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Abstract: Automatic recognition of emotion is important for facilitating seamless interactivity between
a human being and intelligent robot towards the full realization of a smart society. The methods of
signal processing and machine learning are widely applied to recognize human emotions based on
features extracted from facial images, video files or speech signals. However, these features were not
able to recognize the fear emotion with the same level of precision as other emotions. The authors
propose the agglutination of prosodic and spectral features from a group of carefully selected features
to realize hybrid acoustic features for improving the task of emotion recognition. Experiments were
performed to test the effectiveness of the proposed features extracted from speech files of two public
databases and used to train five popular ensemble learning algorithms. Results show that random
decision forest ensemble learning of the proposed hybrid acoustic features is highly effective for
speech emotion recognition.

Keywords: emotion recognition; ensemble algorithm; feature extraction; hybrid feature; machine
learning; supervised learning

1. Introduction

Emotion plays an important role in the daily interpersonal interactions and is considered an
essential skill for human communication [1]. It helps humans to understand the opinions of others
by conveying feelings and giving feedback to people. Emotion has many useful benefits of affective
computing and cognitive activities such as rational decision making, perception and learning [2]. It has
opened up an exhilarating research agenda because constructing an intelligent robotic dialogue system
that can recognize emotions and precisely respond in the manner of human conversation is presently
arduous. The requirement of emotion recognition is steadily increasing with the pervasiveness of
intelligent systems [3]. Huawei intelligent video surveillance systems, for instance, can support
real-time tracking of a person in a distressed phase through emotion recognition. The capability to
recognize human emotions is considered an essential future requirement of intelligent systems that
are inherently supposed to interact with people to a certain degree of emotional intelligence [4]. The
necessity to develop emotionally intelligent systems is exceptionally important for the modern society
of the internet of things (IoT) because such systems have great impact on decision making, social
communication and smart connectivity [5].

Practical applications of emotion recognition systems can be found in many domains such
as audio/video surveillance [6], web-based learning, commercial applications [7], clinical studies,
entertainment [8], banking [9], call centers [10], computer games [11] and psychiatric diagnosis [12].
In addition, other real applications include remote tracking of persons in a distressed phase,
communication between human and robots, mining sentiments of sport fans and customer care
services [13], where emotion is perpetually expressed. These numerous applications have led to the
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development of emotion recognition systems that use facial images, video files or speech signals [14].
In particular, speech signals carry emotional messages during their production [15] and have led to
the development of intelligent systems habitually called speech emotion recognition systems [16].
There is an avalanche of intrinsic socioeconomic advantages that make speech signals a good source
for affective computing. They are economically easier to acquire than other biological signals like
electroencephalogram, electrooculography and electrocardiograms [17], which makes speech emotion
recognition research attractive [18]. Machine learning algorithms extract a set of speech features with a
variety of transformations to appositely classify emotions into different classes. However, the set of
features that one chooses to train the selected learning algorithm is one of the most important tools for
developing effective speech emotion recognition systems [3,19]. Research has suggested that features
extracted from the speech signal have a great effect on the reliability of speech emotion recognition
systems [3,20], but selecting an optimal set of features is challenging [21].

Speech emotion recognition is a difficult task because of several reasons such as an ambiguous
definition of emotion [22] and the blurring of separation between different emotions [23]. Researchers
are investigating different heterogeneous sources of features to improve the performance of speech
emotion recognition systems. In [24], performances of Mel-frequency cepstral coefficient (MFCC),
linear predictive cepstral coefficient (LPCC) and perceptual linear prediction (PLP) features were
examined for recognizing speech emotion that achieved a maximum accuracy of 91.75% on an acted
corpus with PLP features. This accuracy is relatively low when compared to the recognition accuracy
of 95.20% obtained for a fusion of audio features based on a combination of MFCC and pitch for
recognizing speech emotion [25]. Other researchers have tried to agglutinate different acoustic features
with the optimism of boosting accuracy and precision rates of speech emotion recognition [25,26].
This technique has shown some improvement, nevertheless it has yielded low accuracy rates for
the fear emotion in comparison with other emotions [25,26]. Semwal et al. [26] fused some acoustic
features such as MFCC, energy, zero crossing rate (ZCR) and fundamental frequency that gave an
accuracy of 77.00% for the fear emotion. Similarly, Sun et al. [27] used a deep neural network (DNN) to
extract bottleneck features that achieved an accuracy of 62.50% for recognizing the fear emotion. The
overarching objective of this study was to construct a set of hybrid acoustic features (HAFs) to improve
the recognition of the fear emotion and other emotions from speech signal with high precision. This
study has contributed to the understanding of the topical theme of speech emotion recognition in the
following unique ways.

e The application of a specialized software to extract highly discriminating speech emotion feature
representations from multiple sources such as prosodic and spectral to achieve an improved
precision in emotion recognition.

e  The agglutination of the extracted features using the specialized software to form a set of hybrid
acoustic features that can recognize the fear emotion and other emotions from speech signal better
than the state-of-the-art unified features.

e  The comparison of the proposed set of hybrid acoustic features with other prominent features of
the literature using popular machine learning algorithms to demonstrate through experiments,
the effectiveness of our proposal over the others.

The content of this paper is succinctly organized as follows. Section 1 provides the introductory
message, including the objective and contributions of the study. Section 2 discusses the related studies
in chronological order. Section 3 designates the experimental databases and the study methods. The
details of the results and concluding statements are given in Sections 4 and 5 respectively.

2. Related Studies

Speech emotion recognition research has been exhilarating for a long time and several papers
have presented different ways of developing systems for recognizing human emotions. The authors
in [3] presented a majority voting technique (MVT) for detecting speech emotion using fast correlation



Algorithms 2020, 13, 70 3of24

based feature (FCBF) and Fisher score algorithms for feature selection. They extracted 16 low-level
features and tested their methods over several machine learning algorithms, including artificial neural
network (ANN), classification and regression tree (CART), support vector machine (SVM) and K-nearest
neighbor (KNN) on berlin emotion speech database (Emo-DB). Kerkeni et al. [11] proposed a speech
emotion recognition method that extracted MFCC with modulation spectral (MS) features and used
recurrent neural network (RNN) learning algorithm to classify seven emotions from Emo-DB and
Spanish database. The authors in [15] proposed a speech emotion recognition model where glottis
was used for compensation of glottal features. They extracted features of glottal compensation to zero
crossings with maximal teager (GCZCMT) energy operator using Taiyuan University of technology
(TYUT) speech database and Emo-DB.

Evaluation of feature selection algorithms on a combination of linear predictive coefficient (LPC),
MEFCC and prosodic features with three different multiclass learning algorithms to detect speech
emotion was discussed in [19]. Luengo et al. [20] used 324 spectral and 54 prosody features combined
with five voice quality features to test their proposed speech emotion recognition method on the Surrey
audio-visual expressed emotion (SAVEE) database after applying the minimal redundancy maximal
relevance (mRMR) to reduce less discriminating features. In [28], a method for recognizing emotions
in an audio conversation based on speech and text was proposed and tested on the SemEval-2007
database using SVM. Liu et al. [29] used the extreme learning machine (ELM) method for feature
selection that was applied to 938 features based on a combination of spectral and prosodic features
from Emo-DB for speech emotion recognition. The authors in [30] extracted 988 spectral and prosodic
features from three different databases using the OpenSmile toolkit with SVM for speech emotion
recognition. Stuhlsatz et al. [31] introduced the generalized discriminant analysis (GerDA) based
on DNN to recognize emotions from speech using the OpenEar specialized software to extract 6552
acoustic features based on 39 functional of 56 acoustic low-level descriptor (LLD) from Emo-DB and
speech under simulated and actual stress (SUSAS) database. Zhang et al. [32] applied the cooperative
learning method to recognize speech emotion from FAU Aibo and SUSAS databases using GCZCMT
based acoustic features.

