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Abstract: A large amount of time series data is being generated every day in a wide range of sensor
application domains. The symbolic aggregate approximation (SAX) is a well-known time series
representation method, which has a lower bound to Euclidean distance and may discretize continuous
time series. SAX has been widely used for applications in various domains, such as mobile data
management, financial investment, and shape discovery. However, the SAX representation has a
limitation: Symbols are mapped from the average values of segments, but SAX does not consider the
boundary distance in the segments. Different segments with similar average values may be mapped
to the same symbols, and the SAX distance between them is 0. In this paper, we propose a novel
representation named SAX-BD (boundary distance) by integrating the SAX distance with a weighted
boundary distance. The experimental results show that SAX-BD significantly outperforms the SAX
representation, ESAX representation, and SAX-TD representation.
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1. Introduction

Time series data are being generated every day in a wide range of application domains [1], such as
bioinformatics, finance, engineering, etc. [2]. The parallel explosions of interest in streaming data and
data mining of time series [3–9] have had little intersection. Time series classification methods can
be divided into three main categories [10]: feature based, model based and distance based. There
are many methods for feature extraction, for example: (1) spectral analysis such as discrete Fourier
transform (DFT) [11], (2) discrete wavelet transform (DWT) [12], where features of the frequency
domain are considered, and (3) singular value decomposition (SVD) [13], where eigenvalue analysis
is carried out in order to find an optimal set of features. The model-based classification methods
include auto-regressive models [14,15] or hidden Markov models [16], among others. In distance-based
methods, 1-NN [1] has been a widely used method due to its simplicity and good performance.

Until now, almost all the research in distance-based classification has been oriented to defining
different types of distance measures and then exploiting them within the 1-NN classifiers. The 1-NN
classifier is probably the simplest classifier among all classifiers, while its performance is also good.
Dynamic Time Warping(DTW) [17] as a distance method used for 1-NN classifier makes the classification
accuracy reach the maximum at that time. However, due to the high dimensions, high volume,
high feature correlation, and multiple noises, it has brought great challenges to the classification of time
series, and even makes the DTW unusable. In fact, all non-trivial data mining and indexing algorithms
decrease exponentially with dimensions. For example, above 16–20 dimensions, the index structure
will be degraded to sequential scanning [18]. In order to reduce the time series dimensions and have
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a low bound to the Euclidean distance. The Piecewise Aggregate Approximation(PAA) [19] and
Symbolic Aggregate Approximate(SAX) [20] were brought up. The distance in the SAX representation
has a lower bound to the Euclidean distance. Therefore, the SAX representation speeds up the data
mining process of time series data while maintaining the quality of the data mining results. SAX has
been widely used in mobile data management [21], financial investment [22], feature extraction [23].
In recent years, with the popularity of deep learning, applying deep learning methods to multivariate
time series classification has also received attention [24].

SAX allows a time series of arbitrary length n to be reduced to a string of arbitrary length w [20]
(w < n, typically w << n). The alphabet size α is also an arbitrary integer. The SAX representation has a
major limitation. In the SAX representation, symbols are mapped from the average values of segments,
and some important features may loss. For example, in Figure 1, if w = 6 and α = 6, time series a
represented as ‘decfdb’.
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Figure 1. Financial time series A and B have the same SAX symbolic representation ‘decfdb’ in the 
same condition where the length of time series is 30, the number of segments is 6 and the size of 
symbols is 6. However, they are different time series. 

However, it can be clearly seen from the Figure 1 that the time series changes drastically. 
Therefore, a compromise is needed to reduce the dimension of time series while improving the 
accuracy. ESAX representation can express the characteristics of time series in more detail [25]. It 
chooses a maximum, a minimum and the average value in each time series segment as the new 
feature, then map the new feature to strings according to the SAX method. For the same time series, 
in Figure 1 time series a can be represented as ‘adfeeffcaefffdaabc’. 

SAX-TD (trend distance) method improves the accuracy of ESAX and reduce the complexity of 
symbol representation [26]. It uses fewer values than ESAX due to the strategy that one segment only 
needs one trend distance. In the Figure 1, the time series a is represented as’ -1.4d0.13e0.75c0.13f1.25d−0.25b−0.25′. 

