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Abstract: The problem of energy disaggregation is the separation of an aggregate energy signal into
the consumption of individual appliances in a household. This is useful, since the goal of energy
efficiency at the household level can be achieved through energy-saving policies towards changing
the behavior of the consumers. This requires as a prerequisite to be able to measure the energy
consumption at the appliance level. The purpose of this study is to present some initial results
towards this goal by making heavy use of the characteristics of a particular din-rail meter, which is
provided by Meazon S.A. Our thinking is that meter-specific energy disaggregation solutions may
yield better results than general-purpose methods, especially for sophisticated meters. This meter
has a 50 Hz sampling rate over 3 different lines and provides a rather rich set of measurements with
respect to the extracted features. In this paper we aim at evaluating the set of features generated by
the smart meter. To this end, we use well-known supervised machine learning models and test their
effectiveness on certain appliances when selecting specific subsets of features. Three algorithms are
used for this purpose: the Decision Tree Classifier, the Random Forest Classifier, and the Multilayer
Perceptron Classifier. Our experimental study shows that by using a specific set of features one can
enhance the classification performance of these algorithms.

Keywords: energy disaggregation; supervised machine learning; classification

1. Introduction

Easy to use and efficient energy disaggregation tools may be the holy grail of energy
efficiency [1]. The commercial impact of energy disaggregation at the level of the home
customers is the increased utility customer engagement and the reduced energy usage.
The goal at this level is to itemize the consumer’s energy bill [2], analyze the energy usage
and cost per household appliance, make personalized and prioritized energy savings
recommendations or even go as far as identify faulty appliances (e.g., frosting cycle of a
fridge with a damaged seal is more frequent than a normal one [3]) . All these should be
viable through a single sensor per household that monitors the total energy consumption
and other related quantities [4]. The requirement in energy disaggregation is to identify
the usage of an appliance merely by its signature on the aggregate energy waveform of
the household.

The benefits to the consumer from using this technology have already been estab-
lished [1,3,4]. The social impact of energy disaggregation is reflected on the permanent
energy behavior shift of the users, in the reduced communication with the energy provider,
in raising the awareness of the users and in providing the opportunity to low-income
families to waste less energy. NILM-related products have already started to make their
appearance [5], although the market is still at its infancy. Therefore, taking also into account
that contemporary appliances can be remotely functioned, an increasing number of people
are interested in learning their consumption profile. Moreover, an increasing need is arising
for the user to turn from a passive consumer into an active consumer of electricity, who
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will be fully aware of what he/she consumes. With respect to the consumer, his/her energy
behavior is affected by raising inefficiencies that fall under the following 3 categories:

• Appliance-Related: bad performance of an appliance, always-on appliances that are
forgotten, low efficiency ratings of appliances, unreasonable large intervals to fall into
stand-by-mode;

• Dwelling-Related: identification of poor insulation and its effects, geographic posi-
tion of the dwelling;

• Energy Use-Related: how often and when major appliances are run.

To fulfill this, it is necessary to fully record the behavior of all devices used by the
user. However, this is not an easy task. One way would be to turn all devices into smart
devices, which is very expensive and not environment-friendly and thus quite unlikely to
be adopted at least for the near future. Another approach would be to place a smart meter
on each device. As smart meters, we consider those which record the energy consumption
of an electronic device at regular intervals and allow communication between the utility
and the consumer. However, placing a smart meter behind every device is not an efficient
way to solve the problem, as it is a difficult and complex process. A more efficient way, as
already implied in the previous discussion, is to install a meter on the main panel of the
user’s home to record the total energy consumption. This is a Non-Intrusive method of
Load Monitoring (NILM). In NILM, we attempt to measure total energy rather than using
individual meters to measure the energy of each device.

NILM can be roughly decomposed into the following steps (see [3,6,7]):

1. Load Monitoring—Data Acquisition: Pre-processing of the raw data and computa-
tion of the necessary quantities;

2. Event Detection: The steady-state or transient changes that correspond to the oper-
ation of appliances are identified. Usually, event-based approaches are employed
or state-based approaches [7]. The state-based approach uses each sample from the
aggregated signal to detect events. They are mostly based on HMMs and state transi-
tions are obtained automatically from the hidden state estimation. The event-based
methods can be further categorized into three classes [8]: expert-heuristic based
(state changes are detected by predefined empirical rules), probabilistic model based
(e.g.,state changes are detected by probabilistic models—HMMs) and matched-filter
based (state changes are detected by signal processing methods);

3. Feature Extraction: A set of features are used from the sample to characterize the
event. These features constitute the signature of the event. Apart from being hard-
wired they can also be extracted automatically by machine learning methods [8];

4. Classification/Inference: These signatures are presented to a classification or pattern
matching algorithm to identify and assign an appropriate label from the library that
will determine the type of the appliance and its state.

