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1. Introduction

The stochastic fractional nonlinear Volterra-IDE is used in the science of engineer-
ing, management, economics and biophysics since many problems in these areas can be
simulated by the stochastic fractional nonlinear Volterra-IDE. As a result, because of the
important role these equations play in applied sciences, many researchers have investigated
and presented numerical results for these equations. We refer the reader to methods such
as the Galerkin method, shifted Legendre polynomials, and the collocation method based
on radial basis functions (see [1,2]). In this paper, we study the existence of solutions for
the stochastic fractional nonlinear Volterra-IDE:

"D n(o,0) = f(0,0,1(0,0

+fo (0,0,9,1(0,0))dd
1)

Iy *n(e,0) =9,

with 6 € [0, M], where f(0,6,1) is a continuous random operator (in short CRO) with
respect to all the variables ¢, and ionY x [0, M] X R, k(¢,0, 9, 1) is a CRO with respect
tog,0,%andionY x [0, M] x R x R, ¢ is a fixed number, H]D)/K N?51(.) is defined later in (2)

whereo € ¥,0< ¢ <1,0 <x <1land Zg +A(.) is the N- Rlemann—LiouVille stochastic
fractional integral, where 0 < A < 1, and Y is defined in the next section. We consider a
new space called the modular space, which was first introduced in 1950 by Nakano [3].
Later, Musielak and Orlicz generalized it in [4], and we also refer the reader to [5] for more
information. In this article, we use a fixed point technique, and it is of interest to note that
this technique in modular spaces is a generalization of the technique in classical spaces
and, to date, nonlinear and asymptotic contractions maps, as well as quasi-contraction
mappings in modular spaces, have been studied in the literature. The description of our
article is as follows:

We introduce a new space called a modular space and we examine the existence and
uniqueness of solutions of stochastic fractional Volterra IDE in this new space. Furthermore,
in this article, we consider the aggregation function and use special functions as inputs to
the aggregation function to create a control function that for the solution of the equation
has the best approximation. Finally, we present a practical example to illustrate our theory.
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2. Preliminaries
Here, we let E; = [0, M], with M > 0, E; = (0,), E5 = (0,1], E4 = [0,00] and
Hs = [0,1] (note &5 = (0,1) denotes the interior of Es).

Definition 1. Consider the linear space S and v from S x Ey to Zy such that

MI) ve(@w)=0foranyt € Epiff © =0;
(MII) vi(aw) =vz (@) foreach@ € S, T € Epanda € Rwitha # 0;

la]
(MIII) vrq (@ + D) S vz (@) +14(S) forall 0,3 € Sand T,y € Ey;
(MIV) v (@) : By — Eg is continuous.

Then, (S, v) is called a modular normed-space (in short, MNS).

Let (S,v) be an MNS. A sequence {®@,} C S is modular convergent to @ € S in
MNS (S, v), if for any € € EZ and T € &), there exists a positive integer N+ € Ej such
that v¢ (@, — @) < e when n > N, . A sequence {®@,} C S is modular Cauchy in MNS
(S,v), if for any € € Z: and T € &y, there exists a positive integer Ner € & such that
Vr(@n — @m) < € whenever n,m > N¢r. An MNS in which every Cauchy sequence is
convergent is said to be an MBS.

An example of a modular norm is

in which g : &, — & is a nondecreasing function for all T € & and @ is a member of a
normed linear space (W, ||.|).

Consider the probability measure space (Y, Ep, &), and let (U, Byy) and (S, Bs) be Borel
measureable spaces, for MNS U and S. If {¢ : F(o,@) € B} € &, for every @ in U and
B € Bg,wesay F : Y x U — S is a random operator.

To prove our main result, we use an alternative fixed point theorem (AFPT) (we refer
the reader to [6,7]).

Definition 2 ([8]). The gamma function is defined as
Az) = /Ooo e 207 1D,
where z € C, Re(z) > 0.
Consider ¢ € E5 and the integrable random operator f on E; and the nondecreasing

random operator & € C!(Y x 1) with ¥'(g,0) # 0, for each © € E;. The right-sided
R-Hilfer stochastic fractional derivative is defined by [9,10]

. 1-0);R 1 d 1-s)(1—£);R
"D 0,0 = T (g g ) 0 e6) @

In the following, we present the definitions that are needed to obtain the control
function (for more details, see [11]).