In this paper we propose a new method SAX-BD, in which BD means the boundary distance. 
For each divided time series segment, they have the maximum point and minimum point, the 
distance from them to average value named boundary distance. Time series a and b in Figure 1 have 
a high probability of being identified as the same if SAX-TD is used. However, in our method, time 
series A is represented as ’ d(−1.4,0.63)e(−0.38,0.38)c(1.36,−1.39)f(−0.25,0.36)d(1.5,−1)b(−0.38,0.38)’ and time series B is represented 
as ‘d(−1.4,1.2)e(0.38,−0.5)c(−1.8,1.9)f(0.38,−0.25)d(1.5,−1.0)b(0.45,−0.55)‘. Obviously, there is a big difference between the two 
representations. 

In our work, there are three main contributions. First, we prove an intuitive boundary distance 
measure on time series segments. The average value of the segment and its boundary distance help 
measure different trends of time series more accurately. Our representation captures the trends in 
time series better than the SAX, ESAX, and the SAX-TD representations. Second, we discussed the 
SAX-TD algorithm and the ESAX algorithm and explained that our method is actually a 
generalization of these two methods. For their poorly performing data, our method has improved the 

Figure 1. Financial time series A and B have the same SAX symbolic representation ‘decfdb’ in the same
condition where the length of time series is 30, the number of segments is 6 and the size of symbols is 6.
However, they are different time series.

However, it can be clearly seen from the Figure 1 that the time series changes drastically. Therefore,
a compromise is needed to reduce the dimension of time series while improving the accuracy.
ESAX representation can express the characteristics of time series in more detail [25]. It chooses a
maximum, a minimum and the average value in each time series segment as the new feature, then map
the new feature to strings according to the SAX method. For the same time series, in Figure 1 time
series a can be represented as ‘adfeeffcaefffdaabc’.

SAX-TD (trend distance) method improves the accuracy of ESAX and reduce the complexity of
symbol representation [26]. It uses fewer values than ESAX due to the strategy that one segment only needs
one trend distance. In the Figure 1, the time series a is represented as’ −1.4d0.13e0.75c0.13f1.25d−0.25b−0.25

′.
In this paper we propose a new method SAX-BD, in which BD means the boundary distance.

For each divided time series segment, they have the maximum point and minimum point, the distance
from them to average value named boundary distance. Time series a and b in Figure 1 have a
high probability of being identified as the same if SAX-TD is used. However, in our method,
time series A is represented as ’ d(−1.4,0.63)e(−0.38,0.38)c(1.36,−1.39)f(−0.25,0.36)d(1.5,−1)b(−0.38,0.38)’ and time
series B is represented as ‘d(−1.4,1.2)e(0.38,−0.5)c(−1.8,1.9)f(0.38,−0.25)d(1.5,−1.0)b(0.45,−0.55)‘. Obviously, there is
a big difference between the two representations.

In our work, there are three main contributions. First, we prove an intuitive boundary distance
measure on time series segments. The average value of the segment and its boundary distance help
measure different trends of time series more accurately. Our representation captures the trends in time
series better than the SAX, ESAX, and the SAX-TD representations. Second, we discussed the SAX-TD
algorithm and the ESAX algorithm and explained that our method is actually a generalization of these
two methods. For their poorly performing data, our method has improved the result to a certain extent.
For the data they outperform, we can basically keep the reduced accuracy rate in a very small range.



Algorithms 2020, 13, 284 3 of 20

Third, we proved that our improved distance measure not only keeps a lower-bound to the Euclidean
distance, but also achieves a tighter lower bound than that of the original SAX distance.

2. Related Work

Given that the normalized time series have highly Gaussian distribution, we can simply determine
the “breakpoints” that will produce equal-sized areas under Gaussian curve. The idea of the SAX
algorithm is to assume that the average value of each segment has the equal probability in βi to βi+1 = 1/a
Each segment is projected into its own specified area. While w determines how many dimensions
to reduce for the n-dimension time series. The smaller w is, the larger n/w, indicating that more
information will be compressed.

2.1. The Distance Calculation by SAX

For example, a sequence data of length n is converted into w symbols. The specific steps are
as follows:

Divides time series data into w segments of the same size according to the Piecewise
Aggregate Approximation (PAA) algorithm. The average value of each time segment for example

C = C1, C2, . . . , Cw the ith element of C is the average of the ith segment and is calculated by the
following equation:

Ci =
w
n

(n/w)i∑
j=(n/w)(i+1)+1

C j (1)

where C j is one time point of time series C, using breakpoints to divide space into α equiprobable
regions are determined

These breakpoints are arranged in list order as B = β1, β2, . . . , βα−1, They satisfy Gaussian
distribution, and the spacing between βi and βi+1 is 1/α.