In [33], Hu moments based weighted spectral features (HuWSF) were extracted from Emo-DB,
SAVEE and Chinese academy of sciences - institute of automation (CASIA) databases to classify
emotions from speech using SVM. The authors used HuWSF and multicluster feature selection (MCES)
algorithm to reduce feature dimensionality. In [34], extended Geneva minimalistic acoustic parameter
set (eGeMAPS) features were used to classify speech emotion, gender and age from the Ryerson
audio-visual database of emotional speech and song (RAVDESS) using the multiple layer perceptron
(MLP) neural network. Pérez-Espinosa et al. [35] analyzed 6920 acoustic features from the interactive
emotion dyadic motion capture (IEMOCAP) database to discover that features based on groups
of MFCC, LPC and cochleagrams are important for estimating valence, activation and dominance
emotions in speech respectively. The authors in [36] proposed a DNN architecture for extracting
informative feature representatives from heterogeneous acoustic feature groups that may contain
redundant and unrelated information. The architecture was tested by training the fusion network to
jointly learn highly discriminating acoustic feature representations from the IEMOCAP database for
speech emotion recognition using SVM to obtain an overall accuracy of 64.0%. In [37], speech features
based on MFCC and facial on maximally stable extremal region (MSER) were combined to recognize
human emotions through a systematic study on Indian face database (IFD) and Emo-DB.

Narendra and Alku [38] proposed a new dysarthric speech classification method from a coded
telephone speech using glottal features with a DNN based glottal inverse filtering method. They
considered two sets of glottal features based on time and frequency domain parameters plus parameters
based on principal component analysis (PCA). Their results showed that a combination of glottal
and acoustic features resulted in an improved classification after applying PCA. In [39], four pitch
and spectral energy features were combined with two prosodic features to distinguish two high
activation states of angry and happy plus low activation states of sadness and boredom for speech
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emotion recognition using SVM with Emo-DB. Alshamsi et al. [40] proposed a smart phone method for
automated facial expression and speech emotion recognition using SVM with MFCC features extracted
from SAVEE database.

Li and Akagi [41] presented a method for recognizing emotions expressed in a multilingual
speech using the Fujitsu, Emo-DB, CASIA and SAVEE databases. The highest weighted average
precision was obtained after performing speaker normalization and feature selection. The authors
in [42] used MFCC related features for recognizing speech emotion based on an improved brain
emotional learning (BEL) model inspired by the emotional processing mechanism of the limbic system
in human brain. They tested their method on CASIA, SAVEE and FAU Aibo databases using linear
discriminant analysis (LDA) and PCA for dimensionality reduction to obtain the highest average
accuracy of 90.28% on CASIA database. Mao et al. [43] proposed the emotion-discriminative and
domain-invariant feature learning method (EDFLM) for recognizing speech emotion. In their method,
both domain divergence and emotion discrimination were considered to learn emotion-discriminative
and domain-invariant features using emotion label and domain label constraints. Wang et al. [44]
extracted MFCC, Fourier parameters, fundamental frequency, energy and ZCR from three different
databases of Emo-DB, Chinese elderly emotion database (EESDB) and CASIA for recognizing speech
emotion. Muthusamy et al. [45] extracted a total of 120 wavelet packet energy and entropy features
from speech signals and glottal waveforms from Emo-DB, SAVEE and Sahand emotional speech (SES)
databases for speech emotion recognition. The extracted features were enhanced using the Gaussian
mixture model (GMM) with ELM as the learning algorithm.

Zhu et al. [46] used a combination of acoustic features based on MFCC, pitch, formant, short-term
ZCR and short-term energy to recognize speech emotion. They extracted the most discriminating
features and performed classification using the deep belief network (DBN) with SVM. Their results
showed an average accuracy of 95.8% on the CASIA database across six emotions, which is an
improvement when compared to other related studies. Alvarez et al. [47] proposed a classifier
subset selection (CSS) for the stacked generalization to recognize speech emotion. They used the
estimation of distribution algorithm (EDA) to select optimal features from a collection of features
that included eGeMAPS and SVM for classification that achieved an average accuracy of 82.45% on
Emo-Db. Bhavan et al. [48] used a combination of MFCCs, spectral centroids and MFCC derivatives of
spectral features with a bagged ensemble algorithm based on Gaussian kernel SVM for recognizing
speech emotion that achieved an accuracy of 92.45% on Emo-DB. Shegokar et al. [49] proposed the use
of continuous wavelet transform (CWT) with prosodic features to recognize speech emotion. They
used PCA for feature transformation with quadratic kernel SVM as a classification algorithm that
achieved an average accuracy of 60.1% on the RAVDESS database. Kerkeni et al. [50] proposed a
model for recognizing speech emotion using empirical mode decomposition (EMD) based on optimal
features that included the reconstructed signal based on Mel frequency cepstral coefficient (SMFCC),
energy cepstral coefficient (ECC), modulation frequency feature (MFF), modulation spectral (MS) and
frequency weighted energy cepstral coefficient (FECC). They achieved an average accuracy of 91.16%
on the Spanish database using the RNN algorithm for classification.

Emotion recognition is still a great challenge because of several reasons as previously alluded in
the introductory message. Further reasons include the existence of a gap between acoustic features
and human emotions [31,36] and the non-existence of a solid theoretical foundation relating the
characteristics of voice to the emotions of a speaker [20]. These intrinsic challenges have led to the
disagreement in the literature on which features are best for speech emotion recognition [20,36]. The
trend in the literature shows that a combination of heterogeneous acoustic features is promising for
speech emotion recognition [20,29,30,36,39], but how to effectively unify the different features is highly
challenging [21,36]. The importance of selecting relevant features to improve the reliability of speech
emotion recognition systems is strongly emphasized in the literature [3,20,29]. Researchers frequently
apply specialized software such as OpenEar [31,32,35], OpenSmile [30,32,34,36] and Praat [35] for
extraction, selection and unification of speech features from heterogeneous sources to ease the intricacy
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inherent in the processes. Moreover, the review of numerous literature has revealed that different
learning algorithms are trained and validated with the specific features extracted from public databases
for speech emotion recognition. Table 1 shows the result of the comparative analysis of our method
with the related methods in terms of the experimental database, type of recording, number of emotions,
feature set, classification method and maximum percentage accuracy results obtained. It is conspicuous
from the comparative analysis that our emotion recognition method is highly promising because it has
achieved the highest average accuracy of 99.55% across two dissimilar public experimental databases.

Table 1. A comparison of our method with related methods.