The problem of energy disaggregation in NILM (There is a small confusion in the
literature as for the terms NILM and energy disaggregation, since most of the time the term
NILM contains the notion of energy disaggregation, although the first refers to the method
of extracting the signals and the second to the process of breaking down the aggregate
signal to the signal of each appliance within the household. We adopt a clear distinction
between these two notions) is quite hard since it is an undetermined problem. It becomes
even harder since various aspects [6] affect its efficiency and effectiveness: (1) different
electrical features, (2) various sampling rates, (3) multiple, simultaneous load events,
(4) different appliance types, (5) noisy power signals, (6) dynamic and changing usage,
(7) computational cost and complexity, and (8) different accuracy measures. This leads to
many problems when actually deploying such a system and the practical limitations of this
approach have been identified [9].
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1.1. Our Contributions

In this paper, we focus on the problem of evaluating different electrical features
generated by the smart meter. To this end, we use a specific low-cost and high-performance
smart meter produced by Meazon S.A. (Meazon S.A. has a major role in the market
in the field of energy efficiency [10]. The company’s main mission is the design and
manufacturing of low-cost and high-performance energy meters of small size). This smart
meter was installed on the main panel of a house. The relatively high sampling rate
(compared to its low cost) as well as the richness of the generated features by this smart
meter enable us to look at how incorporating various features in energy disaggregation
methods affect their performance. To this end, we use a simple setting for load identification
and use three different basic machine learning methods for energy disaggregation from
the aggregate signal. Our goal is to understand how the accuracy of the predictions of the
methods are affected by incorporating more features, thus raising the dimensionality of
the problem and its respective time complexity. The rather medium sampling rate of the
smart meter (50 Hz) allows us to capture better the transient behavior of the appliances
when starting their operation and thus the multidimensional signal supports better results
at disaggregating appliances without requiring expensive equipment and complicated
circuitry. Although our results focus on the specific smart meter, their generalization to
other smart meters of similar characteristics is immediate. Compared to previous work,
our contribution lies at the fact that we look at power-related features that are generated
from the smart meter without any processing from the client side. In addition, we look at a
rather unexplored area with respect to sampling rate, which is set at 50 Hz. Our long-term
goal is to use these features for energy disaggregation on the smart meter by adopting a
streaming approach. This means that we will target energy disaggregation methods that
use minimal memory and can process each measurement in minimal time in order to report
the active appliances. This paper is a first small step towards this goal by pinpointing the
set of features to use.

1.2. Related Work

The field of NILM and energy disaggregation is very extensive and spans different
scientific areas. To understand various aspects of NILM (from electrical characteristics of
appliances to data requirements and algorithms for appliance identification), some good
points to start from are [7,11–18]. A small note on the sampling rate of the publicly available
datasets is in order. A very recent review [19] provides a description of well known publicly
available datasets for energy disaggregation, most of which are either of low frequency
(≤1 Hz) or of high frequency (≥10 KHz), with minimal representative datasets in the range
of 10 Hz to 500 Hz. This is why there are not many results for NILM in this frequency
range. In the following, we discuss only the literature that is straightforwardly related to
the results of this paper.

The features are assumed to be chosen beforehand and not extracted automatically
by machine learning methods as in [8]. An extensive discussion with respect to different
features for energy disaggregation can be found in [5,20]. Multivariable (many features)
approaches have been used for various stages of energy disaggreggation (e.g., see [21,22]
for event detection) aiming at improving effectiveness at the expense of raising the dimen-
sionality of the problem and thus aggravating its efficiency.

The impact of using more features for energy disaggregation is usually explored within
a proposed framework for solving energy disaggregation or related energy problems. For
example, in [23], the authors show how different features improve on the results of the
identification of the chosen TV channel based only on the consumption of the TV. In [24],
the authors extend matrix factorization to many features (active, reactive, apparent, and
current) and show that using more features provide better results than the one-feature
approach in [25]. Additionally, the book in [18] contains experiments about the evaluation
of features when combined with specific approaches for energy disaggregation.



