
algorithms

Article

Towards Interactive Analytics over RDF Graphs

Maria-Evangelia Papadaki 1,2 , Nicolas Spyratos 3 and Yannis Tzitzikas 1,2,*

����������
�������

Citation: Papadaki, M.-E.;

Spyratos, N.; Tzitzikas, Y. Towards

Interactive Analytics over RDF

Graphs. Algorithms 2021, 14, 34.

https://doi.org/10.3390/a14020034

Academic Editors: Spyros Sioutas

and Andreas Kanavos

Received: 21 December 2020

Accepted: 21 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computer Science, FORTH-ICS, 70013 Heraklion, Greece; marpap@csd.uoc.gr
2 Department of Computer Science, University of Crete, 70013 Heraklion, Greece
3 Laboratoire de Recherche en Informatique, Université de Paris-Sud, 91400 Orsay, France;

nicolas.spyratos@lri.fr
* Correspondence: tzitzik@ics.forth.gr

Abstract: The continuous accumulation of multi-dimensional data and the development of Se-
mantic Web and Linked Data published in the Resource Description Framework (RDF) bring new
requirements for data analytics tools. Such tools should take into account the special features of RDF
graphs, exploit the semantics of RDF and support flexible aggregate queries. In this paper, we present
an approach for applying analytics to RDF data based on a high-level functional query language,
called HIFUN. According to that language, each analytical query is considered to be a well-formed
expression of a functional algebra and its definition is independent of the nature and structure of the
data. In this paper, we investigate how HIFUN can be used for easing the formulation of analytic
queries over RDF data. We detail the applicability of HIFUN over RDF, as well as the transformations
of data that may be required, we introduce the translation rules of HIFUN queries to SPARQL and
we describe a first implementation of the proposed model.

Keywords: analytics; RDF; linked data

1. Introduction

The amount of data available on the Web today is increasing rapidly due to successful
initiatives, such as the Linked Open Data movement (http://lod-cloud.net/). More and
more data sources are being exported or produced using the Resource Description Frame-
work (https://www.w3.org/RDF/) (or RDF, for short) standardized by the W3C. There are
thousands of published RDF datasets (see [1] for a recent survey), including cross-domain
knowledge bases (KBs) (e.g., DBpedia [2] and Wikidata [3]), domain specific repositories
(e.g., DrugBank [4], GRSF [5], ORKG [6], WarSampo [7], and recently COVID-19 related
datasets [8–10] as well as Markup data through schema.org.

Figure 1 shows the general picture of access services over RDF. Apart from Structured
Query Languages, we have Keyword Search systems over RDF (like [11]) that allow users
to search for information using the familiar method they use for Web searching. We can
also identify the category Interactive Information Access that refers to access methods that
are beyond the simple “query-and-response“ interaction, i.e., methods that offer more
interaction options to the user and also exploit the interaction session. In this category, there
are methods for RDF Browsing, methods for Faceted Search over RDF [12], as well as
methods for Assistive (SPARQL) Query Building (e.g., [13]). Our work falls in this category,
specifically we aim at providing an interactive method for analytics over RDF. Finally, in
the category natural language interfaces there are methods for question answering, dialogue
systems, and conversational interfaces.

As regards structured query languages, RDF data are mainly queried through struc-
tured query languages, i.e., SPARQL (https://www.w3.org/TR/rdf-sparql-query/), which
is the standard query language for RDF data. SPARQL supports complex querying using
regular path expressions, grouping, aggregation, etc., but the application of analytics to
RDF data and especially to large RDF graphs is not so straightforward. The structure of

Algorithms 2021, 14, 34. https://doi.org/10.3390/a14020034 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-3060-3403
https://orcid.org/0000-0001-8847-2130
https://doi.org/10.3390/a14020034
https://doi.org/10.3390/a14020034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://lod-cloud.net/
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.3390/a14020034
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/2/34?type=check_update&version=2


Algorithms 2021, 14, 34 2 of 22

such graphs tends to be complex due to several factors: (i) different resources may have
different sets of properties, (ii) properties can be multi-valued (i.e., there can be triples
where the subject and predicate are the same but the objects are different) and (iii) resources
may or may not have types. On the other hand, the regular methods of analytics are not
capable of analyzing RDF graphs effectively, as they (i) focus on relational data, (ii) can
only work with a single homogeneous data set, (iii) neither support multiple central con-
cepts, nor RDF semantics, (iv) do not offer flexible choices of dimension, measure, and
aggregation and (v) demand deep knowledge of specific query languages depending on
data’s structure.

Figure 1. An Overview of the Access Methods over RDF.

In view of the above challenges, there is a need for a simple conceptual model able
to guide data analysis over one or more linked data sets that demands no programming
skill. Motivated from this need, we are investigating an approach based on a high-level
query language, called HIFUN [14], for applying analytics to RDF graphs. We study how
that language can be applied to RDF data by clarifying how the concept of analysis context
can be defined, what kind of transformations are required and how HIFUN queries are
translated to SPARQL. Please note that with the translation approach that we focus on, we
can apply analytics to RDF sources, without having to transform the RDF data to relational
ones, nor to copy them.

The idea was first introduced in [15]. The current paper is an extended and enriched
version of that work presenting (a) a more complete related work, (b) a detailed analysis
of the applicability of HIFUN over RDF data, (c) the detailed algorithm for translating
HIFUN queries over RDF data, (d) the first implementation of an algorithm that makes
that translation.

The remainder of the paper is organized as follows: Section 2 discusses the require-
ments for analyzing RDF data and the research that has been conducted in that area.
Section 3 introduces the related background knowledge. Section 4 focuses on how HIFUN
can be used as an interface to RDF data. Section 5 investigates whether HIFUN can be
applied to RDF data. Section 6 details the translation algorithm, Section 7 discusses in-
teractivity issues, and finally Section 8 concludes this paper and suggests directions for
future research.

2. Requirements and Related Work

In this section, we describe the requirements of analyzing semantic warehouses and
we survey the related work that has been conducted in the area of RDF analytics.

2.1. Requirements

In decision-support systems, to extract useful information from the data of an appli-
cation, it is necessary to analyze large amounts of data accumulated over time—typically



Algorithms 2021, 14, 34 3 of 22

over a period of several months. This data is usually stored in a so-called “data warehouse”
and analysed along various dimensions and at various levels in each dimension [16]. The
end users of such warehouses are mainly analysts and decision-makers, who invariably
ask for data aggregations (e.g., total sales by branch).

During last decade the development of Semantic Web data has led to the emergence
of semantic warehouses; specific-domain warehouses [17,18] or general-purpose knowl-
edge bases (e.g., DBpedia and WikiData (https://www.wikidata.org)). Thus, it would be
useful if the data of these warehouses could be analyzed to extract valuable information
(e.g., identify patterns, predict values, discover data correlations), check the quality of
semantic integration activities (e.g., for measuring the commonalities between several
data sets [19,20]) or monitor the content and the quality of them (e.g., by evaluating the
completeness or the representativeness of its data etc.).

However, the analysis of such warehouses introduces several challenges [21]. The
data heterogeneity, its lack of a strict structure, its rich semantics and the possibility of
incomplete data sources significantly complicates their analysis. For example, although one
can reasonably expect to find information about a particular concept, they cannot always
find specific information for all the instances of it (e.g., the opening hours or closing days
of all branch stores). Moreover, data warehouses follow a star schema and thus, the facts
can be analyzed based on certain dimensions and measures, the choice of which is made
at the data warehouse design time (e.g., if “branch” and “product” have been defined as
dimensions, then aggregations over them are not allowed; one cannot find “the number of
branches established in 2020, since “branch” is a dimension and relational data cubes do
not allow aggregating over dimensions). In addition, different concepts (e.g., “branches”,
“products”, “people”) can be analyzed, only if each of them is modeled by a different
schema and stored in a distinct data warehouse. Finally, even though such warehouses
host data published along with a schema (which can facilitate the understanding of data),
the structure of it tends to be complex. Please also note that the end-users, who are usually
non-specialists, are unable to read the schema and formulate the queries necessary for their
data analysis. Thus, it would be useful if apart from native RDF data, one could analyze
and deduce further knowledge (inference) from RDF schemas, too (e.g., ask for all the
relationships linking products to other entities).

Therefore, there is a need to be able to apply analytics to any kind of RDF graph—not
only to multidimensional data expressed in RDF, but also to domain-specific or general-
purpose semantic data; a way that will be applicable to several RDF data sets, as well as to
any data source. In general, we need an analytical tool that will allow the user to select the
desired data set(s) or desired parts thereof, define the features (s)he is interested in at the
query time, formulate an analytic query without having any programming background
knowledge and will display the results in the form of tables, plots or any other kind of
visualization for intuitive exploration.