Reference Database Type (.)f Number of Emotions Feature Set Classification Result (%)
Recording Method
Energy + MFCC +
A Ha ZCR + voicing
[3] Emo-DB Acted 8Ty, Happy, probability + FCBF + MVT 84.19
Neutral, Sad
fundamental
frequency
Anger, Disgust, Fear, RNN
[11] Spanish Acted Neutral, Surprise, MFCC + MS i 90.05
classifier
Sadness, Joy
[15] Emo-DB Acted Angry, Happy, GCZCMT SVM 84.45
Neutral
Anger. Happiness Prosodic + SFS
[19] Emo-DB Acted N g t, 1 SPI; ’ sub-band + MFCC  algorithm + 83.00
eutral, Sadness +LPC SVM
Disgust, Surprise, Pitch, energy,
[28] eNTERFACE’05 Elicited Happy, Anger, Sad, formants, intensity SVM 90.00
Fear, and ZCR + text
correlation
Neutral, Happy, Prosodic + quality analysis +
[29] CASIA Acted Sadness, Fear, Angry, characteristics + Fisher + 89.60
Surprise MECC ELM
decision tree
1S10 + MFCCs +
Angry, Happy, eGemaps +
[36] IEMOCAP Acted Neutral, Sad SoundNet + SVM 64.00
VGGish
Anger, Boredom, Prosodic features
[39] Emo-DB Acted Happy, Neutral, + paralinguistic SVM 94.90
Sadness features
Surprise, Happy, Sad, GA-BEL +
42] CASIA Acted Angry, Fear, Neutral MECC PCA + LDA 9028
Anery. Fear. Ha MEFCC, pitch,
[46] CASIA Acted 8y, Tean H1aPPY, - formant, ZCRand  SVM + DBN 95.80
Neutral, Surprise, Sad
short-term energy
Sadness, Fear, Joy, CSS stacking
[47] Emo-DB Acted Anger, Surprise, eGeMAPS system 82.45
Disgust, Neutral +SVM
Anger, Happiness, bagged
[48] Emo-DB Acted Sadness, Boredom, MEFCCs ensemble of 92.45
Neutral, Disgust, Fear, SVMs
Neutral, Surprise, .
[49] RAVDESS Acted  Happy, Angry, Calm, ~ CV 1 prosodic SVM 60.10
. coefficients
Sad, Fearful, Disgust
Anger, Joy, Disgust, SMFCC, ECC,
[50] Spanish Acted Neutral, Surprise, MFF, MS and RNN 91.16
Fear, Sadness EFCC
Angry, Sad, Happy, .
Proposed " p AVDESS/SAVEE ~ Acted Disgust, Calm, Fear, Prosodic + RDE 99.55
model spectral ensemble

Neutral, Surprise

3. Materials and Methods

Materials used for this study included speech emotion multimodal databases of RAVDESS [51]
and SAVEE [52]. The databases, because of their popularity were chosen to test for the effectiveness
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of the proposed HAF against two other sets of features. The study method followed three phases of
feature extraction, feature selection and classification, which were subsequently described. The method
was heralded by the feature extraction process that involves the abstraction of prosodic and spectral
features from the raw audio files of RAVDESS and SAVEE databases. This phase was subsequently
followed by the feature selection process that involved the filtration, collection and agglutination of
features that have high discriminating power of recognizing emotions in human speech. Classification
was the last phase that involved the application of the selected learning algorithm to recognize human
emotions and a comparative analysis of experimental results of classification. In the classification
phase, several experiments were carried out on a computer with an i7 2.3GHz processor and 8 GB
of random access memory (RAM). The purpose of the experiments was to apply standard metrics of
accuracy, precision, recall and F1-score to evaluate the effectiveness of the proposed HAF with respect
to a given database and ensemble learning algorithm.

3.1. Databases

The speech emotion database is an important precursor for analyzing speech and recognizing
emotions. The database provides speech data for training and testing the effectiveness of emotion
recognition algorithms [15]. RAVDESS and SAVEE are two public speech emotion databases used in
this study for experiments to verify the effectiveness of the proposed HAF for emotion recognition.
The two selected experimental databases were fleetingly discussed in this subsection of the paper.

3.1.1. RAVDESS

RAVDESS is a gender balanced set of validated speeches and songs that consists of eight emotions
of 24 professional actors speaking similar statements in a North American accent. It is a multiclass
database of angry, calm, disgust, fear, happy, neutral, sad and surprise emotions with 1432 American
English utterances. Each of the 24 recorded vocal utterances comprises of three formats, which are
audio-only (16bit, 48kHz .wav), audio-video (720p H.264, AAC 48kHz, .mp4) and video-only (no
sound). The audio-only files were used across all the eight emotions because this study concerns
speech emotion recognition. Figure 1 shows that angry, calm, disgust, fear, happy and sad emotion
classes constituted 192 audio files each. The surprise emotion had 184 files and the neutral emotion
had the lowest number of audio files of 96.

200
180
» 160
o]
c 140
e
g 120
2 100
s}
s 80
o)
g 60
=}
Z 40
20
0
Angry Happy Disgust Neutral Surprise Fear Calm
B Emotions

Figure 1. The Ryerson audio-visual database of emotional speech and song (RAVDESS).



Algorithms 2020, 13, 70 7 of 24

3.1.2. SAVEE

SAVEE is a speech emotion database that consists of recordings from four male actors in seven
different emotion classes. The database comprises of a total of 480 British English utterances, which is
quite different from the North American accent used in the RAVDESS database. These vocal utterances
were processed and labeled in a standard media laboratory with high quality audio-visual equipment.
The recorded vocal utterances were classified into seven classes of angry, disgust, fear, happy, neutral,
sad and surprise emotional expressions. The neutral emotion constituted 120 audio files, while all the
other remaining emotions comprised of 60 audio files each as illustrated in Figure 2.

120

100
o 80
o
c
©
g 60
>
G
8 40
9]
!
€ 20
=}
4

0

Angry Happy Neutral Disgust Fear Surprise
B Emotions

Figure 2. The Surrey audio-visual expressed emotion (SAVEE).
3.2. Feature Extraction

The speech signal carries a large number of useful information that reflects emotion characteristics
such as gender, age, stuttering and identity of the speaker. Feature extraction is an important mechanism
in audio processing to capture the information in a speech signal and most of the related studies
have emphasized on the extraction of low-level acoustic features for speech recognition. Feature
representation plays a prominent role in distinguishing the speech of speakers from each other. Since
no universal consensus on the best features for speech recognition, certain authors have mentioned
that prosody carries most of the useful information about emotions and can create a suitable feature
representation [20]. Moreover, spectral features describe the properties of a speech signal in the
frequency domain to identify important aspects of speech and manifest the correlation between
vocal movements and changes of channel shape [35,42]. Prosodic and spectral acoustic features were
suggested as the most important characteristics of speech because of the improved recognition results
of their integration [25,42,53,54]. The blend of prosodic and spectral features is capable of enhancing
the performance of emotion recognition, giving better recognition accuracy and a lesser number
of emotions in a gender dependent model than many existing systems with the same number of
emotions [25]. Banse et al. [54] examined vocal cues for 14 emotions using a combination of prosodic
speech features and spectral information in a voiced segment and unvoiced segment to achieve
impressive results.

The present authors have applied the selective approach [35] to extract prosodic and spectral
features, taking cognizance of features that could be useful for improving emotion recognition. These
are features that have produced positive results in the related studies and those from the other
comparable tasks. We carefully applied the specialized jAudio software [55] to construct MFCC1,
MFCC2 and HAF as three sets of features representing several voice aspects. MFCC1 is the set of MFCC
features inspired by the applications of MFCC features [24,40,42]. MFCC2 is the set of features based on
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MFCC, energy, ZCR and fundamental frequency as inspired by the fusion of MFCC with other acoustic
features[11,25,26,44,46]. The HAF is the proposed set of hybrid acoustic features of prosodic and spectral
carefully selected based on the interesting results in the literature [11,20,24-26,29,30,39,40,42,44,46,48].

The feature extraction process was aided by the application of a specialized jAudio to effectively
manage the inherent complexity in the selection process. The jAudio software is a digital signal
processing library of advanced audio feature extraction algorithms designed to eliminate effort
duplication in manually calculating emotion features from an audio signal. It provides a unique
method of handling multidimensional features, dependency and allows for iterative development of
new features from the existing ones through the meta-feature template. Moreover, it simplifies the
intrinsic stiffness of the existing feature extraction methods by allowing low-level features to be fused
to build increasingly high-level musically meaningful features. In addition, it provides audio samples
as simple vectors of features and offers aggregation functions that aggregate a sequence of separate
feature sets into a single feature vector.