Definition 3. The complex exponential function is defined as

Exp(0) = —, 8e€C, 3

Definition 4. The generalized exponential function, which is called Mittag—Leffler function, is
defined as
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00 Gg
0)=) -——— peC R(p)>0, H€C, 4
) ;J@(Htg) p (p) @)

Definition 5. The Gauss Hypergeometric series, which is called the Hypergeometric function, is
defined as

N IS (CET e -
Et (9) - F(sl)F(sz) ;) F(t+g) g'r 1, z,t € Cr R( 1)/R( Z)IR(t) > 0. (5)

We can rewrite the above series via the Mellin—Barnes integral as

S1,52 70\ I'(t) 1 I'(x)T(s1 —x)T(sp — x)
B 0) = 16T () wi | .

(—0) *dx. 6)

Definition 6. The Maitland function, which is called the Wright function, is defined as

o)=Y

——, 51 € (—1,00), t,0€C. 7
& e + 1 1€ ( ) 7)

The generalized Wright function, which is called the Fox—Wright function, is defined as

o TTS
[(S],Sl),(Sz,Sz),...,(Sg,Sg)}(9) —_ Z M% (8)
[(tl/Tl)/(tZrTZ)f"'r(terl>] g=0 H}:l ]_—‘(T']g + t]) g' '
Definition 7. For 0 < 71 < 72, 1 < 73 < 794, {xs,y¢} € C, {uy, v} € RT, we define the
following functions

o pi(f) =T0L T(ye —vef),

* »alf) = I—[73 T(1—x;+uf),

o () =112, T —yr+oef),
o ya(f) =112, o Dlxe — uef).

In the above functions, 1 = 0 if and only if Yo (f) = 1, v3 = 4 if and only if P3(z) =
and vy = v, if and only if y4(f) = 1. According to the above functions, we consider HIY 11 (f) =

b 83 ¢4EQ The Mellin—Barnes integral (M-BI) representation of the H-Fox function (H-FF) is

1
HER ) = 5 [ HRA(war, ©)

where uf = exp{f(log |u| +iargu)}and A € Cisa path. Furthermore, the symbol H1¥71 (u) =

HI3M [u‘(J% €0)e=1,-,

Yo 2 } is considered for this integral.

Yer00) =1, 7

Now we introduce the aggregation function because, in this paper, we use this function
as a control function.

Definition 8. For a natural and fixed number k and J € R, an aggregation function is a function
Ak . 3F — 3, which is nondecreasing, that is, forall j € [1,... k]

P] < q] — Qlk(Plr--ka) < 22[k(qlr-“/qk)/

hold for the desired k-tuples (p1,...,px) € 35, (q1, ..., qr) € I*
The natural k represents the arity of the aggregation function when no confusion arises, and
the aggregation function can be given as 2.



Algorithms 2022, 15, 459

40f13

Now we consider some examples of aggregation functions. The arithmetic, the ge-
ometric, the projection, the order statistic, the minimum and maximum, the median are
aggregation functions.

Example 1. The arithmetic mean function AM : RF — R is defined by
1 k
AM(p) = % Z% pj-
=

Example 2. The geometric mean function GM : R¥ — R is defined by

where p( is the Sth lowest coordinate of p, i.e., pry < -+ < pig) < -+ - pk). Furthermore, the
following functions show the P F in the first and last coordinates

Pr(p) = P1(p) = p1, (10)
Pr(p) =Pi(p) =p

Example 4. The order statistic function OSg : RK — R with the Sth arqument and Ith lowest
coordinate is defined by

0Ss(p) = p(s)/
for any ¥ € [k].