2.2. Related Work

Statistical data is published as linked data in order to be combined with data sets
that are published in disparate sources on the Web. Such data should have been modeled
as data cubes describing data in a multi-dimensional fashion. To this end, the RDF data
cube vocabulary (https://www.w3.org/TR/vocab-data-cube/) (QB) is employed. This
vocabulary provides a means to publish such data on the web using the W3C RDF standard.
It consists of three main components: (i) the measures , which are the observed values of
primary interest, (ii) the dimensions, which are the value keys that identify the measure
and (iii) the attributes, which are the metadata. However, even though that vocabulary
can be used for structuring and publishing multi-dimensional data, it cannot be used for
applying analytics over it. In view of this limitation, several approaches were proposed.

These approaches can be divided into two major groups: (i) those assuming that the
multidimensional data (MD) i.e., data related to more than two dimensions, has already
been represented in the RDF format and (ii) those that do not. Our approach, as well as the

https://www.wikidata.org
https://www.w3.org/TR/vocab-data-cube/


Algorithms 2021, 14, 34 4 of 22

works in [22–24] are related to the first group. On the other hand, the work in [25] considers
that the multidimensional data has been stored as non-RDF data sets. In particular, it
declares that the data cubes are retrieved from a relational database with SQL queries and
then get triplicated.

The representation of MD data in RDF can further be organized in two categories:
(i) those that are based on specialized RDF vocabularies [23,26] and (ii) those that implicitly
define a data cube over existing RDF graphs (https://team.inria.fr/oak/projects/warg/) [24,27,28].
Even though the second category is promising, it cannot guarantee that the cubes on
RDF graphs will be multi-dimensional compliant [23]. Additionally, to the best of our
knowledge, the existing approaches support only homogeneous graphs [27], and thus
they cannot handle any multi-valued attributes (e.g., a person being both “Greek” and
“French”), nor semantics.

The existing methods can also be classified into (i) those that require programming
knowledge for analyzing the data and (ii) those that do not deal with lower-level techni-
calities. The work in [29] presents a system for analytics over (large) graphs. It achieves
efficient query answering by dividing the graph into partitions. However, in contrast to our
work, the user should have some programming knowledge, since it is necessary to write
a few lines of code to submit the query. The work in [30] presents a method for applying
statistical calculations on numerical linked data. It stores the data in arrays and performs
the calculations on the arrays’ values. Nevertheless, contrary to our work, it requires deep
knowledge of SPARQL for formulating the queries.

To overcome one’s difficulty in background programming knowledge, high-level
languages have been developed for data analysis, too. However, there has not been much
activity in introducing high-level languages suitable for analytics on RDF data. While
general-purpose languages, such as PIG Latin [31] and HiveQL [32] can be used, they
are not tailored to address the peculiarities of the RDF data model. Even though, [33,34]
present high-level query languages enabling OLAP querying of an extended format of
data cubes [23], they are only applicable to data already represented and published using a
corresponding vocabulary. As a consequence, they fall short in addressing a wide variety of
analytical possibilities in non-statistical RDF data sources. In addition, [31] proposes a high-
level language that supports semantics. However, it is targeted at processing structured
relational data, limiting its use for semi-structured data such as RDF. Furthermore, it
provides only a finite set of primitives that is inadequate for the efficient expression of
complex analytical queries.

A survey that is worth mentioning is [35], which introduces warehouse-style RDF
analytics. There are similarities with our approach, since each analytical schema node
corresponds to an RDF class, while each edge corresponds to an RDF property. Nonetheless,
since the facts are encoded as unary patterns, they are limited to vertices instead of arbitrary
sub-graphs (e.g., paths). Other related work includes [24] that focuses on how to reuse the
materialized result of a given RDF analytical query (cube) in order to compute the answer
to another cube, as well as recent systems for analytics over RDF such as Spade [36] that
suggests to users aggregates that are visually interesting.

In brief, in contrast to the aforementioned works, in this paper, we focus on developing
a user-friendly interface, where the user will be able to apply analytics to RDF data without
dealing with lower-level technicalities of SPARQL. Indeed HIFUN is more simple for
formulating analytic queries. We focus on the support of analytics over any RDF Data (not
only over data expressed according to RDF Data Cube), and we focus on a query translation
approach, i.e., an approach that does not require transforming or transferring the existing
data; instead it can be directly applied over a SPARQL endpoint. Furthermore, the query
translation approach allows exploiting the RDF Schema semantics that is supported by
SPARQL, i.e., the inferred RDF triples are taken into account in the evaluation of the
analytic queries.

https://team.inria.fr/oak/projects/warg/


Algorithms 2021, 14, 34 5 of 22

3. Background
3.1. Principles of Resource Description Framework (RDF)

Resource Description Framework (RDF) The Resource Description Framework
(RDF) [37,38] is a graph-based data model for linked data interchanging on the web. It
uses triples i.e., statements of the form subject´ predicate´ object, where the subject corre-
sponds to an entity (e.g., a branch, a product, etc.), the predicate to a characteristic of the
entity (e.g., name of branch) and the object to the value of the predicate for the specific sub-
ject (e.g., “branch1”). The triples are used for relating Uniform Resource Identifiers (URIs)
or anonymous resources (blank nodes) with other URIs, blank nodes or constants (Literals).
Formally, a triple is considered to be any element of T “ pU Y Bq ˆ pUq ˆ pU Y B Y Lq,
where U, B and L denote the sets of URIs, blank nodes and literals, respectively. Any finite
subset of T constitute an RDF graph (or RDF data set).

RDF Schema. RDF Schema (https://en.wikipedia.org/wiki/RDF_Schema) (RDFS)
is a special vocabulary which comprises a set of classes with certain properties using
the RDF extensible knowledge representation data model. Its intention is to structure
RDF resources, since even though RDF uses URIs to uniquely identify resources, it lacks
semantic expressiveness. It uses classes to indicate where a resource belongs, as well as
properties to build relationships between the entities of a class and to model constraints. A
class C is defined by a triple of the form ăC rdf:type rdfs:Classą using the predefined class
“rdfs:Class” and the predefined property “rdf:type”. For example, the triple ăex:Product
rdf:type rdfs:Classą indicates that “Product” is a class, while the triple ăex:product1
rdf:type ex:Productą that individual “product1” is an instance of class Product. A property
can be defined by stating that it is an instance of the predefined class “rdf:Property”. Op-
tionally, properties can be declared to apply to certain instances of classes by defining their
domain and range using the predicates “rdfs:domain” and “rdfs:range”, respectively. For
example, the triples ăex:hasProduct rdf:type rdf:Propertyą, ăex:hasProduct rdfs:domain
ex:Branchą, ăex:hasProduct rdfs:range ex:Productą, indicate that the domain of the prop-
erty “hasProduct” is the class “Branch” and its range the class “Product”. RDFS is also
used for defining hierarchical relationships among classes and properties. The predefined
property “rdfs:subclassOf” is used as a predicate in a statement to declare that a class is a
specialization of another more general class, while the specialization relationship between
two properties is described using the predefined property “rdfs:subPropertyOf”. For exam-
ple, the triple ăex:Branch rdfs:subClassOf ex:Storeą denotes that the class “Branch” is sub-
class of “Store”, while the triple ăex:hasDrinkProduct rdf:subPropertyOf ex:hasProductą
that the property “hasDrinkProduct” is sub-property of “hasProduct”. Moreover, RDFS
offers inference functionality (https://www.w3.org/standards/semanticweb/inference)
as additional information (i.e., discovery of new relationships between resources) about the
data it receives. For example, if ăex:Coca-Cola rdf:type ex:Drinką and ăex:Drink rdf:type
ex:Productą, then it can be deduced that “ex:Coca-Cola rdf:type ex:Product”.

We shall use the example of Figure 2 as our running example throughout the paper.
It is an RDF Graph containing information about invoices and related information about
them. Each invoice has a URI, e.g., the invoice with URI ex:ID4. That invoice participates
to the following five triples:
ex:ID4 rdf:type ex:Invoice .
ex:ID4 ex:hasDate “2019-05-09” .
ex:ID4 ex:takesPlaceAt ex:branch3 .
ex:ID4 ex:delivers ex:product4 .
ex:ID4 ex:inQuantity “400”.
meaning that the type of “ex:ID4” is Invoice, it took place in “2019-05-09” at “branch3”,
and delivered 400 items of ex:product4. Since data is in RDF each product has a URI and in
this particular example we can see that the brand of “product4” is “Hermes” and that the
founder of that brand is “Manousos”, who is both Greek and French.

https://en.wikipedia.org/wiki/RDF_Schema
https://www.w3.org/standards/semanticweb/inference


Algorithms 2021, 14, 34 6 of 22

Figure 2. Running example.

3.2. HIFUN– A High Level Functional Query Language for Big Data Analytics

HIFUN [14] is a high-level functional query language for defining analytic queries
over big data sets, independently of how these queries are evaluated. It can be applied
over a data set that is structured or unstructured, homogeneous or heterogeneous, centrally
stored or distributed.
Data set Assumptions. To apply that language over a data set D, two assumptions should
hold. The data set should (i) consist of uniquely identified data items, and (ii) have a set
of attributes each of which is viewed as a function associating each data item of D with a
value, in some set of values. For example, if the data set D is a set of all delivery invoices
over a year in a distribution center (e.g., Walmart) which delivers products of various
types in several branches, then the attribute “product type” (denoted as pt) is seen as a
function pt : D Ñ String such that, for each invoice i, pt(i), the type of product is delivered
according to the invoice i.