3.2.1. Prosodic Features

Prosodic features are acoustic features prominently used in emotion recognition and speech signal
processing because they carry essential paralinguistic information. This information complements
a message with an intention that can paint a flawless picture about attitude or emotion [35,56]. In
addition, prosodic features are considered as suprasegmental information because they help in defining
and structuring the flow of speech [35]. Prosodic continuous speech features such as pitch and energy
convey much content of emotions in speech [57] and are important for delivering the emotional cues of
the speakers. These features include formant, timing and articulation features and they characterize the
perceptual properties of speech typically used by human beings to perform different speech tasks [57].

The present authors have included three important prosodic features of energy, fundamental
frequency and ZCR. Signal energy models the voice intensity, volume or loudness and reflects the
pause and ascent of the voice signal. It is often associated with the human respiratory system and
is one of the most important characteristics of human aural perception. The logarithm function is
often used to reflect minor changes of energy because the energy of an audio signal is influenced by
the recording conditions. Fundamental frequency provides tonal plus rhythmic characteristics of a
speech and carries useful information about the speaker. ZCR determines the information about the
number of times a signal waveform crosses the zero amplitude line because of a transition from a
positive/negative value to a negative/positive value in a given time. It is suitable for detecting voice
activity, end point, voiced sound segment, unvoiced sound segment, silent segment and approximating
the measure of noisiness in speech [58]. ZCR is an acoustic feature that has been classified as a prosodic
feature [49,59,60]. In particular, energy and pitch were declared prosody features with a low frequency
domain while ZCR and formants are high frequency features [60].

3.2.2. Spectral Features

Spectral features of this study include timbral features that have been successful in music
recognition [61]. Timbral features define the quality of a sound [62] and they are a complete opposite
of most general features like pitch and intensity. It has been revealed that a strong relationship exists
between voice quality and emotional content in a speech [58]. Siedenburg et al. [63] considered spectral
features as significant in distinguishing between classes of speech and music. They claimed that
the temporal evolution of the spectrum of audio signals mainly accounts for the timbral perception.
Timbral features of a sound help in differentiating between sounds that have the same pitch and
loudness and they assist in the classification of audio samples with similar timbral features into unique
classes [61]. The application of spectral timbral features like spectral centroid, spectral roll-off point,
spectral flux, time domain zero crossings and root mean squared energy amongst others has been
demonstrated for speech analysis [64].
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The authors have included eight spectral features of MFCC, spectral roll-off point, spectral
flux, spectral centroid, spectral compactness, fast Fourier transforms, spectral variability and LPCC.
MEFCC is one of the most widely used feature extraction methods for speech analysis because of its
computational simplicity, superior ability of distinction and high robustness to noise [42]. It has been
successfully applied to discriminate phonemes and can determine what is said and how it is said [35].
The method is based on the human hearing system that provides a natural and real reference for speech
recognition [46]. In addition, it is based on the sense that human ears perceive sound waves of different
frequencies in a non-linear mode [42]. Spectral roll-off point defines a frequency below which at least
85% of the total spectral energy are present and provides a measure of spectral shape [65]. Spectral flux
characterizes the dynamic variation of spectral information, is related to perception of music rhythm
and it captures spectrum difference between two adjacent frames [66].

Spectral centroid describes the center of gravity of the magnitude spectrum of short-time Fourier
transform (STFT). It is a spectral moment that is helpful in modeling sharpness or brightness of
sound [67]. Spectral compactness is obtained by comparing the components in the magnitude spectrum
of a frame and magnitude spectrum of neighboring frames [68]. Fast Fourier transform (FFT) is a
useful method of analyzing the frequency spectrum of a speech signal and features based on the FIT
algorithm have the strongest frequency component in Hertz [69,70]. Spectral variability is a measure
of variance of the magnitude spectrum of a signal and is attributed to different sources, including
phonetic content, speaker, channel, coarticulation and context [71]. Spectral compactness is an audio
feature that measures the noisiness of a speech signal and is closely related to the spectral smoothness
of speech signal [72]. LPCCs are spectral features obtained from the envelope of LPC and are computed
from sample points of a speech waveform. They have low vulnerability to noise, yielded a lower
error rate in comparison to LPC features and can discriminate between different emotions [73]. LPCC
features are robust, but they are not based on an auditory perceptual frequency scale like MFCC [74].

3.3. Feature Selection

Feature selection is a process of filtering insignificant features to create a subset of the most
discriminating features in the input data. It reduces the cause of dimensionality and improves the
success of a recognition algorithm. Based on the literature review, we observed that most methods
used for feature selection are computationally expensive because of the enormous processing time
involved. Moreover, accuracy and precision values of some of these methods are reduced because of
redundancy, less discriminating features and poor accuracy values in certain emotions such as the fear
emotion. The authors have selected 133 MFCC spectral features for the MFCC1 and 90 features based
on MFCC, ZCR, energy and fundamental frequency for the MFCC2. In a nutshell, the effectiveness of
the HAF was tested against one homogenous set of acoustic features (MFCC1) and another hybrid set
of acoustic features (MFCC2).

Table 2 presents the list of prosodic and spectral features of this study in terms of group, type and
number of features with their statistical characteristics obtained with the aid of jAudio that generated a
csv file with numerical values for each feature together with the respective emotion class. The literature
inspired brute force approach was then explored to select non-redundant features that are likely to help
improve emotion recognition performance. This implies inspecting through a series of experiments
for possible combinations of features to discover the right features that define HAF. This approach is
although laborious to require the help of a stochastic optimization technique, it has yielded excellent
performance results in this study.
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Table 2. List of the selected prosodic and spectral features.

Group Type Number
Prosodic
Energy Logarithm of Energy 10
Pitch Fundamental Frequency 70
Times Zero Crossing Rate 24
Spectral
Cepstral MEFCC 133
Shape Spectral Roll-off Point 12
Amplitude Spectral Flux 12
Moment Spectral Centroid 22
Audio Spectral Compactness 10
Frequency Fast Fourier Transform 9
Signature Spectral Variability 21
Envelope LPCC 81
Total 404

3.4. Classification

Emotion classification is aimed at obtaining an emotional state for the input feature vector using a
machine learning algorithm. In this study, classification experiments were conducted using ensemble
learning algorithms to verify the effectiveness of the proposed HAF. Ensemble learning is considered a
state-of-the-art approach for solving different machine learning problems by combining the predictions
of multiple base learners [75]. It improves the overall predictive performance, decreases the risk of
obtaining a local minimum and provides a better fit to the data space by combining the predictions of
several weak learners into a strong learning algorithm. In this study, we applied bagging and boosting
machine learning because they are widely used effective approaches for constructing ensemble learning
algorithms [76-79]. Bagging is a technique that utilizes bootstrap sampling to reduce the variance of a
decision tree and improve the accuracy of a learning algorithm by creating a collection of learning
algorithms that are learned in parallel [79-81]. It performs random sampling with replacement over a
simple averaging of all the predictions from different decision trees to give a more robust result than a
single decision tree. Boosting creates a collection of learning algorithms that are learned sequentially
with early learners to fit decision trees to the data and analyze data for errors. It performs random
sampling with replacement over a weighted average and reduces classification bias and variance of a
decision tree [79]. One of the bagging ensemble algorithms investigated in this study was random
decision forest (RDF), which is an extension over bagging that is popularly called random forest [75,82].
RDF can be constituted by making use of bagging based on the CART approach to raise trees [83]. The
other bagging ensemble learning algorithms investigated in this study were Bagging with SVM as the
base learner (BSVM) and bagging with the multilayer perceptron neural network as the base learner
(BMLP). The boosting ensemble algorithms investigated in this study were the gradient boosting
machine (GBM), which extends boosting by combining the gradient descent optimization algorithm
with boosting technique [75,82,84], and AdaBoost with CART as the base learner (ABC), which is one
of the most widely used boosting algorithm to reduce sensitivity to class label noise [79,85]. AdaBoost
is an iterative learning algorithm for constructing a strong classifier by enhancing weak classification
algorithms and it can improve data classification ability by reducing both bias and variance through
continuous learning [81].