Example 5. The minimum function and maximum function are defined as follows, respectively,
k
MIN(p) = A\ pj, (11)
j=1
k
MAX(p) = \/ pj-
j=1
Example 6. The median function is defined for odd and even values of (p1,-- -, pag_1) and

(p1, -+, pagy), respectively,

MED(p1,-++, Pas—1) = P(3)s (12)
P(s) T P(s+1)

MED(p1, -, pag) = AM(p(g), P(341)) = >

According to the above functions, we consider the following set:

—1|6 —||6 —1|6 —1|6
) (=, e <2, e 2B, <10

— 119l
T

A= {Exp( T

and the necessary calculations were performed on the considered set, and the results are
shown in the table below.
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From the calculations in Table 1, we consider the minimum function as the control
function and define it as follows

P (0) = \ {Exp(_He”

T

— el
T

—lel
T

), Ep(

—|le —|l0
e =L, g L i <10

In the following, after the table, in Figure 1, we provide a graphical representation of some
aggregation functions

Table 1. Calculation of aggregation function according to special functions for different values.

0 AM (D) GM (1) MAX (A) MIN (A) MED (A)
0.2 0.8080213850 0.1309431397 1.124151808  0.00005753566833 1.105170918
0.3 0.8643139212 0.1490999010 1.548626550  0.00008260506014  1.161834243
0.4 0.9247680550 0.1663238147 1.668199962 0.0001071434790 1.221402758
0.5 0.9898018722 0.1835845210 1.794667420 0.0001318755004 1.284025417
0.6 1.059899323 0.2013893746 1.928408155 0.0001573709088 1.349858808

Lx 107 i RN
8. % 107
AMGM 6. % 107
4% 107

2% 107

(c)

Figure 1. Graph of aggregate functions AM and GM for, T = 2 and different values 0. (a) The
aggregation arithmetic mean function for § € (%, %) (b) The aggregation arithmetic mean function

for 0 € (1.5,10.5). (c) The aggregation geometric mean function for 6 € (0, 10).

Definition 9. Consider the continuously differentiable random operator h(o, 0) and let ¢(6) be a
modular control function satisfying
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ve (M h0,0) — Flo.0(0,0) — [ K(0,0,0,1(0,0)a8) < gc(0),

foreach 0 € 1, T € Ep and ¢ € Y. If there exists a solution hy(o,0) of the VIDE (1) and a fixed
number C > 0 with

ve(fi(e,0) —To(0,0)) < ¢z (6),

forall® € B, T € Epand ¢ € Y, in which C is autonomous of h(o,6) and hy(o, 6), then we say
that (1) has Hyers—Ulam—Rassias stability.

3. Main Results

We assume the following:

Hypothesis 1 (H1). Let M, L, Ly > 0 be fixed numbers with M(Lf + Lk) € s and let the
CROsf: Y xE; xR =>Randk:Y x 51 x &1 x R = Rsatisfy

ve(f(e,8,7n) = f(e.6,72)) <v 7 (=), (13)

Ly
forall € Eq, iy, € R, T € Egand o € Y, and

vr(k(0,0,9,11) —k(0,0,8,h2)) <vz(hy —hy), (14)

i
forall 9,0 € Eq, hy,ip e R, T € Eyando € Y.

Theorem 1. Assume (H1), the nondecreasing random operator X € C(Y x Eq) with X' (0,0) # 0
and the continuously differentiable random operator i : Y x &1 — R satisfying

0
Ve (HID)ngh(Q,G)—f(g,@,h(g,e)) —/O k(e,e,ﬁ,h(e,ﬂ))dﬁ> <¢:(0), (15

forall0,0 € B, h e R, T € Eyand o € Y, where ¢ : E1 X Ep — Ea is a continuous modular
set with

[N -1
— < T
VT(/\M) /o N'(0,@)(N(0,0) —R(0,@))" " ¢(w, T)d(D) <9z (0), (16)
foreach 8 € By, T € Epand ¢ € Y. Then, we can find a unique CRO fig : Y x E1 — R, such that

_ A-1
Y ELCURL D

+ I3 f(0,0,10(0,0)) (17)

+ IR wk( 6,9,7o(0,9))dd
0+ 0 0,0,0, O(Qr )) ’

with Ty, "™ 1(0,0) = 9,0 < £ < 1,0 < x < 1and
ve((0,0) —T0(0,0)) < ¢ mc _(0), (18)

oreach € B, T € Epand o € Y.
0

Proof. For p,; € U, we set
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a(p,1) = inf{C € By ve(p(e,0) — 1(0,6)) < 92(6) },

foreachf € B, T € &y and ¢ € Y, where
U={p:YxE — RisCRO}.