Definition 1 (Analysis Context). Let D be a data set and A be the set of all attributes (a1, ..., ak)
of D. An analysis context over D is any set of attributes from A, and D is considered the origin
(or root) of that context.

Roughly speaking, an analysis context is an acyclic directed labeled graph whose
nodes and arrows satisfy the following conditions:

1. one or more roots (i.e., nodes with no entering arrows representing the objects of an
application) may exist

2. at least one path from a root to every other node (i.e., attributes of the objects) exists
3. all arrow labels are distinct
4. each node is associated with a non-empty set of values

The number of roots of an analysis context indicates the number of data sets it is
related to. While one root means that data analysis concerns a single data set, the existence
of two or more roots means that data analysis relates to two or more different data sets,
possibly sharing one or more attributes.

Figure 3 shows our running example, expressed as a context. From a syntactic point
of view, the edges of it can be seen as triples of the form (source, label, target).



Algorithms 2021, 14, 34 7 of 22

Brand Founder Nationality

f n

Year Month Date

y m

D

d

Quantity

q

Branch

b

Product

p

br

Figure 3. Running example expressed as a HIFUN context.

Direct and Derived Attributes. The attributes of a context are divided into two groups,
the direct and the derived. The first group contains the attributes with origin D: these are the
attributes whose values are given. The second group contains the attributes whose origins
are different than D and whose values are computed based on the values of the direct
attributes. For example, in Figure 3 the attributes d, b, p and q are direct as their values
appear on the delivery invoice D, whereas m and y are derived, since their values can be
computed from those of the attribute d (e.g., from the date 26/06/2019 one can derive the
month 06 and the year 2019).

Definition 2 (HIFUN Analytic Query). A query in HIFUN is defined as an ordered triple
Q “ pg, m, opq such that g and m are attributes of the data set D with a common source and op
is an aggregate operation (or reduction operation) applicable on m-values. The first component
of the triple is called grouping function, the second measuring function (or the measure) and the
third aggregate operation (or reduction operation).

Roughly speaking, an analytical query Q is a path expression over an analysis context
C; a well formed expression whose operands are arrows from C and whose operators are
those of the functional algebra. It is formulated using paths starting at the root and is
evaluated in a three-step process, as follows: (i) items with the same g-value gi are grouped,
(ii) in each group of items created, the m-value of each item in the group is extracted from
D and (iii) the m-values obtained in each group are aggregated to obtain a single value vi.
Actually, the aggregate value vi is the answer of Q on gi. This means that a query is a triple
of functions and its answer AnsQ is a function, too.

4. Using HIFUN as an Interface to RDF Dataset

There are several ways in which HIFUN can be used, such as for studying rewriting
of analytic queries in the abstract [14] or for defining an approach to data exploration [39].
In this paper, we use HIFUN as a user-friendly interface for defining analytic queries over
RDF data sets. To understand the proposed approach, consider a data source S with query
language L (e.g., S could be a relational data set and L the SQL language). In order to use
HIFUN as a user interface for S, we need to (a) define an analysis context, that is a subset
D of S to be analyzed, and some attributes of D that are relevant for the analysis and (b)
define a mapping of HIFUN queries to queries in L.

Defining a subset D of S can be done using a query of L and defining D to be its
answer (i.e., D is defined as a view of S); and similarly, the attributes that are relevant
to the analysis can be defined based on attributes of D already present in S. However,
defining a mapping of HIFUN queries to queries in L might be a tedious task. In [39] such
mappings have been defined from HIFUN queries to SQL queries and from HIFUN queries
to MapReduce jobs.

The main objective of this paper is to define a user-friendly interface allowing users to
perform analysis of RDF data sets. To this end, we use the HIFUN language as the interface.
In other words, we consider the case where the data set S mentioned above is a set of RDF
triples and its language L is the SPARQL language. Our main contributions are: (a) the
proposal of tools for defining a HIFUN context from the RDF data set S and (b) defining
a mapping from HIFUN queries to SPARQL queries. With these tools at hand, a user of
the HIFUN interface can define an analysis context of interest over S and issue analytic
queries using the HIFUN language. Each such query is then translated by the interface to



Algorithms 2021, 14, 34 8 of 22

a SPARQL query, which in turn is evaluated over the RDF triples of D and the answer is
returned to the user.

5. Applicability of HIFUN over RDF

In Section 5.1 we discuss the prerequisites for applying HIFUN over RDF, and then
(in Section 5.2) we describe two methods for applying HIFUN over RDF: over the original
data (in Section 5.3), and after transforming the original data (in Section 5.4).

5.1. Prerequisites for Applying HIFUN over RDF Data

Two assumptions should hold to apply HIFUN over a data set D, (i) the unique
identification of its data items and (ii) the functionality of its attributes.

RDF data. The first assumption, the unique identification of the data items, is satis-
fied by the RDF data, since each resource is identified by a distinct URI. Consequently,
D can be any subset of the set of all the available URIs. The second assumption, the
functionality of attributes, is partially satisfied by the RDF properties. The functional (i.e.,
owl:FunctionalProperty) or the effectively functional properties (i.e., even if they are not
declared as functional, they are single-valued for the resources in the data set D) have only
one unique value for each instance. However, there are also properties in RDF with (i)
no or (ii) multiple values; a non-value property implies that a value may not exist (or it is
unknown even if it exists) or it is incomplete, while a multi-valued infers that a property
has more than one values for the same resource. Such cases require transforming the
original data before applying HIFUN to it. These transformations can be made using the
operators that will be described in Section 5.4.

RDF Schema. Each resource of an RDF schema is identified by a distinct URI;
therefore, its data items are uniquely identified. However, a property (e.g., rdf:type,
rdfs:subClassOf etc.) may appear more than once by relating different classes or classifying
concepts in more than one classes (i.e., a class might be sub-class of several super-classes).
Nevertheless, these relationships are considered distinct since they have different domain
and/or range. Therefore, HIFUN allows analytics not only over the data, but over RDF
schema(s) as well. Inference is supported, too, since it refers to automatic procedures that
generate new relationships based on a set of rules; a process that is independent of HIFUN.

5.2. Methods to Apply HIFUN over RDF

We can identify two main methods for applying HIFUN over RDF:

I: Defining an Analysis Context over the Original RDF Data. Here the user selects
some properties, all satisfying the aforementioned assumptions. This is discussed in
Section 5.3.

II: Defining an Analysis Context after Transforming the Original RDF Data. Here the
user transforms parts of the RDF graph in a way that satisfies the aforementioned
assumptions. This is discussed in Section 5.4.

5.3. I: Defining an Analysis Context over the Original RDF Data

Definition 3 (Analysis Context). An analysis context C over RDF data is defined as a set of
resources R to be analyzed along with a set of properties p1, p2, ..., pn that are relevant for the
analysis.

As the root of an analysis context in RDF can be selected any class (i.e., set of re-
sources) of an RDF graph and as attributes any properties of that graph. For exam-
ple, any of the classes “ex:Invoice”, “ex:Branch”, “ex:Product”, “ex:Brand”, “ex:Person”,
“ex:Nationality” of Figure 2 can be selected as the root of the context, while any of the
properties “ex:hasDate”, “ex:takesPlaceA”, “ex:delivers”, “ex:inQuantity”, “ex:Brand”,
“ex:founder”, “ex:nationality” as the attributes of it.



Algorithms 2021, 14, 34 9 of 22

5.4. II: Defining an Analysis Context after Transforming the Original RDF Data

A few feature operators that could be used for transforming the original (RDF) data to
be in compliance with the assumptions of HIFUN are indicated in Table 1. That table lists
the nine most frequent Linked Data-based Feature Creation Operators (for short FCOs), as
defined in [40], and they have been re-grouped according to our requirements. T denotes
a set of triples, P a set of properties and p, p1, p2 properties. In detail,

• f co1 suits to the normal case and it can be exploited to confirm that all the properties
are functional e.g., the date that each product was delivered, the branch where each
invoice took place. The value can be numerical or categorical.

• f co2 and f co3 relate to issues that concern missing and multi-valued properties and
can be used for turning properties with empty values into integers.

• f co4 can be used for converting a multi-valued property to a set of single-valued
features, e.g., one boolean feature for each nationality that a founder may have.

• f co5 and f co6 concern the degree of an entity and can be used to find the set of triples
that contains a specific entity, defining its importance.

• f co7 to f co9 investigate paths in an RDF graph, e.g., whether at least one founder of a
brand is “French”. It can be used for specifying a path (i.e., a sequence of properties
p1, p2, ..., pn etc.) and treat it as an individual property p.