The standard metrics of accuracy, precision, recall and F1-score have been engaged to measure
the performances of the learning algorithms with respect to a particular set of features. The accuracy
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of a classification algorithm is often judged as one of the most intuitive performance measures. It is
the ratio of the number of instances correctly recognized to the total number of instances. Precision
is the ratio of the number of positive instances correctly recognized to the total number of positive
instances. Recall is the ratio of the number of positive instances correctly recognized to the number
of all the instances of the actual class [86]. Fl-score constitutes a harmonic mean of precision and
recall [87]. Moreover, the training times of the learning algorithms are also compared to analyze the
computational complexities of training different ensemble learning classifiers. The flow chart for
different configurations of the methods of experimentation is illustrated in Figure 3.
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Data Data
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Figure 3. Flowchart for different configurations of emotion recognition methods.

4. Results and Discussion

The present authors have extracted the set of 404 HAFs from RAVDESS and SAVEE experimental
databases. The features were used to train five famous ensemble learning algorithms in order to
determine their effectiveness using four standard performance metrics. The performance metrics were
selected because the experimental databases were not equally distributed. Data were subjected to 10
fold cross-validation and divided into training and testing groups as the norm permits. Gaussian noise
was added to the training data to provide a regularizing effect, reduce overfitting, increase resilience
and improve generalization performance of the ensemble learning algorithms.

Table 3 shows the result of the CPU computational time of training an individual ensemble
learning algorithm with three different sets of features across two experimental databases. The
training time analysis shows that RDF spent the least amount of training time when compared to
other ensemble learning algorithms. The least training time was recorded with respect to MFCC1
and MFCC2 irrespective of databases. However, the training time of RDF (0.43) was slightly higher
than that of BSVM (0.39) with respect to SAVEE HAF, but it claimed superiority with respect to the
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RAVDESS HAF. The reason for this inconsistent result might be because of the smaller data size (480)
of SAVEE when compared to the size (1432) of RAVDESS. The experimental results of a study that
was aimed at fully assessing the predictive performances of SVM and SVM ensembles over small
and large scale datasets of breast cancer show that SVM ensemble based on BSVM method can be
the better choice for a small scale dataset [78]. Moreover, it can be observed that GBM and BMLP
were generally time consuming when compared to the other ensemble learning algorithms because
they took 1172.3 milliseconds to fit MFCC2 RAVDESS and 1319.39 milliseconds to fit MFCC2 SAVEE
features respectively.

Table 3. Processing time of learning algorithms trained with Mel-frequency cepstral coefficient 1
(MFCC1), Mel-frequency cepstral coefficient 2 (MFCC2) and a hybrid acoustic feature (HAF).

SAVEE Feature RAVDESS Feature
Classifier MEFCC1 MECC2 HAF MFCC1 MFCC2 HAF
RDF 0.03 0.38 0.43 0.052 1.62 0.06
GBM 2.30 579.40 343.10 5.90 1172.30 6.90
ABC 0.47 22.16 1.38 2.59 2.79 1.89
BSVM 0.20 49.79 0.39 0.42 211.54 0.48
BMLP 3.13 1319.39 952.46 76.00 231.16 7.18

The experimental results of the overall recognition performance obtained are given in Table 4.
The percentage average recognition performance rates differ depending on critical factors such as the
type of database, the accent of the speakers, the way data were collected, the type of features and
the learning algorithm used. In particular, RDF consistently recorded the highest average accuracy,
while BMLP consistently recorded the lowest average accuracy across the sets of features, irrespective
of databases. These results indicate that RDF gave the highest performance because the computed
values of the precision, recall, F1-score and accuracy of the ensemble learning algorithm are generally
impressive when compared to other ensemble learning algorithms. However, average recognition
accuracies of 61.5% and 66.7% obtained by RDF for the SAVEE MFCC1 and MFCC2 were respectively
low, but the values were better than that of BMLP (55.4% and 60.7%) for SAVEE MFCC1 and MFCC2
respectively. In general, an improvement can be observed when a combination of features (MFCC2)
was used in an experiment drawing inspiration from the work done in [46], where MFCC features were
combined with pitch and ZCR features. In addition, we borrowed the same line of thought from Sarker
and Alam [3] and Bhaskar et al. [28] where some of the above mentioned features were combined to
form hybrid features.
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Table 4. Percentage average precision, recall, F1-score and accuracy with confidence intervals of
learning algorithms trained with MFCC1, MFCC2 and HAF.

SAVEE Feature RAVDESS Feature
Classifier/Measure MFCC1 MFCC2 HAF MEFCC1 MEFCC2 HAF

RDF

Precision 63.4 (+0.044) 78.1(x0.037)  99.1(x0.009) 90.1 (£0.016)  93.1 (+0.013)  99.6 (+0.003)

Recall 72.1(+0.041) 77.4(+0.038)  99.1(+0.009) 88.9 (£0.016)  94.0 (+0.012)  99.5 (+0.004)

Fl1-score 63.6 (£0.043)  76.6 (£0.039)  99.1(+0.009) 88.5 (+£0.017)  92.5(+0.014)  99.8 (+0.002)

Accuracy 61.5 (£0.044) 66.7 (£0.043)  99.3 (+0.008) 90.7 (£0.015)  93.7 (+0.013)  99.8 (+0.002)
GBM

Precision 64.0 (£0.043)  75.6 (+0.039)  99.4 (+0.007) 85.0 (£0.019)  86.5 (x£0.018)  95.3(x0.011)

Recall 66.6 (£0.043) 74.6 (£0.039)  99.1 (+0.009) 82.9 (+0.020) 88.1 (+0.017)  94.8(+0.012)

Fl1-score 62.6 (£0.044) 72.7 (+0.040) 99.3 (+0.008) 82.6 (+0.020)  85.9 (+0.018)  96.8(+0.009)

Accuracy 61.5 (£0.044) 65.5(+£0.043)  99.3 (+0.008) 85.4(+0.018)  86.7(+0.018)  92.6(+0.014)
ABC

Precision 62.9 (£0.044) 73.4(+£0.040) 99.1 (+0.009) 81.3 (+0.020) 85.4 (+0.018)  94.3(+0.012)

Recall 64.1 (£0.044) 73.7 (+0.040) 99.4 (+0.007) 84.0 (+0.019) 87.5(+0.017)  94.5(+0.012)

F1-score 63.1 (+£0.044) 74.1 (+0.040) 97.9(+0.013) 82.6 (+0.020)  84.5(+0.019)  95.9(+0.010)

Accuracy 58.0 (+0.044) 62.8 (+0.043) 98.0 (+0.008) 83.0 (+0.020)  85.2 (+0.018)  92.0 (+0.014)
BSVM

Precision 61.4 (+£0.044) 71.4(x0.041) 98.7 (+0.010) 81.0 (0.020)  84.1 (x0.019)  91.1(+0.015)

Recall 61.0 (£0.044) 72.6 (+0.041)  99.0 (+0.009) 82.5(+0.020)  82.3(+0.020)  92.0(+0.014)