Algorithms 2021, 14, 311 4 of 20

To the best of our knowledge, there are not many results related solely to general
feature evaluation for energy disaggregation. In [26] the authors discuss the features that
are usually used in NILM up to 2017, and describe an algorithm for selecting the best set
of features. In particular, they use Random Forest as a classification method, and apply it
on a dataset collected at a 30 KHz sampling rate. They look at power features (e.g., active
power, RMS current, etc.) as well as spectral features (e.g., j-th current harmonic coefficient)
both for steady state as well as for transient. They describe an algorithm that automatically
selects the feature set that seems to have the best performance. In [27] they evaluate four
different machine learning methods for seven different feature sets, showing that Random
Forest gives the best results. The datasets they use were collected at 1 Hz and their results
show that among the seven different feature sets they use, the best depend on the type
of the appliance (resistive/inductive/non-linear). The feature sets consist of statistical
features (e.g., mean power) and electrical features (e.g., load angles) showing that the latter
contribute more to the differentiation between distinct appliances. The statistical features
were generated over a time window of 10 samples (10 s). Additionally, in [18] a preliminary
evaluation of certain features is performed on a 44 KHz dataset, leading to the conclusion
that the active power and reactive power have quite high differentiation power among
many different appliances at this sampling frequency.

Finally, as previously mentioned, our goal is to use energy disaggregation methods
that have minimal memory and CPU requirements since we would like them to run on the
smart meter. Some steps have been taken towards this direction. In [28], a supervised HMM
(Hidden Markov Model) method that exploits the sparsity of such models is presented,
which according to the authors is so efficient that it could run on an embedded processor.
Another recent result based on Factorial HMMs is in [29]. They state that the complexity of
their approach is linear to the number of events and thus it is amenable for implementation
at the edge of the cloud. Similarly, in [30,31] lightweight machine learning techniques
are presented that allegedly can be run on small microprocessors. An unsupervised
combinatorial algorithm is analyzed in [32]. They first determine the features of appliances
and then they use a triangle-rectangle decomposition of the aggregate signal leading to a
lightweight and real-time approach.

In the following section we provide basic definitions as well as a description of the
capabilities of the smart meter. In Section 3 we discuss our experimental setup and our
methodology with respect to the experimental evaluation while in Section 4 we provide
our experimental findings with respect to how different features affect the identification of
a single appliance from the aggregate signal. Finally, we conclude in Section 5 with some
remarks and extensions.

2. Preliminaries

Assume that for the time instances T = {1, . . . , T} we get the set of measurements on
the aggregate power consumption X = {x1, x2, . . . , xt} from the set of active appliances
A = {1, . . . , n}. The task of NILM is to infer the power contribution yi

t of appliance i ∈ A
at time t such that at any point in time it holds that:

xt =
n

∑
i=1

yi
t + σ(t), (1)

where σ(t) represents the contribution from unknown appliances or from noise.
To evaluate the various features provided by the smart meter we use some basic

machine learning algorithms. In order to evaluate their effectiveness we use standard
metrics that we describe briefly in the following. We use accuracy, recall, precision, and
the F1-score. Accuracy is defined as the number of correct predictions divided by the total
number of predictions.

Accuracy =
TP + TN

TP + FP + FN + TN
, (2)
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where TP is the number of True Positives, FP is the number of False Positives, TN is the
number of True Negatives, and FN is the number of False Negatives. Recall is the number
of true samples that are successfully classified over the sum of the number of true positives
and the number of false negatives.

Recall =
TP

TP + FN
. (3)

Precision is the number of true records that are successfully classified over the sum of
true and false positives.

Precision =
TP

TP + FP
. (4)

The F1-score is the harmonic mean of recall and precision.

F1 = 2 ∗ precision ∗ recall
precision + recall

. (5)

2.1. Din-RailΜeter and Its Interface

Our experimental setup basically consists of a three-phase electricity meter designed
by Meazon S.A., which is installed in the central electricity panel of a house. This meter
is capable of remote monitoring and controlling the energy consumption of a household
and/or an industrial building [33]. It is a rail-type device with small size (2 DIN), which can
be easily installed and implements monitoring, measurement logging and controlling of:

• Up to three separate power lines/loads;
• A three-phased load;
• An entire electrical panel (single-phase, dual-phase, three-phase).