Let ) : U — U be given by

_ A-1
el ) - Ne0)Na0) T,

+ T8 (0,0, 9(0,9))

70 [ k(0,0,8 8))do
Lo | . (0,0,9,0(c,9))dd|,

forallpe 1,0 € Ejand o € Y.

(19)

(20)

First we show () is strictly contractive on U. Let d(p,7) < Cg, for any p,; € U,

Cy; € &4 be a fixed number, then from (19) we have

vr(p(e,0) —1(e,0)) < ¢ = (0),

Cpy

foreach f € Eq, T € & and ¢ € Y. From (13), (14), (16), (20) and (21), we have

vr(Qp(o,0) — 0](9/ )

—ve( 5 [ ¥ (e@)0e0) - Xe@) e (fle@ ol0@) - flows(ew)

@
+Oke,919mf )) —k(e,0,9,1(e,9) >

°)
<ve( 7 [ e @(e0) - N(e.@) max {us
}

(flo @, p(o @
@
,VT( k(0,0,9,9(0,9)) —k(0,6,9,7(0,9) 19> dw)

1 ‘9 ,
VT(W N'(g,@)(R(g,0) — N(o, max{v%

—

<ve( g [} N e@)e0) ~Re.0) v 2 (vle@) - o,@)do)

Li+l;
6
< (ﬁ | ¥ @@ - Re@) e
< [/ — (9),

MCgJ/(Lf+Lk)

(w)dw)

[ S
Coy(L+L)

and we conclude that

0(Qp, Q) <¢__ = (0),

MCyy (L +Ly)

(21)

@)))

(22)

forall @ € By and T € E,. Hence, we deduce that 9(Qgp, () < [M(Lf + Lk)]a(p,]) for

any p,7 € U, and recall 0 < M(Lf + Lk) <L
Now (20), enables us to find C € &5, with
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vr(Qo(e,0) — 10(0,0))

_ A—1
=Vr ( (N(Q, 9) T(iggl 0)) o+ Igﬁf(@, 9/]0(9/9))

. @
+I§f[/0 f(Q,9,l9,Jo(Q,l9))dl9} —10(919))
<¢z(6),
for arbitrary jo € U, forall 8 € Eq, T € Ep and ¢ € Y. The boundedness property of

flo,@,10(0,@)), k(e,0,9,70(¢,8)), j0(e,0)

and (19) imply that 9(€)p, jo) < co. From the AFPT, we can findaCRO 15 : Y x &y — R
such that O"fig — hp in (U, d) and Qfy = hy.

Since j and i are bounded on Z; for each j € U and maxgcz, ¢(6) > 0, then we have
a fixed number C,, € &4 with

vr(j0(e,0) —1(0,0)) < fpcl](H),

forany 6 € 51, T € By and ¢ € Y. Thus 9(jp,7) < oo forany j € U.

Therefore, U = {j € U : 9(jp,]) < co}. Furthermore, the AFPT and (17), imply the
uniqueness of fiy.

Using (15) and (Theorem 5 in [9]), we have

_ A-1
N RLCURL

~ T (0,6,1(0,0)) — Io7 Uow k(o,6,9,h(0, ﬂ))dﬁ} )

< 15 ) N le.@)(R(e0) - Xo@) gr(@)io.

Then, from (16) and (20), we obtain

forany 6 € B, T € Ep and ¢ € Y, which implies
o(h, Qh) < M. (23)
From the AFPT and (23), we deduce that

1 M

A hg) < —— - B(ORH) < —
( O)_l—M(Lf+Lk)( ) 1—-M(Ls+ Ly)

which implies (18). O

Theorem 2. Consider {,x € Es and the nondecreasing random operator X € C'(Y x E;) with

N'(g,0) # 0 forall @ € Ey. Let Ly, Ly € Ej be fixed numbers such that (IE{AL{‘)) € Es.

