligence

	Research Questions
	XAI Comparison Framework
	Framework Composition
	Data Dimension
	Preprocessing Dimension.
	Ml Model Dimension
	XAI Dimension

	Results and Observations
	Global Methods Comparability
	Comparability
	Execution Times

	Local Methods Comparability

	Discussion
	Related Work
	Leveraging PPM with Explanations
	Using Transparent Models in PPM Tasks

	Conclusions
	
	References