The meter was selected as it offers accurate measurements and a detailed profiling of
energy load. It supports a wi-fi connection in order to communicate the data generated
50 times per second. Meazon’s technology incorporates all the signal processing on the
smart meter required to measure the following variables (features):

• RMS Voltage

VRSM =

√
1
Ts
×

∫ Ts

0
V(t)2dt, (6)

• RMS Current

IRMS =
Imax√

2
, (7)

for sinusoidal currents. The meter also computes the RMS values of various fun-
damental and harmonic components of phase currents, phase voltages, and neutral
current as part of the harmonic calculations.

• Active power
P = V × I cos(ϕ), (8)

where ϕ is the phase angle between vectors V and I.
• Reactive power

Q = V × I sin(ϕ), (9)

where ϕ is the phase angle between vectors V and I.
• Apparent power

S = V × I (10)

• Line frequency. Stable on 50 Hz.
• Power factor

PF = cos ϕ (11)
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• Crest factor

CF =
|Peak Current|
RMS Current

(12)

• Angle between V and I

The above equations were taken from the Evaluation Board User Guide [34]. Apart
from these variables, it also computes energy-related quantities as well as the RMS of
harmonics on the phase and the neutral currents and on the phase voltages, together with
active, reactive and apparent powers, and the power factor and harmonic distortion on
each harmonic for all phases. Total harmonic distortion (THD) is computed for all phases
for current and voltage. Another distinctive characteristic of the particular low-cost smart
meter when compared to others is that the interval between successive measurements (the
sampling rate) is at 20 ms (50 Hz). In Figure 1, two different devices are measured with
1 s interval, which is usually the smallest in the literature for low-cost smart meters, and
20 ms interval. It is clear that with 1 Hz sampling rate important information related to the
transients is lost.

(a) (b)

Figure 1. Comparing time intervals. (a) Measuring fridge’s consumption; (b) Measuring TV’s consumption.

All data generated by the smart meter are stored and processed in a Cassandra
database on Azure. This is achieved by an application developed by Meazon that can run
on any computer system although for the project needs, this application is integrated to
a small single board computer called Janus. Janus has the necessary functionality to run
this application and send data on Azure. The application uploads the measurements in the
cloud and allows users to analyze the data in a dashboard. In Figure 2, the data flow from
the smart meter to the user’s screen is depicted.

Figure 2. Data flow from the smart meter to the user’s screen.
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2.2. The Online Platform

The online platform allows the user to visualize the collected data. After successfully
logging in to this platform, the user has access to the folders HOME, DEVICES, ASSETS,
ENTITY VIEWS, and DASHBOARDS. The HOME folder is shown in Figure 3 and con-
stitutes the central page of the online platform from which access is provided to other
folders.

Figure 3. Home view.

In the DEVICES folder, the user has access to all Meazon’s devices that have connected
to the online platform. These devices include the smart meter(s) in the central electrical
panel(s) as well as smart plugs connected to electrical sockets that measure particular
devices connected to these sockets (e.g., a fridge). In Figure 4, the serial numbers of two
different active meters are depicted.

Figure 4. Devices view.

The DASHBOARD folder contains all the visualizations of the variables generated by
the smart meter in a simple user interface easily accessible from a computer or a mobile
device. The data may be visualized in real time (see Figure 5) or they may be retrieved for
an arbitrary time period (see Figure 6).

The dashboard also allows the user to construct small but valuable ground truth data
that corresponds to events related to a period of time during which a particular appliance
is ON and working. More precisely, the user is allowed to enter details related to the
start and end time, appliance information, electrical information, modes of operations
and other various comments as shown in Figure 7. The aforementioned events are stored
in the database and can be retrieved from another widget. There are various filters that
can be applied in a query regarding the device’s name, starting time, event’s duration,
serial number, device type, manufacturer and more (Figure 8). Finally, assets are abstract
IoT entities that can be related to other devices and assets while entity views are used to
provide access to certain aspects of a device or an asset to a customer.
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Figure 5. Real-time data.

Figure 6. Historical data.

Figure 7. Setting event parameters.
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Figure 8. Filters.

3. Experimental Methodology and Setup

Our approach is to use appliance-specific models that classify the input into two
classes. The first is denoted by “1” and indicates that in this measurement the particular
device is operating. The second class is denoted by “0” and indicates that the device is off.
Each device has its own classifier. Each classifier is trained with a different file, prepared
for the specific device. The features we use to train the classifiers are generated by the
smart meter, and thus no feature extraction is required. In particular, the features that
are available during training are “active power”, “apparent power”, “reactive power”,
“current”, “angle between V&I”, “crest factor” and the binary variable “output”.