Table 1. Feature Creation Operators.

id Operator Defining fi Type fipeq

Plain selection of one property

1 p.value num/categ fipeq “ t v | pe, p, vq P T u

For missing values and multi-valued properties

2 p.exists boolean fipeq “ 1 if pe, p, oq or po, p, eq P T , otherwise fipeq “ 0

3 p.count int fipeq “ |t v | pe, p, vq P T u|

For multi-valued properties

4 p.values.AsFeatures boolean
for each v P t v | pe, p, vq P T u we get the feature fivpeq “ 1
if pe, p, vq or pv, p, eq P T ,
otherwise fivpeq “ 0

General ones

5 degree double fipeq “ |tps, p, oq P T | s “ e or o “ eu|

6 average degree double fipeq “
|triplespCq|

|C| s.t. C “ t c | pe, p, cq P T u and
triplespCq “ tps, p, oq P T | s P C or o P Cu

Indicative extensions for paths

7 p1.p2.exists boolean fipeq “ 1 if D o2 s.t. tpe, p1, o1q, po1, p2, o2qu Ď T

8 p1.p2.count int fipeq “ |t o2 | pe, p1, o1q, po1, p2, o2q P T u|

9 p1.p2.value.maxFreq num/categ fipeq “most frequent o2 in
t o2 | pe, p1, o1q, po1, p2, o2q P T u

These features can be used for deriving a new RDF dataset that will be analyzed
with HIFUN. This transformation can be done by using SPARQL CONSTRUCT queries:
Suppose that the pair pR, Fq expresses a context, where R is a set of resources and F the
set of the features, the objects in R have. Then, the resources R, as well as the features
F, can be defined by the triple patterns i.e., “?s ?p ?o” in the CONSTRUCT clause of a
SPARQL query, i.e., the bindings of “s” (or “o”) can correspond to the resources, whereas
the bindings of “p” to the set of features. Alternatively, these features can be defined by
queries, but instead of constructing the triples, the definition of the features can be included
in the analytic queries in the form of nested queries (subqueries); in general any query



Algorithms 2021, 14, 34 10 of 22

translation method for virtual integration [41] can be used. A concrete example will be
given in Section 6.6.

Finally, we should mention that the above list is by no means complete; the list of
feature operators can be expanded to cover the requirements that arise.

6. Translation of HIFUN Queries to SPARQL

Here we focus on how to translate a HIFUN query, over an analysis context over RDF
(case I), to a SPARQL query. Roughly, the grouping function will eventually yield variable(s)
in the GROUP BY clause, the measuring function will yield at least one variable in the
WHERE clause, and the aggregate operation corresponds to the appropriate aggregate
SPARQL function in the SELECT clause (over the measuring variable). We explain the
translation method gradually using examples, assuming the running example of Figure 2.

6.1. Simple Queries

Suppose that we would like to find the total quantities of products delivered to each
branch. This query would be expressed in HIFUN as ptakesPlaceAt, inQuantity, SUMq
and in SPARQL as (for reasons of brevity we assume the namespace prefix “ex” for each
property of the following queries):

SELECT ?x2 SUM(?x3)

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

}

GROUP BY ?x2

Therefore a HIFUN query (g, m, op) is translated to SPARQL as follows: the function
g is translated to a triple pattern ?x1 g ?x2 (in the WHERE clause) and the variable ?x2 is
added to the SELECT clause, and in the GROUP BY clause. The function m is translated to
a triple pattern ?x1 m ?xN in the WHERE clause, where xN denotes a new variable. Finally,
the function op is translated to a opprightpmqq in the SELECT clause, where rightpmq refers
to the “right” variable of the triple pattern derived by the translation of m, i.e., to ?xN , in
our example SUM(?x3).

6.2. Attribute-Restricted Queries

Suppose that we would like to find the total quantities of products, delivered to one
particular branch, say branch1. This query would be expressed in HIFUN as
ptakesPlaceAt{branch1, inQuantity, SUMq and in SPARQL as:

SELECT ?x2 SUM(?x3)

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

?x1 ex:takesPlaceAt branch1 .

}

GROUP BY ?x2

Therefore for translating the HIFUN query (g{v, m, op) we translate the restriction
v by adding in the WHERE clause the triple pattern ?x1 g v. Please note that here the
restriction value refers to a URI. If that value had been represented with a literal, then a
FILTER statement would have to be added in the WHERE clause. For example, consider the
following example (where in this case the restriction is applied to the measuring function):
Suppose that we would like to find the total quantities of products, delivered to each branch
by considering only those invoices with quantity greater than or equal to 1. This query



Algorithms 2021, 14, 34 11 of 22

would be expressed in HIFUN as ptakesPlaceAt, inQuantity{ą“1, SUMq and in SPARQL
as:

SELECT ?x2 SUM(?x3)

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

FILTER(?x3 ě xsd:integer(“1”)) .

}

GROUP BY ?x2

Consequently, a literal-attribute restriction in a HIFUN query (g, m{cond, op) would
be translated by adding in the WHERE clause the following constraint FILTER(rightpmq
cond).

6.3. Results-Restricted Queries

Suppose that we would like to find the total quantities of products, delivered to each
branch, but only for branches with total quantity greater than 1000. This query would be
expressed in HIFUN as, ptakesPlaceAt, inQuantity, SUM{ą1000q and in SPARQL as:

SELECT ?x2 SUM(?x3)

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

}

GROUP BY ?x2

HAVING (SUM(?x3) ą 1000)

Therefore for translating the HIFUN query (g, m, op{cond) we translate the restriction
cond by adding a HAVING clause with the following constraint HAVING Rightpmq cond.

6.4. Complex Grouping Queries

A grouping (as well as a measuring) function in HIFUN can be more complex using the
following operations on functions, as defined in [14]: composition (˝) and pairing (b). These
operations form the so-called functional algebra [16] and they are well known, elementary
operations.

6.4.1. Composition

Suppose that we ask for the total quantities of products delivered by brand. This
query would be expressed in HIFUN as (brand ˝ delivers, inQuantity, SUM), and in SPARQL
as:

SELECT ?x3 SUM(?x4)

WHERE {

?x1 ex:delivers ?x2 .

?x2 ex:brand ?x3 .

?x1 ex:inQuantity ?x4 .

}

GROUP BY ?x3

Therefore, a HIFUN query ( fk ˝ ,..., ˝ f2 ˝ f1, m, op) would be translated as follows.
At first note that if instead of the composition we had one function f1, then it would be
interpreted as a single query, i.e., we would add the triple pattern ?x1 f1 ?x2 to the WHERE
clause and the variable right( f1) would be added to the SELECT and to the GROUP BY



Algorithms 2021, 14, 34 12 of 22

clause. If we had the composition of two functions ( f2 ˝ f1), then we would add the triple
patterns ?x1 f1 right( f1) and right( f1) f2 ?xf2r (where xf2r is a brand new variable) to the
WHERE clause and the variable right( f2) to the SELECT and to the GROUP BY clause.

Now suppose that the composition function comprises k functions, ( fk ˝, ..., ˝ f2 ˝ f1),
which would be translated to the triple patterns ?x1 f1 right( f1), right( f1) f2 right( f2), ...,
right( fk´1) fk right( fk) to the WHERE clause and the variable right( fk) to the SELECT and to
the GROUP BY clause. If we added one more function to the composition (reaching to k+1
functions), i.e., ( fk`1 ˝ fk ˝, ..., ˝ f2 ˝ f1), we would have to add the triple pattern right( fk)
fk`1 ?xnew (where ?xnew is a brand new variable) to the WHERE clause and to replace the
variable right( fk) with the right( fk`1) in the SELECT and in the GROUP BY clause.

Now we shall provide an example of composition with a derived attribute. Suppose
that we ask for the total quantities of products delivered by month. This query would be
expressed in HIFUN as (month ˝ date, inQuantity, SUM) and in SPARQL as:

SELECT month(?x2) SUM(?x3)

WHERE {

?x1 ex:hasDate ?x2 .

?x1 ex:inQuantity ?x3 .

}

GROUP BY month(?x2)

Therefore, a HIFUN query p f ˝ g, m, opq, where the attribute f derives from g, would
be translated by adding to the WHERE clause the triple pattern ?x1 g ?xf2r (where ?xf2r is
a brand new variable). Then, f would be derived from rightpgq by adding to the SELECT
and to the GROUP BY clauses a SPARQL build-in function i.e., f(right(g)) (in our example
month(?x2)); this function would extract the value f from that of rightpgq.

6.4.2. Pairing

Suppose that we would like to find the total quantities delivered by branch and prod-
uct. This query would be expressed in HIFUN as pptakesPlaceAtb deliversq, inQuantity, SUMq
and in SPARQL as:

SELECT ?x2 ?x4 SUM(?x3)

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

?x1 ex:delivers ?x4.

}

GROUP BY ?x2 ?x4

Therefore, a HIFUN query ( fk b ,..., b f2 b f1, m, op) would be translated as follows:
we would add (i) the triple patterns ?x1 f1 right( f1), ?x1 f2 right( f2), ..., ?x1 fk right( fk) to
the WHERE clause and (iii) the variables right( f1), right( f2), ..., right( fk) to the SELECT and
to the GROUP BY clauses. In other words, we would join the pairing functions i.e., f1, f2,...,
fk on their shared variable i.e., ?x1.