Fl1-score 61.9 (£0.044) 72.0 (£0.041) 99.3 (+0.008) 80.5 (+£0.021)  83.5(+0.019)  90.3(x0.015)

Accuracy 56.0 (£0.045) 61.5(+0.044) 96.0 (+0.013) 82.7 (£0.020)  84.5(+0.019) 91.8 (+0.014)
BMLP

Precision 59.4 (£0.044) 69.0 (+0.042) 97.9 (+0.013) 78.8 (£0.021) 77.5(+0.022)  93.0 (+0.013)

Recall 60.1 (+£0.044) 72.0 (£0.041) 98.4 (+0.011) 75.8 (£0.022)  80.3 (+0.021)  88.0(+0.017)

Fl-score 59.6 (£0.044)  70.3 (£0.041)  98.1 (+0.012) 74.4(+0.023) 783 (+£0.021)  89.0 (+0.016)

Accuracy 55.4 (£0.045) 60.7 (+0.044) 94.6 (+0.002) 75.6 (£0.022)  79.3 (£0.021) 91.3 (+0.015)

The results in Table 4 can be used to demonstrate the effectiveness of the proposed HAFE. The
values of the precision, recall, F1-score and accuracy performance measures can be seen to be generally
high for the five ensemble learning algorithms using the HAF irrespective of databases. Specifically,
RDF and GBM concomitantly recorded the highest accuracy of 99.3% for the SAVEE HAF, but RDF
claims superiority with 99.8% accuracy when compared to the 92.6% accuracy for the HAF RAVDESS.
Consequently, the results of RDF learning of the proposed HAF were exceptionally inspiring with
an average accuracy of 99.55% across the two databases. The ranking of the investigated ensemble
learning algorithms in terms of percentage average accuracy computed for HAF across the databases
is RDF (99.55%), GBM (95.95%), ABC (95.00%), BSVM (93.90%) and BMLP (92.95%). It can be inferred
that application of ensemble learning of HAF is highly promising for recognizing emotions in human
speech. In general, high accuracy values computed by all learning algorithms across databases indicate
the effectiveness of the proposed HAF for speech emotion recognition. Moreover, the confidence
factors show that the true classification accuracies of all the ensemble learning algorithms investigated
lie in the range between 0.002% and 0.045% across all the corpora. The results in Table 4 show that
HAF significantly improved the performance of emotion recognition when compared to the methods
of the SAVEE MFCC related features [42] and RAVDESS wavelet transform features [49] that recorded
the highest recognition accuracies of 76.40% and 60.10% respectively.
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In particular, the results of precision, recall, F1-score and accuracy per each emotion, learning
algorithm and database were subsequently discussed. Table 5 shows that angry, calm and disgust
emotions were easier to recognize using RDF and GBM ensemble learning of RAVDESS MFCC1
features. The results were particularly impressive with RDF ensemble learning with perfect precision,
recall and F1-score computed by the algorithm, which also recorded highest accuracy values across all
emotions. However, BMLP generally gave the least performing result across all emotions. RAVDESS
MFCC1 features achieved a precision rate of 92.0% for the fear emotion using RDF ensemble learning,
which is relatively high when compared to the results in [27].

Table 5. Percentage precision, recall and F1-score and accuracy on RAVDESS MFCCI.

Emotion
Classifier/Measure  Angry Calm Disgust Fear Happy Neutral Sad  Surprise
RDF
Precision 100.0 100.0 100.0 92.0 80.0 53.0 87.0 96.0
Recall 100.0 100.0 100.0 83.0 82.0 86.0 79.0 91.0
F1-score 100.0 100.0 100.0 87.0 81.0 66.0 83.0 94.0
Accuracy 91.0 90.0 91.0 89.0 91.0 89.0 91.0 93.0
GBM
Precision 94.0 100.0 100.0 87.0 69.0 39.0 87.0 85.0
Recall 100.0 100.0 100.0 74.0 69.0 78.0 72.0 87.0
Fl-score 97.0 100.0 100.0 80.0 69.0 52.0 79.0 86.0
Accuracy 86.0 85.2 87.0 81.0 83.0 85.0 86.0 90.0
ABC
Precision 91.0 82.0 78.0 79.0 81.0 79.0 81.0 81.0
Recall 100.0 100.0 100.0 81.0 56.0 85.0 71.0 82.0
Fl-score 95.0 100.0 91.0 65.0 69.0 70.0 81.0 79.0
Accuracy 85.0 84.0 85.0 75.0 81.0 79.0 87.0 88.0
BSVM
Precision 83.0 84.0 82.0 75.0 75.0 77.0 79.0 89.0
Recall 82.0 83.0 91.0 73.0 79.0 81.0 84.0 87.0
F1-score 81.0 82.0 79.0 79.0 81.0 79.0 82.0 84.0
Accuracy 83.0 85.0 81.0 79.0 80.6 81.0 86.0 86.0
BMLP
Precision 72.0 81.0 78.0 68.0 70.0 70.0 75.0 81.0
Recall 78.0 84.0 82.0 70.0 76.0 79.0 78.0 83.0
F1-score 74.0 82.0 80.0 67.0 71.0 75.0 77.0 80.0
Accuracy 80.0 77.0 76.0 71.0 74.0 75.0 75.0 77.0

Table 6 shows the results of percentage precision, recall, Fl1-score and accuracy performance
analysis of RAVDESS MFCC2 features. The performance values were generally higher for recognizing
angry, calm and disgust emotions using RDF. However, the performance values were relatively low for
happy and neutral emotions showing that the hybridization of MFCC, ZCR, energy and fundamental
frequency features yielded a relatively poor result in recognizing happy and neutral emotions using
ensemble learning. The MFCC2 combination of acoustic features achieved an improved recognition
performance of the fear (90.0%) emotion using RDF in comparison with the report in [44], where 81.0%
recognition was achieved for the fear emotion using the CASIA database.



Algorithms 2020, 13, 70 15 of 24

Table 6. Percentage precision, recall and F1-score and accuracy on RAVDESS MFCC2.

Emotion
Classifier/Measure  Angry Calm Disgust  Fear Happy Neutral Sad Surprise
RDF
Precision 100.0 100.0 100.0 91.0 95.0 64.0 90.0 100.0
Recall 100.0 100.0 100.0 89.0 78.0 100.0 90.0 95.0
F1-score 100.0 100.0 100.0 93.0 86.0 78.0 90.0 98.0
Accuracy 96.0 93.0 92.0 90.0 94.0 91.0 96.0 97.6
GBM
Precision 100.0 100.0 100.0 87.0 79.0 55.0 80.0 86.0
Recall 100.0 100.0 100.0 87.0 75.0 86.0 67.0 90.0
F1-score 100.0 100.0 100.0 87.0 77.0 67.0 73.0 88.0
Accuracy 88.0 84.0 83.0 82.0 85.0 85.0 88.0 98.6
ABC
Precision 94.0 93.0 91.0 78.0 71.0 79.0 81.0 89.0
Recall 96.0 100.0 100.0 86.0 76.0 73.0 83.0 86.0
F1-score 92.0 95.0 100.0 79.0 74.0 76.0 81.0 86.0
Accuracy 86.0 82.0 83.0 81.0 87.0 82.0 88.0 92.6
BSVM
Precision 81.0 94.0 91.0 77.0 74.0 79.0 78.0 94.0
Recall 92.0 89.0 90.0 76.0 74.0 77.0 74.0 90.0
F1-score 94.0 91.0 91.0 77.0 74.0 78.0 76.0 92.0
Accuracy 84.0 81.0 80.0 78.0 85.0 85.0 87.0 96.0
BMLP
Precision 76.0 89.0 86.0 72.0 70.0 76.0 74.0 83.0
Recall 75.0 86.0 86.0 74.0 67.0 75.0 72.0 85.0
F1-score 77.0 91.0 87.0 74.0 73.0 76.0 74.0 90.0
Accuracy 85.0 81.0 78.0 73.0 78.0 77.0 78.0 84.0