The classifiers that were examined in order to solve the binary classification problem
are the Decision Tree Classifier, the Random Forest Classifier, and the Multilayer Perceptron
Classifier. For the Random Forest classifier, we set the number of trees to 10 but we leave
the maximum tree depth undefined. For the Multilayer Perceptron Classifier, the input
layer was set to size 6 as we are considering at most 6 features, the two intermediate layers
were set to 5 and 4 and the output layer has size 2 as there are 2 available output classes.
For stacking the input data in matrices, the block size was set to 128. The seed for weights
initialization was “System.currentTimeMillis”, which is a method that returns the current
time in milliseconds. Finally, the convergence tolerance of iterations is set to 200. In order
to test our classifiers, we used 3-fold cross validation in order to balance performance and
variance in the results.

3.1. Data Retrieval

The retrieval of the data from the platform is performed through HTTP Requests.
The features generated by the smart meter that are used for training the models are the
following:

• pwr: Active power;
• apwr: Apparent power;
• rpwr: Reactive power;
• cur: Current;
• angle: Angle between V&I;
• scre: Crest factor.

These features are selected because of their importance in identifying appliances.
Other features generated by the smart meter, such as energy, may be useful for different
kinds of problems, such as regression. Additionally, the line voltage and the line fre-
quency remain almost fixed and thus do not contribute much to the differentiation among
appliances.

To export the data, a Jupyter Notebook file was created. First, the POST HTTP method
is invoked, which sends data to a server to create a resource. To request the data from the
specified resource, we use the HTTP method GET parameterized by the address of the
website, the identity of the smart meter, the features we are interested in as well as the
time interval that interests us. The online platform is tuned so that the user can export and
store up to 50.000 measurements at a time. This number corresponds to approximately
15 min of measurements and therefore, if the user chooses to retrieve data for a bigger
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amount of time, this interval is divided into subsections of 15 min and the retrieval process
is repeated for each of these subranges. The retrieved data are saved in a dataframe, which
is then converted to a CSV file. Five appliances were selected for experimentation. These
devices are quite common in households and correspond to a considerable part of the
total consumption of a typical house. These are a vacuum machine, an electric oven, an
air-condition, an electric stove, and an ironing press. To measure the appliances during
their function, we used only the din-rail meter and identified a time period when no other
device changed its status of operation in the house. We adopted this approach since we
did not want to use additional smart plugs that would provide us with a clean and simple
signal of each appliance. Each appliance was operated for 15 min and then it was turned
off. This means that the data used by the models, were obtained from different time periods
that were not continuous. Figures 9–18 depict the consumption behavior of each appliance.

In Figure 9, the active/reactive and apparent power of the vacuum cleaner is depicted
during the start of the operation focusing at the transient behavior until the steady state is
reached. In Figure 10, the total active/reactive and apparent power is depicted during the
15 min interval that the vacuum cleaner is functioning. In Figures 11–18 the same quantities
are depicted for the the other devices as well.

Figure 9. A snapshot from vacuum’s opening.
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Figure 10. Vacuum’s total consumption from the beginning of its function until the end. Vacuum operated in a time period
where no other device changed the state.

Figure 11. Oven’s opening.
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Figure 12. Oven’s behavior. The oven operated in a time period where no other device changed the state.

Figure 13. Air-conditioner’s opening.
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Figure 14. Air-conditioner’s behavior. The air-conditioner operated in a time period where no other device changed
the state.

Figure 15. Stove’s opening.
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Figure 16. Stove’s behavior. The stove operated in a time period where no other device changed the state.

Figure 17. Press’ opening.
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Figure 18. Press’ behavior. The ironing press operated in a time period where no other device changed the state.

3.2. Data Preprocessing

After the collection of the measurements is completed, we preprocess them in order to
make them suitable for the training of the machine learning models. An extra column is
created, the “output” column. This column represents the class in which each measurement
belongs, with respect to the function of the corresponding appliance. Thus, there are
two classes available, the “0” and “1”. When the measurement is assigned in class “0”,
it means that this device is inactive at the specified time. On the other hand, when the
measurement is assigned in class “1”, it means that the device is active at the specified
time. Each measurement is placed in the class that it belongs, by observing the values of
the other attributes.