6.5. The Full Algorithm for Translating a HIFUN Query to a SPARQL Query

Let us now describe the full translation algorithm. Let q “ pgE{rg, mE{rm, opE{roq be
a HIFUN query where

• gE is the grouping expression,
• mE is the measuring expression,
• opE is the operation expression, and
• rg is a restriction on the grouping expression,
• rm is a restriction on he measuring expression, and



Algorithms 2021, 14, 34 13 of 22

• ro is a restriction on the operation expression.

The final query is constructed by concatenating strings as shown below:

Q = “SELECT” +retVars(gE) + “ ”+opE(mE) +“\n”
+ “WHERE {” +“ \n”
+ triplePatterns(gE) +“ \n”
+ triplePatterns(mE) +“ \n”
+ “}” +“ \n”
+ “GROUP BY " +retVars(gE) +“ \n"
+“ HAVING " +restr(Qans)

The way the variables retVarspgEq, opEpmEq, triplePatternspgEq, triplePatternspmEq,
retVarspgEq, and restrpQansq are constructed, is described next

1. We start the translation with the grouping expression gE by creating the string format
of the triple patterns in which the terms gi of gE participates, triplePatterns(gE) += ?xi
gi rightpgiq, as described in Sections 6.1 and 6.4.
If gE contains any restriction rg we supplementarily create the string format of the
triple pattern expressing that constraint:

1.1. if rg refers to a URI, then triplePatterns(gE) += ?xi gi rg,
1.2. if rg is represented with a LITERAL, then triplePatterns(gE) += FILTER(rightpgiq

rg), as described in Section 6.2.

2. We proceed with the translation of the measuring expression mE by creating the
string format of the triple patterns in which the terms mi of mE participates, triplePat-
terns(mE) += xi mi rightpmiq. Since this expression can also be complex, the translation
is made as described in Sections 6.1 and 6.4.
If mE contains any restriction rm we supplementarily create the string format of the
triple pattern expressing that constraint:

2.1. if rm refers to a URI, then triplePatterns(mE) += ?xi mi rm,
2.2. if rm is represented with a LITERAL, then triplePatterns(mE) += FILTER(rightpmiq

rm), as described in Section 6.2.

3. Following, we create the string format of the returned variables, retVars(gE) +=
rightpgiq as described in Sections 6.1 and 6.4.

4. At last, we translate the aggregate expression opE by creating the string format of the
operation op applied over the values of mE, i.e., opEpmEq = op(rightpmiq), as described
in Section 6.1.

5. Optionally, if any restrictions re are applied to the final answers Qans, then we create
the string format of the condition expressing these constraints, restr(Qans) = right(mi)
re as described in Section 6.3.

To give an example suppose that we would like to find he total quantities by branch
and brand only for the month of January, by considering only (a) the invoices with quantity
greater than or equal to 2, and (b) the branches with total quantity greater than 1000. This
query would be expressed in HIFUN as
ptakesPlaceAt b pbrand ˝ deliversqq{month“01, inQuantityą“2, SUM{ą1000q and (by follow-
ing the above translation process) in SPARQL as:

SELECT ?x2 ?x5 SUM(?x3)

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

?x1 ex:delivers ?x4 .

?x4 ex:brand ?x5 .

?x1 ex:hasDate ?x6 .

FILTER((MONTH(?x6) = 01) && (?x3 ą“ xsd:integer("2")))



Algorithms 2021, 14, 34 14 of 22

}

GROUP BY ?x2 ?x5

HAVING (SUM(?x3) ą 1000)

The pseudocode of the algorithm that defines the variables retVarspgEq, opEpmEq,
triplePatternspgEq, triplePatternspmEq, retVarspgEq, and restrpQansq, for the simple case,
where the HIFUN query does not contain compositions and pairings, is given in Algorithm 1.

Algorithm 1 Algorithm for computing the components of the translated query for the Simple Case

Require: A HIFUN query q “ pg{rg, m{rm, op{roq

Ensure: retVarspgq, oppmq, triplePatternspgq, triplePatternspmq, retVarspgq, and restrpQansq

1: right(g)Ð newVariable()

2: triplePatterns(g).concat(?x1 g right(g)) Ź Grouping function

3: if rg ăą ε then Ź if rg is not empty

4: if rg.endsWithURI() then Ź Group restriction involving a URI

5: triplePatterns(g).concat(?x1 g rg) Ź The restriction is expressed as a triple pattern

6: else Ź Group restriction involving a literal

7: triplePatterns(g).concat(FILTER(rightpgq rg)) Ź The restriction is expressed as a filter

8: end if

9: end if

10: right(m)Ð newVariable()

11: triplePatterns(m).concat(?x1 m right(m) ŹMeasuring function

12: if rm ăą ε then Ź if rm is not empty

13: if rm.containsURI() then ŹMeasuring restriction involving a URI

14: triplePatterns(m).concat(rightpmqm rm) Ź The restriction is expressed as a triple pattern

15: else ŹMeasuring restriction involving a literal

16: triplePatterns(m).concat(FILTER(rightpmq rm)) Ź The restriction is expressed as a filter

17: end if

18: end if

19: retVars(g).concat(rightpgq) Ź for the SELECT and the GROUP BY clauses

20: oppmq = op(rightpmq) Ź for the SELECT clause

21: restr(Qans) = rightpmq ro Ź for the HAVING clause

However, in the general case we may have compositions in grouping, measuring
and restrictions. The way compositions are translated is described in Algorithm 2. The
extension of the composition algorithm that supports also derived attributes is given in
Algorithm 3. Please note that all predefined functions of SPARQL with one parameter can
be used straightforwardly as derived attributes.

In addition, Algorithm 2 shows how pairing is translated. If gE involves both pairing
and composition it will have the form gc1 b . . .b gck where each gci can be an individ-
ual function or a composition of functions. Such expressions are translated as follows:
translate(gE) = translatePairing(translateComposition(gc1) b . . .b translateComposition(gck)).
The exact steps for translating pairing of compositions are given in
Algorithm 2-PairingAndComposition.

Algorithm 4 is the algorithm for the general case, where compositions can occur in the
restrictions too. Notice that now rg is not necessarily a single URI or literal, but a path ex-
pression that ends with a URI or literal. In this scenario, instead of ptakesPlaceAt{“branch1”,
inQuantity, SUMq we write ptakesPlaceAt{takesPlaceAt“branch1, inQuantity, SUMq, and we
now support expressions of the form ptakesPlaceAt{location˝takesPlaceAt“ex:Athens, inQuantity,
SUMq. The path of the restriction is not necessarily the same with that of the grouping, e.g.,



Algorithms 2021, 14, 34 15 of 22

we can get the sum of quantities grouped by brand, only for those branches that are located
in Athens by the following query pbrand ˝ delivers{location˝takesPlaceAt“Athens, inQuantity, sumq.
Such expressions are supported also for the restriction rm of the measuring function.

Algorithm 2 Auxiliary algorithms for compositions and pairings

1: procedure COMPOSITION( f c “ fk ˝ . . . ˝ f1) Ź returns the triplePatterns and the retVars for a composition
2: tpÐ “”;
3: for i P 1..k do
4: right( fi)Ð newVariable()
5: if k=1 then
6: tp.concat(?x1 f1 right( f1))
7: else
8: tp.concat(right( fi´1) fi right( fi))
9: end if

10: end for
11: return tp, right( fk)
12: end procedure

1: procedure PAIRING( f p “ f 1b . . .b f k) Ź returns the triplePatterns and the retVars for a pairing expression
2: tpÐ “”; retVarsÐ “”
3: for i P 1..k do
4: right( fi)Ð newVariable()
5: tp.concat(?x1 fi right( fi))
6: retVars.concat(right( fi))
7: end for
8: return tp, retVars
9: end procedure

1: procedure PAIRINGANDCOMPOSITION( f p “ gc1 b . . .b gck) Ź Pairing over Compositions
2: tpÐ “”; retVarsÐ “”
3: for i P 1..k do
4: tp.concat(Composition(gci).tp)
5: retVars.concat(Composition(gci).retVars)
6: end for
7: return tp, retVars
8: end procedure

Algorithm 3 Algorithm for composition if derived attributes are involved

1: procedure COMPOSITIONSUPPORTINGDERIVED( f c “ fk ˝ . . . ˝ f1)
2: tpÐ “”; retVarsÐ “”;
3: for i P 1..k do
4: if fi is not a derived attribute then
5: right( fi)Ð newVariable()
6: if i=1 then
7: tp.concat(?x1 fi right( fi))
8: else
9: tp.concat(right( fi´1) fi right( fi))

10: end if
11: retVarsÐ rightp fiqq

12: else Ź Is a derived attribute
13: retVarsÐ fi(retVars) Ź No triple pattern will be produced
14: end if
15: end for
16: return tp, retVars
17: end procedure



Algorithms 2021, 14, 34 16 of 22

Algorithm 4 Algorithm for computing the components of the translated query for the General case

Require: A HIFUN query q “ pgE{rg, mE{rm, opE{roq

Ensure: retVarspgEq, opEpmEq, triplePatternspgEq, triplePatternspmEq, retVarspgEq, and restrpQansq