Finally, the divided s time series segments are represented by these breakpoints. The SAX
algorithm can map segments’ average values to alphabetic symbols. The mapping rule of SAX is as
follows, if it is smaller than the lower limit of the minimum breakpoints, it is mapped to ‘a’, and then
greater than a bit smaller than the second breakpoints lower limit is mapped to ‘b’. The symbols after
these mappings can roughly indicate a time series.

Given two time series Q and C, the two time series are of the same length n, which is divided
into w time segments. Q̂ and Ĉ are the symbol strings after they are transformed into SAX algorithm
representation, then the SAX distance between Q and C can be expressed as follows:

MINDIST
(
Q̂, Ĉ

)
=

√
n
w

√√ w∑
i=1

(dist(q̂, ĉ))2 (2)

Among them, the dist(q̂, ĉ) can be obtained according to Table 1, the query method can be
expressed as the following equation:

dist(q̂, ĉ) =
{

0
βmax(q̂,ĉ)−1 − βmin(q̂,ĉ)

if
∣∣∣q̂− ĉ

∣∣∣ ≤ 1
otherwise

(3)

2.2. An Improvement of SAX Distance Measure for Time Series

As the first to symbolize time series and can be effectively applied to time series classification,
SAX has been recognized by many experts and scholars, however the shortcoming is also obviously to
see. The larger w and smallerα, the more features will be lost for time series. To keep as much important
information as possible, time series trend needed to be kept in the process of SAX dimensionality
reduction. For example, in reference [26], some limitations of using SAX algorithm on the classification
for time series were discussed. In this paper, these cases are listed separately in Figure 2.
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Table 1. A lookup table for breakpoints with the alphabet size from 3 to 10.

βi 3 2 5 6 7 8 9 10

β1 −0.43 −0.67 −0.84 −0.97 −1.07 −1.15 −1.22 −1.28
β2 −0.43 0 −0.25 −0.43 −0.57 −0.67 −0.76 −0.84
β3 0.67 0.25 0 −0.18 −0.32 −0.43 −0.52
β4 0.84 0.43 0.18 0 −0.14 −0.25
β5 0.97 0.57 0.32 0.14 0
β6 1.07 0.67 0.43 0.25
β7 1.15 0.76 0.52
β8 1.22 0.84
β9 1.28
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Figure 2. Several typical segments with the same average value but different trends [26]. Segment a
and d, b and e, c and f are in opposite directions while all in same mean value.

In Figure 2, the average value of a and d, b and e, c, and f correspond to the same, but it is very
clear that their time series tend to be significantly different. In order to correctly describe this difference,
the author proposes using the SAX-TD method. According to the calculation rules of SAX-TD, the trend
distance td (q, c) of two time series q and c is first calculated. The specific definition is as follows:

td(q, c) =
√
(∆q(ts) − ∆q(cs))

2 + (∆q(te) − ∆q(ce))
2 (4)

where ts and te are the start point and end point of a time segment for the time series q and c.
Respectively, the specific definition of ∆q(t) is as follows:

∆q(t) = q(t) − q (5)

∆c(t) will be calculated in the same way, in article the author refers to this method as the tendency of
time segments.

With the SAX method description, the time series Q and C respectively represented as follows:

Q : ∆q(1)q̂1 ∆q(2)q̂2 . . . ∆q(w)q̂w∆q(w + 1)

C : ∆c(1)ĉ1 ∆c(2)ĉ2 . . . ∆c(w)ĉw∆c(w + 1)
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q̂1, q̂2 . . . q̂w is a sequence symbolized by SAX, ∆q(1), ∆q(2) , . . . , ∆q(w) are the trend variations,
and ∆q(W + 1) is the change of the last point.

The distance between two time series can be defined based on the trend distance as follows:

TDIST
(
Q̂, Ĉ

)
=

√
n
w

√√ w∑
i=1

((dist(q̂i, ĉi))
2 +

w
n
(td(qi, ci))

2 (6)

where Q̂ and Ĉ, respectively, denote the time series Q and C, n is the length of Q and C, and w
is the number of time segments. The distance between time series Q and C can be calculated by
Equation (6). In this paper, the author proved that this method has a low bound to Euclidean distance,
and the experimental results also showed that this method improves classification accuracy compared
with ESAX.