Emotion recognition results shown in Table 7 with respect to the RAVDESS HAF were generally
impressive across emotions, irrespective of the ensemble learning algorithms utilized. RDF was highly
effective in recognizing all the eight emotions because it had achieved perfect accuracy value by 100.0%
on almost all the emotions, except fear (98.0%). Moreover, perfect precision and accuracy values were
achieved in recognizing the neutral emotion, which was really difficult to identify using other sets of
features. In addition, 98.0% accuracy and perfect values obtained for precision, recall and F1-score for
the fear emotion is impressive because of the difficulty of recognizing the fear emotion as reported
in the literature [25-27]. All the other learning algorithms performed relatively well, considering the
fact that noise was added to the training data. These results attest to the effectiveness of the proposed
HAF for recognizing emotions in human speech. In addition, the results point to the significance of
sourcing highly discriminating features for recognizing human emotions. They further show that the
fear emotion could be recognized efficiently when compared to other techniques used in [44]. It can
be seen that the recognition of fear emotion was successfully improved using the proposed HAF. In
addition, HAF gave better performance than the bottleneck features used for six emotions from CASIA
database [27] that achieved a recognition rate of 60.5% for the fear emotion.
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Table 7. Percentage precision, recall and Fl-score and accuracy on RAVDESS HAF.

Emotion
Classifier/Measure  Angry Calm Disgust  Fear Happy Neutral Sad Surprise
RDF
Precision 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.0
Recall 100.0 100.0 100.0 100.0 100.0 96.0 100.0 100.0
F1-score 100.0 100.0 100.0 100.0 100.0 98.0 100.0 99.0
Accuracy 100.0 100.0 100.0 98.0 100.0 100.0 100.0 100.0
GBM
Precision 93.0 100.0 100.0 94.0 100.0 95.0 99.0 93.0
Recall 92.0 100.0 100.0 93.0 97.0 100.0 76.0 100.0
F1-score 92.0 100.0 100.0 93.0 98.0 97.0 86.0 96.0
Accuracy 95.0 91.0 92.0 88.0 91.0 90.0 96.0 98.0
ABC
Precision 92.0 100.0 96.0 94.0 100.0 95.0 93.0 97.0
Recall 91.0 100.0 100.0 95.0 93.0 76.0 100.0 100.0
F1-score 92.0 100.0 98.0 93.0 95.0 91.0 87.0 98.0
Accuracy 93.0 90.0 92.0 86.0 93.0 91.0 95.0 96.0
BSVM
Precision 91.0 100.0 99.0 92.0 89.0 74.0 83.0 94.0
Recall 91.0 100.0 100.0 90.0 86.0 85.0 86.0 98.0
F1-score 93.0 100.0 100.0 91.0 86.0 77.0 87.0 95.0
Accuracy 93.0 93.0 92.0 86.0 90.0 91.0 93.0 96.0
BMLP
Precision 92.0 100.0 93.0 90.0 88.0 73.0 81.0 91.0
Recall 91.0 100.0 97.0 93.0 88.0 86.0 88.0 97.0
F1-score 90.0 100.0 91.0 88.0 83.0 75.0 84.0 91.0
Accuracy 92.0 91.0 93.0 89.0 91.0 88.0 92.0 94.0

Table 8 shows the results of percentage precision, recall, F1-score and accuracy analysis of SAVEE
MEFCC1 features. In the results, the maximum percentage precision Fl-score of the neutral emotion
had achieved 94.0% using the RDF ensemble algorithm. This Fl1-score was quite high when compared
to the Fl-score obtained from RAVDESS database using the same features. The percentage increase in
overall precision of neutral emotion was observed to be 133.33%, 77.36%, 18.57%, 12.66% and 10.39%
using GBM, RDE, BMLP, ABC and BSVM respectively. Moreover, RDF and GBM algorithms achieved
perfect prediction (100.0%) for recognizing the surprise emotion. The results show that MFCC features
still achieved low recognition rates for the fear emotion as reported by other authors [25]. However,
RDF (94.0%) and GBM (91.0%) show higher precision rates for the neutral emotion, which is higher
than what was reported in [11].
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Table 8. Percentage precision, recall and F1-score and accuracy on SAVEE MFCC1.

Emotion
Classifier/Measure  Angry Disgust Fear Happy Neutral Sad Surprise
RDF
Precision 65.0 24.0 65.0 48.0 94.0 48.0 100.0
Recall 65.0 83.0 57.0 65.0 52.0 83.0 100.0
F1-score 65.0 37.0 60.0 55.0 67.0 61.0 100.0
Accuracy 69.0 66.0 60.0 75.0 64.0 77.0 81.0
GBM
Precision 65.0 29.0 75.0 26.0 91.0 62.0 100.0
Recall 62.0 67.0 48.0 55.0 62.0 72.0 100.0
F1-score 63.0 40.0 59.0 35.0 74.0 67.0 100.0
Accuracy 70.0 66.0 57.0 74.0 62.0 79.0 84.0
ABC
Precision 66.0 28.0 64.0 36.0 89.0 59.0 98.0
Recall 68.0 29.0 62.0 40.0 91.0 59.0 100.0
F1-score 65.0 28.0 63.0 38.0 91.0 58.0 99.0
Accuracy 60.0 57.0 53.0 66.0 62.0 79.0 83.0
BSVM
Precision 65.0 23.0 61.0 41.0 85.0 57.0 98.0
Recall 64.0 26.0 57.0 38.0 81.0 61.0 100.0
F1-score 66.0 29.0 62.0 36.0 83.0 58.0 99.0
Accuracy 56.0 54.0 51.0 69.0 56.0 77.0 85.0
BMLP
Precision 64.0 23.0 59.0 38.0 83.0 54.0 95.0
Recall 63.0 25.0 55.0 39.0 85.0 57.0 97.0
Fl-score 64.0 25.0 59.0 37.0 81.0 55.0 96.0
Accuracy 52.0 50.0 49.0 51.0 53.0 64.0 69.0

Table 9 shows the analysis results of the percentage precision, recall, Fl-score and accuracy
obtained after performing the classification with SAVEE MFCC2 features. It can be observed from
the table that all the learning algorithms performed well for recognizing the surprise emotion, but
performed poorly in recognizing other emotions. In general, all learning algorithms achieved a low
prediction of emotions with the exception of surprise emotion in which the perfect Fl-score was
obtained using the RDF algorithm. The lowest precision value of 93.0% was achieved for the surprise
emotion using MFCC2 features with BMLP. These results indicate the unsuitability of MFCC, ZCR,
energy and fundamental frequency features for recognizing human emotions. However, RDF and
GBM gave higher recognition results for happy and sad emotions, RDF gave a higher recognition
result for fear emotion while ABC and BSVM gave higher recognition results for the sad emotion that
the traditional and bottleneck features [27].
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Table 9. Percentage precision, recall and Fl-score and accuracy on SAVEE MFCC2.