1: triplePatterns(gE) = PairingAndComposition(gE).tp Ź triplePatterns for Grouping

2: retVars(gE) = PairingAndComposition(gE).retVars Ź retVars for Grouping

3: if rg ăą ε then Ź if rg is not empty

4: triplePatterns(gE).concat(Composition(rg.functions).tp) Ź For supporting restrictions by compositions

5: t Ð last(triplePatterns(gE)) Ź the last triple pattern of triplePatterns(gE)

6: rgSu f f ix Ð rg.LastWord Ź The last token after the function composition

7: if isURI(rgSu f f ix) then Ź Group restriction involving a URI

8: Replace the right variable of t with rgSu f f ix

9: else Ź Group restriction involving a literal

10: Add “FILTER right(t) rg.op rgSu f f ix”

11: end if

12: end if

13: triplePatterns(mE) = Composition(mE).tp Ź triplePatterns for Measuring

14: restr(Qans) = Composition(mE).retVars ro Ź for the HAVING clause

15: if rm ăą ε then Ź if rm is not empty

16: triplePatterns(mE).concat(Composition(rm. f unctions).tp) Ź For supporting restrictions by compositions

17: t Ð last(triplePatterns(mE))

18: rmSu f f ix Ð rm.LastWord Ź The last token after the function composition

19: if isURI(rmSu f f ix) then ŹMeasuring restriction involving a URI ŹMeasuring restriction involving a URI

20: Replace the right variable t with rmSu f f ix

21: else ŹMeasuring restriction involving a literal

22: Add “FILTER right(t) rm.op rmSu f f ix"

23: end if

24: end if

25: opEpmEq = opE(Composition(mE).retVars) Ź for the SELECT clause

The above translation process can also support cases where the set of resources R of
an analysis context is defined by one unary query, a query that returns a set of URIs. If
qstrpRq denotes the string of that query, then qstrpRq can be used as the starting point of the
above (query translation) process, i.e., the triple patterns of qstrpRq will be the first to be
added to the triples patterns of our query Q; the only constraint is that qstrpRq should have
one variable ?x1 in the select clause.

In general, the translation algorithm works for all possible HIFUN queries.

6.6. Cases Where the Prerequisites of HIFUN Are Not Satisfied

Let us now discuss the problem of translation for the case where the requirements for
applying HIFUN (as described in Section 5.1) do not hold, as well as when features (as
described in Section 5.4) are required.

Consider that the running example of Figure 2 contained a property “ex:birthYear”
with domain the class “ex:Person” and range an integer-typed literal. Now suppose that
we would like to compute a single number being the average birth year of the founders of
the products that were sold. Here the problem of incomplete information arises, i.e., the
dataset may not contain information about the founders of all products, let alone their birth
year, therefore the path delivers.brand. f ounder.birthYear will not be “applicable” to several
invoices. If we formulate such a query in HIFUN, it will be translated to a SPARQL query



Algorithms 2021, 14, 34 17 of 22

that will be evaluated successfully; however the results will not be complete, i.e., only the
invoices for which the path delivers.brand. f ounder.birthYear exists will be considered.

Moreover, we may encounter the problem of multiple values, i.e., when a brand was
founded by more than one person. In that case, even if our dataset contained complete
information, the path delivers.brand. f ounder.birthYear would not be functional. If we
formulate such a query in HIFUN, it will be translated to a SPARQL query that will be
evaluated successfully; however the results will not be accurate, i.e., all paths will be taken
into account; valuating more than one birth year per product, not only one birth year per
product.

If we wanted to associate each product with only one birth year (before taking the
average over all products), then in case of multiple founders, we could define a feature that
computes the average birth year of each individual product. Having this feature enables
the subsequent formulation of a HIFUN query, that would compute the accurate answer.
There are several possible methods to define such features using the query language (as
mentioned in Section 5.4). In our example, the average birth year of the founder(s) for each
individual product can be computed by one query that yields a variable for that feature:

q f =

SELECT ?x2 AVG(?x5) as productFoundBirthYearAvg
WHERE {

?x1 ex:delivers ?x2 .

?x2 ex:brand ?x3 .

?x3 ex:founder ?x4 .

?x4 ex:birthYear ?x5 .

}

GROUP BY ?x2

To compute accurately that we want to (i.e., average birth year of the founders of
the products that were sold), we can exploit the notion of SPARQL subqueries (that was
mentioned in the last part of Section 5.4) to “embded” the aforementioned query q f .

Please note that subqueries are a way to embed SPARQL queries inside other queries
to allow the expression of requests that are not possible otherwise. Subqueries are evaluated
first and then the outer query is applied to their results. Only variables projected out of the
subquery (i.e., appearing in its SELECT clause) are visible to the outer query. Therefore the
features can be expressed as subqueries that can be placed in the WHERE clause.

In our case, the HIFUN query that computes the average birth year of the founders of
the products would have the following form: Q “ pε, product.productFoundBirthYearAvg,
AVGq, where productFoundBirthYearAvg is a feature (according to Table 1 we would write
productFoundBirthYearAvg “ delivers.brand. f ounder.birthYear.avg); note that ε denotes
the empty grouping function, since in our example we do not want to group the results,
just to apply AVG to the entire set. To compute this feature we can use a subquery that
returns two variables, one for the objects and one for the corresponding feature value, say
v f 1 and v f 2 respectively, while ensuring that v f 1 should the same with the variable used
in the outer query for these objects. In our example, the corresponding SPARQL query that
computes the sought answer (where the subquery provides two variables), is the following:



Algorithms 2021, 14, 34 18 of 22

SELECT AVG(?productFoundBirthYearAvg)
WHERE {

?x1 ex:delivers ?x2 .
{

SELECT ?x2 (AVG(?x5) AS ?productFoundBirthYearAvg)
WHERE {

?x1 ex:delivers ?x2 .
?x2 ex:brand ?x3 .
?x3 ex:founder ?x4 .
?x4 ex:birthYear ?x5 .

}
GROUP BY ?x2

}
}

This example showcased how we can compute accurate results if the paths that are
involved in the HIFUN query are not functional.

6.7. Analytics and RDF Schema Semantics

The translation of SPARQL allows leveraging the RDF Schema semantics, specifi-
cally the RDF Schema-related inference that is supported by SPARQL. To give a simple
indicative example, consider two properties directorOf and worksAt such that (directorOf,
rdfs:subPropertyOf,worksAt) and suppose the following data:

(p1,directorOf,brand1)

(p2,worksAt,brand1)

(p3,worksAt,brand1)

(p4,worksAt,brand1)

(p1,livesAt,Athens)

(p2,livesAt,Rhodes)

(p3,livesAt,Corfu),

(p4,livesAt,Corfu)

If we want to compute the locations where the persons related to brand1 work at, and
how many live at each place, we could use the following HIFUN query pworkAt, livesAt,
COUNTq. If the inference of SPARQL is enabled, then the translated query will return

Athens,1

Rhodes,1

Corfu,2

The key point is that the location of the director will be considered, since it is inferred
that (p1,worksAt,brand1). Such inference would not be possible if we translated the data
to the relational model.

The ability to leverage the inference rules of RDF Schema in the context of analytic
queries is especially important for datasets which are described with ontologies that
contain high number of subClassOf and subPropertyOf relationships for achieving semantic
interoperability across various datasets, like those in the cultural and historic domain [7,42].

7. On Interactivity

As described in the introductory section, and illustrated in Figure 1, our ultimate
objective is to provide a user friendly method for interactive analytics over any RDF graph.
This requires:

S 1©ctx An interactive method for specifying an Analysis Context. Recall that (according
to Definition 3), an analysis context C over RDF data is defined as a set of resources
R to be analyzed along with a set of properties p1, p2, ..., pn that are relevant for the
analysis.



Algorithms 2021, 14, 34 19 of 22

S 2©q An interactive method for formulating the desired HIFUN query q “ pg, m, opq, i.e.,
a method to select g, m, and op.

S 3©tr A method to translate the HIFUN query to SPARQL.
S 4©visA method for visualizing the results of the SPARQL query that is derived by translat-

ing q.

As regards S 1©ctx, the analysis context can be specified over the original data (Section 5.3),
or after a transformation (Section 5.4). In the former case, the user does not have to
do anything: all resources of the RDF dataset and all properties can be exploited as an
analysis context. In the latter case the intended transformation can be made by tools like
LODSyndesisML [40] that allows the user to interactively select the desired features. The
output of this step can be either (a) a csv file or an RDF file in RDF Data Cube format that
contains the materialization of the defined features, or (b) a set of feature specifications
each being a pair (feature name, SPARQL query) which will be exploited in the translation
process as discussed in the last part of Section 5.4 and in Section 6.6.

As regards S 2©q, and assuming that an analysis context has been specified, we devel-
oped a tool, called HIFUNRDF, where the user is asked to select the functions of a HIFUN
query i.e., (i) the grouping function, (ii) the measuring function, (iii) the aggregate opera-
tion, and optionally, (iv) set restrictions to the grouping, the measuring functions or to the
final results. The above are accomplished by interactively selecting the desired properties,
i.e., the user does not have to know the SPARQL syntax. Currently, this tool loads data
represented in the RDF Data Cube format and stores them in a triplestore, however this
period we are extending this tool for supporting any RDF file (not only files in RDF Data
Cube format).