3. SAX-BD: Boundary Distance-Based Method For Time Series

3.1. An Analysis of SAX-TD

First, in Figure 3, we select the b, c, e, f curve features from Figure 2.
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Figure 3. Several typical segments with the same average value and same trends but different boundary
distance. Segment b and c, e and f with the same SAX representation and trend distance while they are
different segments.

The difference between b and e, c and f can be identified by using the SAX-TD algorithm, because,
for b, the trend distance is ∆q(t), and for the e is −∆q(t), the final calculation results can distinguish
these time series. However, if you want to identify the difference between a and c, e and f, there is a
great possibility that you will fail. The trend distance for b and c, e and f are both the same value ∆q(t)
or −∆q(t), according to the calculation rules of SAX-TD, they will be judged as the same time series.

3.2. Our Method SAX-BD

In order to solve these problems, we propose to increase the boundary distance as a new reference
instead of the trend distance. The details are as follows:

From Figure 4, we can see that this method is somewhat the same as ESAX, but it is different
from ESAX.
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Figure 4. Several typical segments with the same average value but boundary distance. Segment a
and d, b and e, c and f are in opposite directions while all in same mean value. The trend distance is
replaced by boundary distance.

The maximum and minimum value of each time segment is the boundary. The boundary distance
of c is ∆q(t) and for f is −∆q(t), shown in Equations (7) and (8):

∆q(t)max = q(t)max − q (7)

∆q(t)min = q(t)min − q (8)

The tendency change of c calculated by SAX-BD algorithm is ∆q(tmax), and the tendency change
of f is −∆q(tmax). It can be seen that our method can also distinguish well. For b and c, the distance
calculated using SAX-TD is the same, but in our method, SAX-BD, the equation is not equal to 0,
indicating that there is a possibility of distinction between the time series. For the cases of g and h,
according to our method, it is as follows:

∆q(ts) = ∆q
(
th
max

)
and a and ∆q(te) = ∆q

(
th
min

)
(9)

∆q
(
tg
max

)
− ∆q(ts) , 0 and ∆q

(
tg
min

)
− ∆q(te) , 0 (10)

3.3. Difference from ESAX

In the ESAX method, the maximum, minimum, and mean values in each time segment are mapped
and arranged according to the following formula:

< S1, S2, S3 >=



< Smax, Smid, Smin > i f Pmax > Pmid > Pmin

< Smax, Smin, Smid > i f Pmax > Pmin > Pmid
< Smid, Smin, Smax > i f Pmid > Pmin > Pmax

< Smid, Smax, Smin > i f Pmid > Pmax > Pmin

< Smin, Smid, Smax > i f Pmin > Pmid > Pmax

< Smin, Smax, Smid > Otherwise

(11)

However, for the same feature points, we did not directly map these points in the same way as the
ESAX method, mainly due to the following two reasons:

Firstly, in Figure 5, if you follow these points in the ESAX method diagram, for example, for A, B,
C, D, E, they will all be mapped to the same character ‘f’ for α = 6 and F, G, H will be mapped to ‘a’.
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We directly retain these feature points and calculate the boundary distance. At this time, the specific
values of A, B, C, D, E, and F, G, H can have a better discrimination.
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Figure 5. Time series represented as ‘adfeeffcaefffdaabc’ by ESAX [25]. Where the length of time series
is 30, the number of segments is 6 and the size of symbols is 6. The capital letters A–H represent the
maximum and minimum values in every segment.

Secondly, if we follow the ESAX method, we can see from Equation (11) that there may be a
total of 6 comparisons. In fact, according to our method, only two comparisons are needed. Since
our distance measurement is consistent with SXA-TD, the low correlation between Equation (13) and
Euclidean distance has also been proven in the SAX-TD paper.

< ∆S1, ∆S2 >=

{
< ∆Smin, ∆Smax > i f Pmax > Pmin

< ∆Smax, ∆Smin > i f Pmin > Pmin
(12)

Finally, time series Q and C can be expressed as follows according to our method SAX-BD:

Q : q̂1∆S1
1∆S1

2 q̂2 S2
1S2

2 . . . q̂w ∆Sw
1 ∆Sw

2 C : ĉ1∆C1
1∆C1

2 ĉ2∆C2
1∆C2

2 . . . ĉw∆Cw
1 ∆Cw

2

The equation for calculating the distance between Q and C can be expressed as follows:

bd(q, c) =
√
(∆q(t)1 − ∆C(t)1)

2 + (∆q(t)2 − ∆C(t)2)
2 (13)

BDIST
(
Q̂, Ĉ

)
=

√
n
w

√√ w∑
i=1

((dist(q̂, ĉ))2 +
w
n
(bd(qi, ci))

2 (14)

3.4. Lower Bound

One of the most important characteristics of the SAX is that it provides a lower bounding distance
measure. Lower bound is very useful for controlling errors and speeding up the computation. Below,
we will show that our proposed distance also lower bounds the Euclidean distance.