Emotion
Classifier/Measure  Angry Disgust Fear Happy Neutral Sad Surprise
RDF
Precision 71.0 85.0 69.0 68.0 95.0 59.0 100.0
Recall 70.0 84.0 65.0 67.0 68.0 88.0 100.0
F1-score 71.0 84.0 68.0 68.0 74.0 71.0 100.0
Accuracy 77.0 73.0 63.0 70.0 69.0 82.0 100.0
GBM
Precision 72.0 65.0 83.0 47.0 93.0 69.0 100.0
Recall 69.0 74.0 69.0 62.0 71.0 77.0 100.0
Fl1-score 70.0 68.0 71.0 48.0 77.0 75.0 100.0
Accuracy 74.0 71.0 59.0 73.0 69.0 86.0 92.0
ABC
Precision 74.0 71.0 70.0 58.0 69.0 73.0 99.0
Recall 76.0 72.0 68.0 61.0 68.0 71.0 100.0
F1-score 74.0 75.0 73.0 59.0 65.0 73.0 100.0
Accuracy 71.0 67.0 56.0 69.0 69.0 71.0 99.0
BSVM
Precision 71.0 68.0 66.0 59.0 67.0 71.0 98.0
Recall 72.0 72.0 64.0 61.0 64.0 75.0 100.0
F1-score 70.0 70.0 66.0 60.0 65.0 73.0 100.0
Accuracy 71.0 62.0 51.0 67.0 68.0 73.0 100.0
BMLP
Precision 70.0 66.0 64.0 57.0 66.0 67.0 93.0
Recall 72.0 70.0 66.0 59.0 68.0 72.0 97.0
Fl-score 71.0 68.0 64.0 59.0 65.0 69.0 96.0
Accuracy 56.0 52.0 49.0 65.0 54.0 64.0 85.0

Table 10 shows the analysis results of the percentage precision, recall, F1-score and accuracy
obtained after performing classification with SAVEE HAF. Accordingly, all the emotions were much
easier to recognize using the HAF that had tremendously improved the recognition of the fear emotion
reported in the literature to be difficult with lower performance results recorded with traditional and
bottleneck features for fear emotion [27]. Moreover, Kerkeni et al. [11] obtained a recognition accuracy
rate of 76.16% for the fear emotion using MFCC and MS features based on the Spanish database of
seven emotions. These results show that using HAF with ensemble learning is highly promising for
recognizing emotions in human speech. The study findings were consistent with the literature that
ensemble learning gives a better predictive performance through the fusion of information knowledge
of predictions of multiple inducers [75,85]. The ability of ensemble learning algorithms to mimic the
nature of human by seeking opinions from several inducers for informed decision distinguish them
from inducers [73]. Moreover, it can be seen across Tables 4-10 that the set of HAF presented the
most effective acoustic features for speech emotion recognition, while the set MFCC1 presented the
worst features. In addition, the study results supported the hypothesis that a combination of acoustic
features based on prosodic and spectral reflects the important characteristics of speech [42,53,54].
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Table 10. Percentage precision, recall and F1-score and accuracy on SAVEE HAF.

Emotion
Classifier/Measure  Angry Disgust Fear Happy Neutral Sad Surprise
RDF
Precision 100.0 100.0 94.0 100.0 100.0 100.0 100.0
Recall 100.0 94.0 100.0 100.0 100.0 100.0 100.0
F1-score 100.0 100.0 100.0 100.0 100.0 97.0 97.0
Accuracy 100.0 99.0 97.0 100.0 99.1 100.0 100.0
GBM
Precision 100.0 96.0 100.0 100.0 100.0 100.0 100.0
Recall 100.0 100.0 94.0 100.0 100.0 100.0 100.0
F1-score 100.0 98.0 97.0 100.0 100.0 100.0 100.0
Accuracy 100.0 98.1 99.0 100.0 100.0 100.0 100.0
ABC
Precision 100.0 94.0 100.0 100.0 100.0 100.0 100.0
Recall 100.0 100.0 96.0 100.0 100.0 100.0 100.0
F1-score 100.0 94.0 91.0 100.0 100.0 100.0 100.0
Accuracy 100.0 99.0 99.0 100.0 100.0 100.0 100.0
BSVM
Precision 100.0 93.0 99.0 99.0 100.0 100.0 100.0
Recall 100.0 96.0 98.0 99.0 100.0 100.0 100.0
F1-score 100.0 96.0 99.0 100.0 100.0 100.0 100.0
Accuracy 100.0 94.0 96.0 96.0 100.0 100.0 100.0
BMLP
Precision 100.0 90.0 98.0 97.0 100.0 100.0 100.0
Recall 100.0 93.0 97.0 99.0 100.0 100.0 100.0
F1-score 100.0 91.0 98.0 98.0 100.0 100.0 100.0
Accuracy 100.0 93.0 95.0 99.0 100.0 100.0 100.0

Tables 4-10 show that HAF features had a higher discriminating power because higher performance
results were achieved across all emotion classes in the SAVEE and RAVDESS corpora. The performance
of each ensemble learning algorithm was generally low when MFCC1 and MFCC2 were applied
because the sets of the features had a much lower discriminating power compared to HAF. The
recognition results across the experimental databases were different because RAVDESS had more
instances than SAVEE. Moreover, SAVEE constitutes male speakers only while RAVDESS is comprised
of both male and female speakers. According to the literature, this diversity has an impact on the
performance of emotion recognition [35]. The literature review revealed that most emotion recognition
models have not been able to recognize the fear emotion with a higher classification accuracy of 98%,
but the results in Table 4 show that HAF significantly improved the recognition performance of emotion
beyond expectation.

5. Conclusions

The automatic recognition of emotion is still an open research because human emotions are
highly influenced by quite a number of external factors. The primary contribution of this study is
the construction and validation of a set of hybrid acoustic features based on prosodic and spectral
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features for improving speech emotion recognition. The constructed acoustic features have made it
easy to effectively recognize eight classes of human emotions as seen in this paper. The agglutination
of prosodic and spectral features has been demonstrated in this study to yield excellent classification
results. The proposed set of acoustic features is highly effective in recognizing all the eight emotions
investigated in this study, including the fear emotion that has been reported in the literature to be
difficult to classify. The proposed methodology seems to work well because combining certain prosodic
and spectral features increases the overall discriminating power of the features hence increasing
classification accuracy. This superiority is further underlined by the fact that the same ensemble
learning algorithms were used on different feature sets, exposing the performance of each group of
features regarding their discriminating power. In addition, we saw that ensemble learning algorithms
generally performed well. They are widely judged to improve recognition performance better than a
single inducer by decreasing variability and reducing bias. Experimental results show that it was quite
difficult to achieve high precisions and accuracies when recognizing the neutral emotion with either
pure MFCC features or a combination of MFCC, ZCR, energy and fundamental frequency features
that were seen to be effective in recognizing the surprise emotion. However, we provided evidence
through intensive experimentation that random decision forest ensemble learning of the proposed
hybrid acoustic features was highly effective for speech emotion recognition.

The results of this study were generally fantastic, even though the Gaussian noise was added to the
training data. The gradient boosting machine algorithm yielded good results, but the main challenge
with the algorithm is that its training time is long. In terms of effectiveness, the random decision forest
algorithm is superior to the gradient boosting machine algorithm for speech emotion recognition with
the proposed acoustic features. The results obtained in this study were quite stimulating, nevertheless,
the main limitation of this study was that the experiments were done on acted speech databases in
consonance with the research culture. There can be major differences between working with acted
and real data. Moreover, there are new features such as breath and spectrogram not investigated in
this study for recognizing speech emotion. In the future, we would like to pursue this direction to
determine how the new features will compare with the proposed hybrid acoustic features. In addition,
future research will harvest real emotion data for emotion recognition using the Huawei OceanConnect
cloud based IoT platform and Narrow Band IoT resources in South Africa Luban workshop at the
institution of the authors, which is a partnership project with the Tianjin Vocational Institute in China.
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