As regards S 3©tr, we implemented the translation method described in Section 6.
Please note that the cost of the translation of a HIFUN query to SPARQL is negligible (the
translation has linear complexity with respect to the size of the HIFUN string; it does not
depend on the size of the data).

The translated to SPARQL query is then executed on the triple store OpenLink Virtuoso
(https://virtuoso.openlinksw.com/) (where the input data has been uploaded) and the
returned results are displayed and saved in a “.csv” file in the form of - var1, var2, ..., vari,
TOTALS.

As regards S 4©vis, we embedded in HIFUNRDF the jfreechart library (https://www.jfree.
org/jfreechart) for reading the results of the SPARQL query and preparing various charts
including line, bar, pie and 3D pie charts. Three screenshots are shown in Figure 4 that
visualize the results of the query “total quantities by branch” over a synthetic RDF dataset
that uses the same schema with our running example.

The indicative flows that are possible with this implementation, are illustrated in
Figure 5. The figure includes a workflow where the process starts with selecting the
data set the user wants to analyze using tools like Facetize [43] and LODSyndesisML [40],
suitable for discovering, cleaning, organizing data in hierarchies. etc. Then, this data is
converted into the RDF Data Cube format and is loaded in HIFUNRDF. HIFUNRDF is not yet
public, a public version will be released after tackling the extensions described next in
Section 7.1.

Figure 4. Indicative visualizations produced by HIFUNRDF.

https://virtuoso.openlinksw.com/
https://www.jfree.org/jfreechart
https://www.jfree.org/jfreechart


Algorithms 2021, 14, 34 20 of 22

Figure 5. A few indicative workflows involved in HIFUNRDF.

7.1. Future Work

Currently we are working on a second implementation that will support, in a single
system, and interactively, all steps of the process for S 1©ctxto S 4©vis. The objective is to
provide a unified interface that will enable the user to (i) select the RDF file or triple store
(s)he wants to analyze, (ii) specify and change the analysis context on the fly (and provide
the capability to define features as described in Section 5.4), and (iii) formulate an analytical
query by defining its components by selecting the applicable properties. Then, the system
will translate the query and finally visualize the results in tabular form as well as in various
other forms (like those described in [44]) including 3D (by extending the work of [45]
(http://www.ics.forth.gr/isl/3DLod/)) allowing the user to explore them, intuitively. For
steps (ii) and (iii) we plan to investigate extending the core model for exploratory search
over RDF that is described in [12] (for exploiting its capabilities of forming conditions that
involve paths and complex expressions), with actions for supporting S 1©ctxand S 2©q(that
are not supported by that model). That will enable the user to specify interactively and
with simple clicks complex restrictions that may concern the set of resources of the analysis
context, and/or the various restrictions of the analytic query (of grouping or measuring
functions, or of the final results).

Finally, we should mention that an interactive system for analytics that uses HIFUN as
the intermediate layer, enables the formulation of analytic queries over data sources with
different data models and query languages, since there are already mappings of HIFUN to
SQL (for relational sources), and to MapReduce using SPARK [46], thus our work enables
applying that model over RDF data sources too.

8. Concluding Remarks

In this paper, we elaborated on the general problem of providing interactive analytics
over RDF data. We showed the motivation for this direction, we described the main
requirements and challenges, and we discussed the work that has been done in this area.
Subsequently we investigated whether HIFUN, a functional query language for analytics,
can be used as a means for formulating analytic queries over RDF data in a flexible manner.
To this end, we analyzed the applicability of HIFUN over RDF, we described various
methods that can be used to apply HIFUN over such data, and then we focused on the
problem of translating HIFUN queries to SPARQL queries, starting from simple queries
and ending up to complex queries. We discussed what happens when HIFUN cannot be
applied, and how features can be employed to tackle properties and paths that are not
functional. The presented query translation approach does not require transforming or

http://www.ics.forth.gr/isl/3DLod/


Algorithms 2021, 14, 34 21 of 22

moving the data, and can leverage the inference that is provided by SPARQL. Subsequently
we described how this approach can be exploited in an interactive context and we described
our first implementation. Overall, we have shown that it is possible to provide a method for
formulating complex analytic queries over RDF that is based on a few and basic concepts,
those of HIFUN. In the future, we plan to implement a fully interactive system that will
support all steps of the query formulation and visualization process and elaborate further
on the interactivity of the approach.

Author Contributions: Conceptualization, M.-E.P., N.S. and Y. T.; funding acquisition, Y.T.; investi-
gation, M.-E.P. and Y.T.; software, M.-E.P.; supervision, N.S. and Y.T.; writing— original draft, M.-E.P.;
writing—review and editing, Y.T. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mountantonakis, M.; Tzitzikas, Y. Large-scale Semantic Integration of Linked Data: A Survey. ACM Comput. Surv. (CSUR) 2019,

52, 103. [CrossRef]
2. Bizer, C.; Lehmann, J.; Kobilarov, G.; Auer, S.; Becker, C.; Cyganiak, R.; Hellmann, S. DBpedia-A crystallization point for the Web

of Data. J. Web Semant. 2009, 7, 154–165. [CrossRef]
3. Vrandečić, D.; Krötzsch, M. Wikidata: A free collaborative knowledgebase. Commun. ACM 2014, 57, 78–85. [CrossRef]
4. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank

5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [CrossRef] [PubMed]
5. Tzitzikas, Y.; Marketakis, Y.; Minadakis, N.; Mountantonakis, M.; Candela, L.; Mangiacrapa, F.; Pagano, P.; Perciante, C.;

Castelli, D.; Taconet, M.; et al. Methods and Tools for Supporting the Integration of Stocks and Fisheries. In Chapter in Information
and Communication Technologies in Modern Agricultural Development; Springer: Berlin/Heidelberg, Germany, 2019.

6. Jaradeh, M.Y.; Oelen, A.; Farfar, K.E.; Prinz, M.; D’Souza, J.; Kismihók, G.; Stocker, M.; Auer, S. Open Research Knowledge
Graph: Next Generation Infrastructure for Semantic Scholarly Knowledge. In Proceedings of the 10th International Conference
on Knowledge Capture, Marina Del Rey, CA, USA, 19–21 November 2019; pp. 243–246.

7. Koho, M.; Ikkala, E.; Leskinen, P.; Tamper, M.; Tuominen, J.; Hyvönen, E. WarSampo Knowledge Graph: Finland in the Second
World War as Linked Open Data. Semant.-Web –Interoper. Usability Appl. 2020. [CrossRef]

8. Dimitrov, D.; Baran, E.; Fafalios, P.; Yu, R.; Zhu, X.; Zloch, M.; Dietze, S. TweetsCOV19—A Knowledge Base of Semantically
Annotated Tweets about the COVID-19 Pandemic. In Proceedings of the 29th ACM International Conference on Information and
Knowledge Management (CIKM 2020), Virtual Event, Galway, Ireland, 19–23 October 2020.

9. COVID-19 Open Research Dataset (CORD-19). 2020. Available online: https://www.semanticscholar.org/cord19 (accessed on 23
January 2021).

10. Raphaël, G.; Franck, M.; Fabien, G. CORD-19 Named Entities Knowledge Graph (CORD19-NEKG). 2020. Available online:
https://zenodo.org/record/3827449#.YA5dhBYRXIU (accessed on 23 January 2021).

11. Nikas, C.; Kadilierakis, G.; Fafalios, P.; Tzitzikas, Y. Keyword Search over RDF: Is a Single Perspective Enough? Big Data
Cogn. Comput. 2020, 4, 22. [CrossRef]

12. Tzitzikas, Y.; Manolis, N.; Papadakos, P. Faceted exploration of RDF/S datasets: A survey. J. Intell. Inf. Syst. 2017, 48, 329–364.
[CrossRef]

13. Kritsotakis, V.; Roussakis, Y.; Patkos, T.; Theodoridou, M. Assistive Query Building for Semantic Data. In Proceedings of the
SEMANTICS Posters&Demos, Vienna, Austria, 10–13 September 2018.

14. Spyratos, N.; Sugibuchi, T. HIFUN-a high level functional query language for big data analytics. J. Intell. Inf. Syst. 2018, 51,
529–555. [CrossRef]

15. Papadaki, M.E.; Tzitzikas, Y.; Spyratos, N. Analytics over RDF Graphs. In Proceedings of the International Workshop on
Information Search, Integration, and Personalization, Heraklion, Greece, 9–10 May 2019.

16. Spyratos, N. A functional model for data analysis. In Proceedings of the International Conference on Flexible Query Answering
Systems, Milan, Italy, 7–10 June 2006.

17. Tzitzikas, Y.; Allocca, C.; Bekiari, C.; Marketakis, Y.; Fafalios, P.; Doerr, M.; Minadakis, N.; Patkos, T.; Candela, L. Integrating
heterogeneous and distributed information about marine species through a top level ontology. In Proceedings of the Research
Conference on Metadata and Semantic Research, Thessaloniki, Greece, 19–22 November 2013.