According to [19,20], we have proved that the PAA distance lower bounds the Euclidean distance
as follows: √√ n∑

i=1

(qi − ci)
2
≥

√
n
w

√√ w∑
i=1

(qi, ci)
2 (15)
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For proving the TDIST also lower bounds the Euclidean distance, we repeat some of the proofs
here. Let Q and C be the means of time series Q and C respectively. We first consider only the single
frame case (i.e., w = 1), Equation (14) can be rewritten as follows:

n∑
i=1

(qi − ci)
2
≥ n

(
Q−C

)2
(16)

Recall that Q is the average of the time series, so qi can be represented in terms of qi = Q− ∆qi.
The same applies to each point ci in C, Equation (15) can be rewritten as follows:

n
(
Q−C

)2
+

n∑
i=1

(∆qi − ∆ci)
2
≥ n

(
Q−C

)2
(17)

Because
n∑

i=1
(∆qi − ∆ci)

2
≥ 0, Recall the definition in Equation (9) and Equation (12),

(∆q(t)1 − ∆C(t)1)
2 + (∆q(t)2 − ∆C(t)2)

2, we can obtain an inequality as follows (its’ obviously exists
that the boundary distance in ∆qi):

n∑
i=1

(qi − ci)
2
≥ (∆q(t)1 − ∆C(t)1)

2 + (∆q(t)2 − ∆C(t)2)
2 (18)

Substituting Equation (16) into Equation (17), we get:

n
(
Q−C

)2
+

n∑
i=1

(qi − ci)
2
≥ n

(
Q−C

)2
+ (bd(qi, ci))

2 (19)

According to [20], the MINDIST lower bounds the PAA distance, that is:

n
(
Q−C

)2
≥ n

(
Q̂− Ĉ

)2
(20)

where Q̂ and Ĉ are symbolic representations of Q and C in the original SAX, respectively. By transitivity,
the following inequality is true

(
Q−C

)2
+

n∑
i=1

(∆qi − ∆ci)
2
≥ n

(
dist

(
Q̂− Ĉ

))2
+ (bd(qi, ci))

2 (21)

Recall Equation (15), this means

n∑
i=1

(∆qi − ∆ci)
2
≥ n

((
dist

(
Q̂− Ĉ

))2
+

1
n
(bd(qi, ci))

2
)

(22)

N frames can be obtained by applying the single-frame proof on every frame, that is√√ n∑
i=1

(qi − ci)
2
≥

√
n
w

√√ w∑
i=1

((dist(q̂, ĉ))2 +
w
n
(bd(qi, ci))

2 (23)

The quality of a lower bounding distance is usually measured by the tightness of lower bounding
(TLB).

TL =
Lower Bounding Distance(Q, C)

Euclidean Distance(Q, C)
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The value of TLB is in the range [0, 1]. The larger the TLB value, the better the quality. Recall the
distance measure in Equation (13), we can obtain that TLB(BDIST) ≥ TLB(MINIDIST) which means
the SAX-BD distance has a tighter lower bound than the original SAX distance.

4. Experimental Validation

In this section, we will present the results of our experimental validation. We used a stand-alone
desktop computer, Inter(R) Core(TM) i5-4440 CPU @ 3.10 GHz.

Firstly, we introduce the data sets used, the comparison methods and parameter settings. Then,
in order to show experimental results more conveniently, we evaluate the performances of the proposed
method in terms of classification accuracy rate shown in figures and classification error rate shown
in tables.

4.1. Data Sets

According to the latest time series database UCRArchive2018, in order to make the experimental
results more credible, 100 data sets were obtained on the basis of removing null values in the data
and show in Table 2. Each data set is divided into a training set and a testing set and a detailed
documentation of the data. The datasets contain classes ranging from 2 to 60 and have the lengths of
time series varying from 15 to 2844. In addition, the types of the data sets are also diverse, including
image, sensor, motion, ECG, etc. [27].

Table 2. 100 different types of time series datasets.