4. Experimental Results

The experiments were performed on a 64-bit operating system with 8GB RAM, 4 cores
and an Intel Core i7-8565U CPU processor. The time needed for the execution of the
Decision Tree classifier was 2 min on average. This was also the case for the Random forest
classifier. On the contrary, the Multilayer Perceptron classifier needed 5 min on average.

Our experimental design is based on trying out subsets of the set of acquired features
in order to compare them with the full set with respect to their classification effectiveness.
In particular, for the Decision Tree and Random Forest classifiers we used only active
power compared to the full feature set while for the Multilayer Perceptron Classifier, we
used both active and reactive power since otherwise the results were quite poor. In all
cases, the classification effectiveness of the classifiers was worse that the case where all the
features are used. The results can be found in Tables 1–7. In our experiments, we notice that
most of the measurements that were classified wrongly were those in the transient phase,
that is during the first milliseconds of the operation of the appliance. The measurements
during the transient phase are not easy to classify. However, by adding more features in
the training phase, we manage to wrongly classify less measurements during the transient
phase. This means that the additional information provided in the form of additional
features helps in correctly identifying the operating appliance. In the following, we discuss
the results for each appliance.

For the vacuum cleaner (see Table 1), both for the Decision Tree classifier and the
Random Forest classifier, the results are improved considerably when using the whole set
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of features instead of the active power alone. However, the improvement in the Multilayer
Perceptron classifier was only marginal. This is due to two reasons: on the one hand, this
classifier compares active-reactive to the whole set of features and on the other hand the
vacuum cleaner has one mode of operation and thus it is easy for this classifier to identify
the measurements. The improvement of the classification results were mainly located at
the transient phase.

Table 1. Results for the vacuum cleaner. With “A” we refer to the experiments that used only active power. With “AR” we
refer to experiments with active and reactive power and with “A+” we refer to experiments with all the selected attributes.

Vacuum Decision Tree Classifier Random Forest Classifier Multilayer Perceptron Classifier
A A+ A A+ AR A+

Accuracy 0.974 0.9999 0.9738 0.9999 0.9994 0.9998
Recall 0.9023 0.9997 0.9292 0.9999 0.9991 0.9993

Precision 0.9312 0.9998 0.9046 0.9995 0.9979 1
F-Measure 0.9165 0.9998 0.9167 0.9997 0.9986 0.9996

Regarding the electrical oven, its behavior is similar to the behavior of the stove and as
a result we discuss them together (see Tables 2 and 3). It is more difficult to correctly classify
measurements from those devices due to the many changes in the power consumption.
Furthermore, the Multilayer Perceptron classifier has surprisingly less accurate predictions
than the rest of the classifiers. Yet, we can observe that with the extra features, the results are
noticeably better, for all the classifiers. Once more, we observed that the improvement in
the classification results when using all features was mainly located in the transient phase.

Table 2. Results for the oven. With “A” we refer to the experiments that used only active power. With “AR” we refer to
experiments with active and reactive power and with “A+” we refer to experiments with all the selected attributes.

Oven Decision Tree Classifier Random Forest Classifier Multilayer Perceptron Classifier
A A+ A A+ AR A+

Accuracy 0.9804 0.9902 0.9713 0.9907 0.8791 0.8891
Recall 0.9447 0.9865 0.9043 0.9565 0.3206 0.3497

Precision 0.9267 0.9516 0.9083 0.9843 0.7247 0.8203
F-Measure 0.9356 0.9687 0.9063 0.9702 0.4446 0.4863

Table 3. Results for the stove. With “A” we refer to the experiments that used only active power. With “AR” we refer to
experiments with active and reactive power and with “A+” we refer to experiments with all the selected attributes.

Stove Decision Tree Classifier Random Forest Classifier Multilayer Perceptron Classifier
A A+ A A+ AR A+

Accuracy 0.8624 0.9871 0.8809 0.9839 0.6639 0.6624
Recall 0.8609 0.9779 0.8984 0.9769 0.7659 0.987

Precision 0.7869 0.9871 0.7645 0.9795 0.533 0.5235
F-Measure 0.8222 0.9825 0.8261 0.9782 0.6286 0.6841

As for the ironing press and the air-conditioner, the differences between implementing
the training with only active power and implementing the training with the whole set of
features are shown in Tables 4 and 5 and are obviously better for the latter set of features.
For the ironing press we delve deeper by looking at various subsets of features. The results
can be found in Tables 6 and 7. In general, when adding more features to the training phase,
the classifiers return less false negatives and false positives. For example, when using
active power, reactive power and crest factor, the metrics return better values, although
they can be further enhanced. In the case of considering four features, such as active power,
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reactive power, RMS current, and crest factor, the results are closer to the optimal. The
combination of features that show the best results and can match the results of the whole
set of features is active power, reactive power, angle between V&I, and crest factor. It seems
that the ironing press’ behavior could be better classified, using only these four parameters.
In general, the same behavior was observed in the other appliances as well.