Consider the CROs f : Y x By xR — Rand k : Y x By x By x R — R satisfying (13)
and (14), respectively. Let ¢ € Es, and consider the continuously differentiable random operator
h:Y x By — R such that
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ve (MDA R(0,0) — Flo.0(0,0) — [ K(0,0,0,h(0,0)d0) < 92(2),

and
ve (00,0 - %(0,0))) < (o),
forall 9,8 € E1,h € R, T € By and ¢ € Y. Then, we can find a unique CRO Ty : Y x 51 — R
satisfying (17) and
R(o, T) —N(0,0)) e (e
L(£41) = (R(e, T) = R(g, 0))[T Ly + L )]

forall e By, he R, t€Eyando €Y.

Proof. Let U = {p: Y x E; — Ris CRO}. Consider the complete E4-valued metric on U
given by

3)) = int{ C € 24 velple ) (e ) < (56 ) | @)

foreach € By, 7 € &y and ¢ € Y [10].
Consider Q) : U — U in which

_ A-1
() - @8 Ne0)

+Z5 f(0,0,0(0,0)) (26)
20 [ k0.0.8, 0060100,

forall € Eyand o € Y.
Let p,7 € U and consider a fixed number C,, € E4 such that d(gp,7) < C,; and

ve(9(0,0) — 1(0,6)) > ( r ) @)

T+ Cg)]

foreach § € Eq, T € & and ¢ € Y. Using (13), (14), (26) and (27), we have

vr(Qp(o,0) — (e, 0))

=<F(1€) [ W@ (800 - o) <f ®,0(0.0)) — fo,@,(0,@))

+/O(D k(Q,9,19, p(Q,ﬁ)) k(Q,Q 19] Qlﬁ) dﬁ) d(D)
<F(£) /09 N’(Ql (D)(N<Qr 6) - N(Q,w))ffl max {Vr(f(Q,LO, p(glw)) _ f(Q/CO,](Q,c’D)))
VT ( i k(Q, 6,9, @(Q/ 19)) - k(Q, 0, 19/](@/ ﬂ))dﬁ) }dw

< )Z 1 )

m 09 N'(0,@)(R(0,0) — N(0,@))" ! max {v f(p(g,ay —(0,@))

<o [ ¥ @@ 0) = Re@) v, < (9(0.0) ~ (0,@)ie)
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<y 1"(1@ /09 N (g,@)(R(g,0) — R(o,@))" ! (T(Lf“k)) dcv)

T+ Cg)]
T (¢ + 1)(Lf + Lk)
<vr | (R(e,0) —R(e,0)) ( I(£+1)(t+Cy) ))
T
< e | (R(0,0) ~R(2,0), Ernn
T(£+1)(t+Cyy)

<v____« (),
( T(Lf+Lk) )
T(¢+1)(t+Cgy)

foreach 6 € 51, T € 5 and ¢ € Y. Therefore

v(Ly+ L)
3(Qp, Q) < T+ 1)(+Cy) (,7),

foreach p,j € Uand ¢ € Y. Let jp € U. We can find a fixed number C € &, with

vr(Qo(e,0) —10(0,0))

_ A1
= (O E 0 e )

. @
+ I [/0 k(0,0,8,j0(e, 19))d19} ]o(Qr9)>
T
= T+C’

forall € Eyand o € Y.
The boundedness of

flo,@,50(0,@)),a,k(e,0,8,70(e,9)), 10(0,0)

and (25), imply that 9(Qjo, jo) < oo.

By the AFPT, we can find a CRO fip : Y x E; — R with Q") — hg in (U,0) and
Qhy = hy, so hy satisfies (17). By Theorem 1, we obtain {; € U : 9(jp,]) < oo} = U.
Furthermore, the AFPT and (17) imply the uniqueness of 7.