ID Type Name Train Test Class Length

1 Device ACSF1 100 100 10 1460
2 Image Adiac 390 391 37 176
3 Image ArrowHead 36 175 3 251
4 Spectro Beef 30 30 5 470
5 Image BeetleFly 20 20 2 512
6 Image BirdChicken 20 20 2 512
7 Simulated BME 30 150 3 128
8 Sensor Car 60 60 4 577
9 Simulated CBF 30 900 3 128

10 Traffic Chinatown 20 343 2 24
11 Sensor CinCECGTorso 40 1380 4 1639
12 Spectro Coffee 28 28 2 286
13 Device Computers 250 250 2 720
14 Motion CricketX 390 390 12 300
15 Motion CricketY 390 390 12 300
16 Motion CricketZ 390 390 12 300
17 Image DiatomSizeReduction 16 306 4 345
18 Image DistalPhalanxOutlineAgeGroup 400 139 3 80
19 Image DistalPhalanxOutlineCorrect 600 276 2 80
20 Image DistalPhalanxTW 400 139 6 80
21 Sensor Earthquakes 322 139 2 512
22 ECG ECG200 100 100 2 96
23 ECG ECGFiveDays 23 861 2 136
24 EOG EOGHorizontalSignal 362 362 12 1250
25 EOG EOGVerticalSignal 362 362 12 1250
26 Spectro EthanolLevel 504 500 4 1751
27 Image FaceAll 560 1690 14 131
28 Image FaceFour 24 88 4 350
29 Image FacesUCR 200 2050 14 131
30 Image FiftyWords 450 455 50 270
31 Image Fish 175 175 7 463
32 Sensor FordA 3601 1320 2 500
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Table 2. Cont.

ID Type Name Train Test Class Length

33 Sensor FordB 3636 810 2 500
34 HRM Fungi 18 186 18 201
35 Motion GunPoint 50 150 2 150
36 Motion GunPointAgeSpan 135 316 2 150
37 Motion GunPointMaleVersusFemale 135 316 2 150
38 Motion GunPointOldVersusYoung 136 315 2 150
39 Spectro Ham 109 105 2 431
40 Image HandOutlines 1000 370 2 2709
41 Motion Haptics 155 308 5 1092
42 Image Herring 64 64 2 512
43 Device HouseTwenty 40 119 2 2000
44 Motion InlineSkate 100 550 7 1882
45 EPG InsectEPGRegularTrain 62 249 3 601
46 EPG InsectEPGSmallTrain 17 249 3 601
47 Sensor InsectWingbeatSound 220 1980 11 256
48 Sensor ItalyPowerDemand 67 1029 2 24
49 Device LargeKitchenAppliances 375 375 3 720
50 Sensor Lightning2 60 61 2 637
51 Sensor Lightning7 70 73 7 319
52 Spectro Meat 60 60 3 448
53 Image MedicalImages 381 760 10 99
54 Traffic MelbournePedestrian 1194 2439 10 24
55 Image MiddlePhalanxOutlineAgeGroup 400 154 3 80
56 Image MiddlePhalanxOutlineCorrect 600 291 2 80
57 Image MiddlePhalanxTW 399 154 6 80
58 Sensor MoteStrain 20 1252 2 84
59 ECG NonInvasiveFetalECGThorax1 1800 1965 42 750
60 ECG NonInvasiveFetalECGThorax2 1800 1965 42 750
61 Spectro OliveOil 30 30 4 570
62 Image OSULeaf 200 242 6 427
63 Image PhalangesOutlinesCorrect 1800 858 2 80
64 Sensor Phoneme 214 1896 39 1024
65 Hemodynamics PigAirwayPressure 104 208 52 2000
66 Hemodynamics PigArtPressure 104 208 52 2000
67 Hemodynamics PigCVP 104 208 52 2000
68 Sensor Plane 105 105 7 144
69 Power PowerCons 180 180 2 144
70 Image ProximalPhalanxOutlineAgeGroup 400 205 3 80
71 Image ProximalPhalanxOutlineCorrect 600 291 2 80
72 Image ProximalPhalanxTW 400 205 6 80
73 Device RefrigerationDevices 375 375 3 720
74 Spectrum Rock 20 50 4 2844
75 Device ScreenType 375 375 3 720
76 Spectrum SemgHandGenderCh2 300 600 2 1500
77 Spectrum SemgHandMovementCh2 450 450 6 1500
78 Spectrum SemgHandSubjectCh2 450 450 5 1500
79 Simulated ShapeletSim 20 180 2 500
80 Image ShapesAll 600 600 60 512
81 Device SmallKitchenAppliances 375 375 3 720
82 Simulated SmoothSubspace 150 150 3 15
83 Sensor SonyAIBORobotSurface1 20 601 2 70
84 Sensor SonyAIBORobotSurface2 27 953 2 65
85 Spectro Strawberry 613 370 2 235
86 Image SwedishLeaf 500 625 15 128
87 Image Symbols 25 995 6 398
88 Simulated SyntheticControl 300 300 6 60
89 Motion ToeSegmentation1 40 228 2 277
90 Motion ToeSegmentation2 36 130 2 343
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Table 2. Cont.