18. Isaac, A.; Haslhofer, B. Europeana linked open data—Data. europeana. eu. Semant. Web 2013, 4, 291–297. [CrossRef]
19. Mountantonakis, M.; Tzitzikas, Y. On measuring the lattice of commonalities among several linked datasets. Proc. VLDB Endow.

2016, 9, 1101–1112. [CrossRef]

http://doi.org/10.1145/3345551
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.1145/2629489
http://dx.doi.org/10.1093/nar/gkx1037
http://www.ncbi.nlm.nih.gov/pubmed/29126136
http://dx.doi.org/10.3233/SW-200392
https://www.semanticscholar.org/cord19
https://zenodo.org/record/3827449#.YA5dhBYRXIU
http://dx.doi.org/10.3390/bdcc4030022
http://dx.doi.org/10.1007/s10844-016-0413-8
http://dx.doi.org/10.1007/s10844-018-0495-6
http://dx.doi.org/10.3233/SW-120092
http://dx.doi.org/10.14778/2994509.2994527


Algorithms 2021, 14, 34 22 of 22

20. Mountantonakis, M.; Tzitzikas, Y. Scalable Methods for Measuring the Connectivity and Quality of Large Numbers of Linked
Datasets. J. Data Inf. Qual. (JDIQ) 2018, 9, 1–49. [CrossRef]

21. Roatis, A. Analysing RDF Data: A Realm of New Possibilities. ERCIM News, 2014. Available online: https://ercim-news.ercim.
eu/en96/special/analysing-rdf-data-a-realm-of-new-possibilities (accessed on 23 January 2021)

22. Kämpgen, B.; O’Riain, S.; Harth, A. Interacting with statistical linked data via OLAP operations. In Proceedings of the Extended
Semantic Web Conference, Crete, Greece, 27–31 May 2012.

23. Etcheverry, L.; Vaisman, A.A. QB4OLAP: A new vocabulary for OLAP cubes on the semantic web. In Proceedings of the Third
International Conference on Consuming Linked Data, Boston, MA, USA, 12 November 2012.

24. Azirani, E.A.; Goasdoué, F.; Manolescu, I.; Roatiş, A. Efficient OLAP operations for RDF analytics. In Proceedings of the 2015
31st IEEE International Conference on Data Engineering Workshops, Seoul, Korea, 13–17 April 2015; pp. 71–76.

25. Ruback, L.; Pesce, M.; Manso, S.; Ortiga, S.; Salas, P.E.R.; Casanova, M.A. A mediator for statistical linked data. In Proceedings of
the 28th Annual ACM Symposium on Applied Computing, Coimbra, Portugal, 18–22 March 2013.

26. Etcheverry, L.; Vaisman, A.A. Enhancing OLAP analysis with web cubes. In Proceedings of the Extended Semantic Web
Conference, Crete, Greece, 27–31 May 2012.

27. Zhao, P.; Li, X.; Xin, D.; Han, J. Graph cube: On warehousing and OLAP multidimensional networks. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, Athens, Greece, 12–16 June 2011.

28. Benatallah, B.; Motahari-Nezhad, H.R. Scalable graph-based OLAP analytics over process execution data. Distrib. Parallel
Databases 2016, 34, 379–423.

29. Wang, K.; Xu, G.; Su, Z.; Liu, Y.D. GraphQ: Graph Query Processing with Abstraction Refinement—Scalable and Programmable
Analytics over Very Large Graphs on a Single tPCu. In Proceedings of the 2015 Annual Technical Conference 15, Santa Clara, CA,
USA, 8–10 July 2015.

30. Zapilko, B.; Mathiak, B. Performing statistical methods on linked data. In Proceedings of the International Conference on Dublin
Core and Metadata Applications, The Hague, The Netherlands, 21–23 September 2011.

31. Olston, C.; Reed, B.; Srivastava, U.; Kumar, R.; Tomkins, A. Pig latin: A not-so-foreign language for data processing. In Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 9–12 June 2008.

32. Thusoo, A.; Sarma, J.S.; Jain, N.; Shao, Z.; Chakka, P.; Zhang, N.; Antony, S.; Liu, H.; Murthy, R. Hive-a petabyte scale data
warehouse using hadoop. In Proceedings of the 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), Long
Beach, CA, USA, 1–6 March 2010.

33. Etcheverry, L.; Vaisman, A.A. Querying Semantic Web Data Cubes. In Proceedings of the Alberto Mendelzon International
Workshop on Foundations of Data Management, Panama City, Panama, 8–10 May 2016.

34. Etcheverry, L.; Vaisman, A.A. Efficient Analytical Queries on Semantic Web Data Cubes. J. Data Semant. 2017, 6, 199–219.
[CrossRef]

35. Colazzo, D.; Goasdoué, F.; Manolescu, I.; Roatiş, A. RDF analytics: lenses over semantic graphs. In Proceedings of the 23rd
International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014.

36. Diao, Y.; Guzewicz, P.; Manolescu, I.; Mazuran, M. Spade: A modular framework for analytical exploration of RDF graphs.
In Proceedings of the VLDB Endowment 2019, Los Angeles, CA, USA, 26–30 August 2019.

37. Antoniou, G.; Van Harmelen, F. A Semantic Web Primer; MIT Press: Cambridge, MA, USA, 2004.
38. Mountantonakis, M.; Tzitzikas, Y. LODsyndesis: Global Scale Knowledge Services. Heritage 2018, 1, 335–348. [CrossRef]
39. Spyratos, N.; Sugibuchi, T. Data Exploration in the HIFUN Language. In Proceedings of the International Conference on Flexible

Query Answering Systems, Amantea, Italy, 2–5 July 2019.
40. Mountantonakis, M.; Tzitzikas, Y. How linked data can aid machine learning-based tasks. In Proceedings of the International

Conference on Theory and Practice of Digital Libraries, Thessaloniki, Greece, 18–21 September 2017.
41. Mami, M.N.; Graux, D.; Thakkar, H.; Scerri, S.; Auer, S.; Lehmann, J. The query translation landscape: A survey. arXiv 2019,

arXiv:1910.03118.
42. Fafalios, P.; Petrakis, C.; Samaritakis, G.; Doerr, K.; Tzitzikas, Y.; Doerr, M. FastCat: Collaborative Data Entry and Curation for

Semantic Interoperability in Digital Humanities. ACM J. Comput. Cult. Herit. 2021, accepted for publication.
43. Kokolaki, A.; Tzitzikas, Y. Facetize: An Interactive Tool for Cleaning and Transforming Datasets for Facilitating Exploratory

Search. arXiv 2018, arXiv:1812.10734.
44. Andrienko, G.; Andrienko, N.; Drucker, S.; Fekete, J.D.; Fisher, D.; Idreos, S.; Kraska, T.; Li, G.; Ma, K.L.; Mackinlay, J.; et al. Big

Data Visualization and Analytics: Future Research Challenges and Emerging Applications. In Proceedings of the BigVis 2020:
Big Data Visual Exploration and Analytics, Copenhagen, Denmark, 30 March 2020.

45. Papadaki, M.E.; Papadakos, P.; Mountantonakis, M.; Tzitzikas, Y. An Interactive 3D Visualization for the LOD Cloud. In Proceed-
ings of the EDBT/ICDT Workshops, Vienna, Austria, 26 March 2018.

46. Zervoudakis, P.; Kondylakis, H.; Plexousakis, D.; Spyratos, N. Incremental Evaluation of Continuous Analytic Queries in
HIFUN. In Proceedings of the International Workshop on Information Search, Integration, and Personalization, Heraklion,
Greece, 9–10 May 2019; pp. 53–67.

http://dx.doi.org/10.1145/3165713
https://ercim-news.ercim.eu/en96/special/analysing-rdf-data-a-realm-of-new-possibilities
https://ercim-news.ercim.eu/en96/special/analysing-rdf-data-a-realm-of-new-possibilities
http://dx.doi.org/10.1007/s13740-017-0082-y
http://dx.doi.org/10.3390/heritage1020023

	Introduction
	Requirements and Related Work
	Requirements
	Related Work

	Background
	Principles of Resource Description Framework (RDF)
	HIFUN– A High Level Functional Query Language for Big Data Analytics

	Using HIFUN as an Interface to RDF Dataset
	Applicability of HIFUN over RDF
	Prerequisites for Applying HIFUN over RDF Data
	Methods to Apply HIFUN over RDF
	I: Defining an Analysis Context over the Original RDF Data
	II: Defining an Analysis Context after Transforming the Original RDF Data

	Translation of HIFUN Queries to SPARQL 
	Simple Queries
	Attribute-Restricted Queries
	Results-Restricted Queries
	Complex Grouping Queries
	Composition
	Pairing

	The Full Algorithm for Translating a HIFUN Query to a SPARQL Query
	Cases Where the Prerequisites of HIFUN Are Not Satisfied
	Analytics and RDF Schema Semantics

	On Interactivity
	Future Work

	Concluding Remarks
	References