Table 4. Results for the air-conditioner. With “A” we refer to the experiments that used only active power. With “AR” we
refer to experiments with active and reactive power and with “A+” we refer to experiments with all the selected attributes.

A/C Decision Tree Classifier Random Forest Classifier Multilayer Perceptron Classifier
A A+ A A+ AR A+

Accuracy 0.9293 0.9997 0.9417 0.9996 0.9339 0.9987
Recall 0.662 0.9995 0.8994 0.999 0.6641 0.9976

Precision 0.8574 0.9988 0.71 0.9989 0.8907 0.9938
F-Measure 0.7471 0.9992 0.7936 0.999 0.7609 0.9968

Table 5. Results for the ironing press. With “A” we refer to the experiments that used only active power. With “AR” we
refer to experiments with active and reactive power and with “A+” we refer to experiments with all the selected attributes.

Press Decision Tree Classifier Random Forest Classifier Multilayer Perceptron Classifier
A AR A+ A AR A+ AR A+

Accuracy 0.9573 0.9965 0.9999 0.959 0.9982 0.9999 0.9998 0.9998
Recall 0.8854 0.9984 0.9995 0.7908 0.9899 0.9999 0.9992 0.9993

Precision 0.8384 0.9787 0.9999 0.9891 0.9982 0.9997 0.9997 0.9992
F-Measure 0.8613 0.9884 0.9997 0.8789 0.9941 0.9998 0.9994 0.9993

Table 6. Results from the press’ classifiers with various subsets of features used for training. With “A, R, Ap, Cr” we denote
the features Active power, Reactive power, Apparent power, and Crest factor respectively.

Press Decision Tree Classifier Random Forest Classifier Multilayer Perceptron Classifier
A, R, Ap A, R, Cr A, R, Ap A, R, Cr A, R, Ap A, R, Cr

Accuracy 0.9996 0.9994 0.9996 0.9996 0.9339 0.9511
Recall 0.9976 0.9977 0.999 0.999 0.9981 1

Precision 0.9998 0.9985 0.9984 0.9989 0.9999 0.7546
F-Measure 0.9988 0.9981 0.9987 0.999 0.9996 0.8601

Table 7. More results from the press’ classifiers with various subsets of features used for training. With “A, R, Cu, Cr, An”
we denote the features active power, reactive power, RMS current, Crest factor, and Angle between V and I.

Press Decision Tree Classifier Random Forest Classifier Multilayer Perceptron Classifier
A, R, Ap A, R, Cr A, R, Ap A, R, Cr A, R, Ap A, R, Cr

Accuracy 0.9996 0.9994 0.9996 0.9996 0.9339 0.9511
Recall 0.9976 0.9977 0.999 0.999 0.9981 1

Precision 0.9998 0.9985 0.9984 0.9989 0.9999 0.7546
F-Measure 0.9988 0.9981 0.9987 0.999 0.9996 0.8601

Finally, we discuss in detail the distribution of faulty classification measurements
in the case of the ironing press. In the case where only active power is considered, the
Random Forest classifier had to classify 17.231 records in class “1” (ground truth) and
returned 17.104 true positives, 127 false negatives and 4476 false positives. A total of 37%
of false negatives are located in the transient phases. Furthermore, 97% of false positives
are found during the operation of the electric stove. This is because those two devices have
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very similar behavior. Finally, when using all the selected features, the Random Forest
classifier had 17.256 true positives, 4 false negatives and 1 false positive. 3 out of 4 false
negatives are located in the transient phases of the operation of the ironing press, while the
only false positive was again found during the operation of the stove.

In summary, the experimental results show clearly that by using more features the
effectiveness of the chosen methods is improved. It is not imperative to use the whole
set of six features, but as previously mentioned, using a subset of four features provides
results that almost match the results of the full set. As a byproduct, it is observed that the
Random Forest classifier (in accordance to [27]) shows the best results for classification
followed by the Decision Tree classifier with somewhat worse results. Finally, the Multilayer
Perceptron classifier has the worst performance. For this classifier, the results were quite
bad for the electric stove and the electric oven, which have similar power consumption.
On the contrary, for devices that show unique behavior, such as the vacuum cleaner, the
air-conditioner, and the ironing press, all classifiers returned very good results.