ID Type Name Train Test Class Length

91 Sensor Trace 100 100 4 275
92 ECG TwoLeadECG 23 1139 2 82
93 Simulated TwoPatterns 1000 4000 4 128
94 Simulated UMD 36 144 3 150
95 Sensor Wafer 1000 6164 2 152
96 Spectro Wine 57 54 2 234
97 Image WordSynonyms 267 638 25 270
98 Motion Worms 181 77 5 900
99 Motion WormsTwoClass 181 77 2 900
100 Image Yoga 300 3000 2 426

4.2. Comparison Methods and Parameter Settings

We compare the result with the above-mentioned ESAX and SAX. We also compare with SAX-TD,
which is another latest research improving SAX based on the trend distance. We do the evaluation
on the classification task, of which the accuracy is determined by the distance measure. In this
way, it is well proved that our method improves the SAX-TD method. To compare the classification
accuracy, we conduct the experiments using the 1 nearest neighbor (1-NN) classifier by reading the
sun’s paper [26].

To make it fairer for each method, we use the testing data to search for the best parameters w and
α. For a given timeseries of length n, w and α are picked using the following criteria [28]):

For w, we search for the value from 2 up ton = 2 and double the value of w each time.
For α, we search for the value from 3 up to 10.
If two sets of parameter settings produce the same classification error rate, we choose the

smaller parameters.
The dimensionality reduction ratios are defined as follows:

Dimensionality Reduction Ratio =
Number o f the reduced data points
Number o f the Original data points

4.3. Result Analysis

To make the table fit all the data, we abbreviate SAX-TD for SAXTD and SAX-BD for SAXBD.
The overall classification results are listed in Table 3, where entries with the lowest classification error
rates are highlighted. SAX-BD has the lowest error in the most of the data sets (69/100), followed by
SAX-TD (22/100), EU (15/100). In some cases, it performs much better than the other two methods,
and even achieves a 0 classification error rate.

We use the Wilcoxon signed ranks test to test the significance of our method against other
methods. The test results are displayed in Table 4. Where n+, n_, and n0 denote the numbers of
data sets where the error rates of the SAX-BD are lower, larger than and equal to those of another
method respectively. The p-values (the smaller a p-value, the more significant the improvement)
demonstrate that our distance measure achieves a significant improvement over the other four methods
on classification accuracy.
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Table 3. 1-NN classification error rates of different methods.

ID EU
Error

SAX
Error

SAX
w

SAX
Ratio SAX α ESAX

Error
ESAX

w
ESAX
Ratio

ESAX
α

SAXTD
Error

SAXTD
w

SAXTD
Ratio

SAXTD
α

SAXBD
Error

SAXBD
w

SAXBD
Ratio

SAXBD
α

1 0.460 0.580 256 0.175 8 0.760 256 0.526 3 0.380 4 0.005 3 0.400 2 0.004 3
2 0.389 0.895 64 0.364 9 0.890 32 0.545 7 0.284 32 0.364 3 0.263 32 0.545 4
3 0.200 0.309 32 0.127 10 0.349 64 0.765 10 0.183 32 0.255 3 0.160 16 0.191 5
4 0.333 0.467 128 0.272 7 0.400 128 0.817 7 0.167 128 0.545 4 0.200 128 0.817 6
5 0.250 0.150 64 0.125 4 0.100 16 0.094 4 0.150 16 0.063 5 0.100 2 0.012 3
6 0.450 0.300 256 0.500 4 0.200 128 0.750 5 0.200 4 0.016 4 0.200 2 0.012 3
7 0.173 0.153 16 0.125 7 0.160 8 0.188 7 0.147 16 0.250 3 0.060 4 0.094 4
8 0.267 0.283 256 0.444 10 0.283 128 0.666 6 0.133 32 0.111 4 0.117 16 0.083 3
9 0.148 0.084 16 0.125 8 0.250 4 0.094 9 0.088 8 0.125 5 0.027 4 0.094 4