Now, using (15) and (Theorem 5 in [9]), we have

_ A—1
v i (1g0) - SEDTEEON 0 - 210 0000 0)

(R(e,T)-N(e0))

— ¥ [/Ow k(0,6, 8, 7o o, ﬂ))dﬁ] >

< ¢<(e),

forall € Ey and ¢ € Y, which implies

— /
a(h, ) < gr(e) N ;)g +N1(>Q' 0)"

By the AFPT and (19), we deduce that
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7(T(C+1) = (R(e, T) = R(e,0))/[Ly + T L))
(R(e, T) — R(0,0))"
which implies (24) forall§ € E;. O

v

(7(e,0) —No(0,0)) < ¢<(e),

4. Example

Example 7. We consider the stochastic fractional nonlinear Volterra-IDE:

1

HDE ™ (g, 0) = 0.5(sin (g, 8)) + cos2((0, 6))) — 0.02(¢ + )
+ [70.03(sin?(71(0, 0)) + cos?((g,8))) cos(o + 6 + 9) + 4949, 28)
72 1(,0) = 9

where { = 1,k = 45, A = 1, f(0,0,h(0,0)) = 0.5(sin?(71(0,0)) + cos?((e,0))) — 0.02(0 +
0), k(0,6,9,1(0,0)) = 0.03(sin?(%(0,0)) + cos?(h(0,8))) cos(o + 0 + &) + 48. Considering
Lf =052, Ly = 0.03v/2 and M = 0.08, for functions f and k, we have

vr <0.5(sin2(h1 (0,0)) + cos?(h1(0,6))) — 0.02(0 + 6)

—0.5(sin?(T12(0,0)) — cos?(f2(0,0))) + 0.02(0 + 9)) (29)

<v 1 (hh—hy),
0.5v2

forall € Eq, i,y e R, T € Eyand o €Y, and
Ve <O.03(sin2(h1(g, 0)) + cos?(h1(0,0))) cos(o + 6 + 8)
— 49 — 0.03(sin?(f12(0,0)) — cos?(h2(0,0))) cos(o + 6 + 8) + 419) (30)

< T —
- Vomﬁ (hl hz),

forall 0,0 € Eq, hy,hp e R, T €Eyando €Y.
According to the function X € C(Y x &q) with X' (o,0) # 0, if we have

H 1 1.
vT< ngrﬁ’Nh(Q,G) = 0.5(sin*(1(0,0)) + cos*(h(0,6))) — 0.02(0 + 6)

+ [ ’ 0.03(sin?(7(0,0)) + cos2 (0, 8))) cos( + 6 + 8) + 4190119) (1)

< (PT(Q)/

forallg,0 € 51, h € R, T € Eyand o0 € Y, where ¢ : E1 X Ep — Hg is a continuous modular
set with

0 —4
(A(lg) | ¥ @0 - N(w))w(w,r)dco) < ¢ (0), (32)

foreach 0 € E1, T € Eyand ¢ € Y, then, we can find a unique CRO Iy : Y x &1 — R, such that
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N—=

ro(g0) = @O RO,

+73™05(sin? (o (0,0)) + cos? (1 (0, 0))) — 0.02(g + ) (33)

1. @
+IOS+’N {/0 0.03(sin?(f19(0,0)) + cos?(fg(0,8))) cos(o + 6 + 8) + 4048 |,

1.
with IOZ’FNF[(Q, 0) =9, and

ve(fi(e,0) —fio(0,0)) < ¢ __os: _(0), (34)

09400373450

where M(Lf + Lk) = 0.05996265503, for each 8 € E1, T € Epand 9 € Y.

In the following, we have shown the exact solution of Equation (28) in Figure 2.

—120

{100

(a) (b)

Figure 2. Graphic representation of the exact solution of Equation (28) for different values. (a) The
exact solution of stochastic fractional nonlinear Volterra-IDE for 6 € (1,10). (b) The exact solution of

stochastic fractional nonlinear Volterra-IDE 6 € (%, %)

5. Conclusions

In this paper, we have considered a nonlinear stochastic fractional Volterra integro-
differential equation, and we have presented a modular stability result for it. We have
investigated the stability in the considered space by introducing special functions and
considering the aggregation function, and we have obtained the best approximation for the
desired equation. An application of our results is also presented, and we have provided
graphical representations for some important functions and solved examples. In future
work, we hope to extend our results with a nonstandard finite difference scheme and
spatio-temporal numerical modeling [2,12-24].
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