5. Conclusions and Future Work

The developed system categorizes measurements that arise from the total energy
consumption of a house into two classes per appliance (either ON or OFF). To achieve this,
only one smart meter is used and installed on the main panel without using any additional
plugs to measure the appliances. Our results show that by using a richer set of features that
are generated by the smart meter itself—and thus no additional computation is needed—
we can considerably improve the performance of the methods. The improvement is mainly
located at the transient phase where a lot of false negatives are generated by the methods
when only active power is used. In fact, our experiments show strong indications that by
using four out of the total six features that we are considering, one may get results that are
almost as good.

The last point is a good start for designing a light-weight energy disaggregation algo-
rithm. By light-weight, we mean in fact a streaming algorithm that can be executed on the
low memory and low processing power CPU on the smart meter. Indeed, the computa-
tional capabilities that would be required to solve the problem of energy disaggregation on
the cloud in the case of a large scale deployment of such smart meters would be tremen-
dous and certainly not cost effective. This is why most (if not all) of the work must be
transferred on the edge, that is, on the smart meter. However, this is equivalent to try and
solve the problem of energy disaggregation in a streaming environment where memory is
limited and the time to process a measurement is also limited. Thus, looking at the best
set of features that the smart meter provides without additional computation for energy
disaggregation is indispensable for such an approach. As for the results presented in this
paper, we intend to extend our implementation further by collecting larger amount of data
for more appliances. We intend to extend our results by including cases where more than
one device works at the same time or cases of more general appliance function (multi-state
or continuously variable). The conclusions were in general encouraging, as each classifier
identified, with a high success rate, whether the corresponding appliance was active or
inactive by using only this small set of features generated by the smart meter itself.
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28. Makonin, S.; Popowich, F.; Bajić, I.V.; Gill, B.; Bartram, L. Exploiting HMM Sparsity to Perform Online Real-Time Nonintrusive
Load Monitoring. IEEE Trans. Smart Grid 2016, 7, 2575–2585. [CrossRef]

29. Yan, L.; Tian, W.; Han, J.; Li, Z. Event-driven Two-stage Solution to Non-intrusive Load Monitoring. arXiv 2021, arXiv:2107.12582.
30. Athanasiadis, C.L.; Doukas, D.I.; Papadopoulos, T.A.; Barzegkar-Ntovom, G.A. Real-Time Non-Intrusive Load Monitoring: A

Machine-Learning Approach for Home Appliance Identification. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid,
Spain, 28 June–2 July 2021; pp. 1–6. [CrossRef]

31. Athanasiadis, C.L.; Papadopoulos, T.A.; Doukas, D.I. Real-time non-intrusive load monitoring: A light-weight and scalable
approach. Energy Build. 2021, 253, 111523. [CrossRef]

32. Wang, Z.; Zheng, G. Residential Appliances Identification and Monitoring by a Nonintrusive Method. IEEE Trans. Smart Grid
2012, 3, 80–92. [CrossRef]

33. Deligiannis, P.; Koutroubinas, S.; Koronias, G. Predicting Energy Consumption Through Machine Learning Using a Smart-
Metering Architecture. IEEE Potentials 2019, 38, 29–34. [CrossRef]

34. Evaluation Board User Guide UG-356. Evaluating the ADE7880 Energy Metering IC. Available online: https://www.analog.
com/media/en/technical-documentation/user-guides/UG-356.pdf (accessed on 22 October 2021).

http://dx.doi.org/10.1016/j.enbuild.2017.06.042
http://dx.doi.org/10.3390/su11113222
http://dx.doi.org/10.1109/TSG.2015.2494592
http://dx.doi.org/10.1109/PowerTech46648.2021.9494962
http://dx.doi.org/10.1016/j.enbuild.2021.111523
http://dx.doi.org/10.1109/TSG.2011.2163950
http://dx.doi.org/10.1109/MPOT.2018.2852564
https://www.analog.com/media/en/technical-documentation/user-guides/UG-356.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/UG-356.pdf

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Din-Rail Μeter and Its Interface
	The Online Platform

	Experimental Methodology and Setup
	Data Retrieval
	Data Preprocessing

	Experimental Results
	Conclusions and Future Work
	References