10 0.058 0.467 16 0.667 7 0.125 8 1.000 7 0.041 8 0.667 3 0.041 4 0.500 3
11 0.103 0.097 128 0.078 9 0.108 64 0.117 10 0.072 128 0.156 9 0.062 64 0.117 8
12 0.000 0.429 256 0.895 4 0.321 4 0.042 6 0.000 16 0.112 3 0.000 16 0.168 3
13 0.424 0.480 16 0.022 6 0.432 16 0.067 4 0.404 256 0.711 3 0.380 128 0.533 3
14 0.423 0.385 128 0.427 9 0.444 64 0.640 10 0.400 32 0.213 6 0.331 16 0.160 5
15 0.433 0.441 64 0.213 8 0.523 64 0.640 8 0.441 16 0.107 7 0.372 16 0.160 6
16 0.413 0.387 64 0.213 10 0.426 64 0.640 10 0.387 32 0.213 6 0.323 16 0.160 7
17 0.065 0.062 4 0.012 6 0.232 2 0.017 4 0.039 8 0.046 4 0.029 2 0.017 3
18 0.374 0.317 32 0.400 4 0.381 8 0.300 4 0.331 16 0.400 4 0.273 4 0.150 3
19 0.283 0.348 64 0.800 6 0.308 2 0.075 8 0.264 32 0.800 4 0.246 16 0.600 4
20 0.367 0.432 16 0.200 6 0.439 16 0.600 9 0.360 32 0.800 4 0.367 32 1.200 5
21 0.288 0.245 256 0.500 6 0.259 64 0.375 5 0.252 16 0.063 3 0.295 8 0.047 3
22 0.120 0.080 32 0.333 6 0.140 32 1.000 5 0.070 32 0.667 4 0.090 64 2.000 5
23 0.203 0.114 64 0.471 8 0.211 16 0.353 8 0.081 16 0.235 4 0.117 2 0.044 3
24 0.558 0.616 32 0.026 9 0.619 16 0.038 8 0.638 16 0.026 4 0.599 4 0.010 6
25 0.638 0.599 256 0.205 9 0.575 8 0.019 8 0.530 16 0.026 4 0.602 8 0.019 6
26 0.726 0.732 256 0.146 5 0.748 2 0.003 3 0.694 32 0.037 4 0.702 512 0.877 4
27 0.286 0.320 32 0.244 9 0.250 32 0.733 8 0.227 16 0.244 5 0.206 32 0.733 3
28 0.216 0.159 32 0.091 8 0.205 64 0.549 9 0.136 32 0.183 5 0.125 16 0.137 3
29 0.231 0.252 32 0.244 10 0.334 32 0.733 10 0.251 16 0.244 9 0.173 16 0.366 5
30 0.369 0.327 64 0.237 9 0.319 32 0.356 8 0.334 256 1.896 7 0.325 128 1.422 5
31 0.217 0.451 256 0.553 8 0.623 128 0.829 8 0.143 64 0.276 4 0.166 32 0.207 5
32 0.335 0.327 256 0.512 7 0.336 128 0.768 8 0.304 64 0.256 3 0.315 64 0.384 3
33 0.394 0.428 128 0.256 6 0.436 128 0.768 6 0.399 128 0.512 5 0.394 128 0.768 5
34 0.161 0.118 32 0.159 6 0.210 16 0.239 7 0.172 16 0.159 3 0.140 16 0.239 3
35 0.087 0.207 128 0.853 5 0.013 8 0.160 6 0.073 4 0.053 5 0.040 4 0.080 5
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Table 3. Cont.

ID EU
Error

SAX
Error

SAX
w

SAX
Ratio SAX α ESAX

Error
ESAX

w
ESAX
Ratio

ESAX
α

SAXTD
Error

SAXTD
w

SAXTD
Ratio

SAXTD
α

SAXBD
Error

SAXBD
w

SAXBD
Ratio

SAXBD
α

36 0.032 0.111 64 0.427 8 0.051 8 0.160 7 0.076 64 0.853 3 0.063 4 0.080 4
37 0.006 0.044 32 0.213 9 0.025 32 0.640 9 0.003 128 1.707 3 0.009 8 0.160 3
38 0.000 0.108 64 0.427 9 0.063 32 0.640 9 0.000 4 0.053 3 0.000 2 0.040 3
39 0.400 0.324 128 0.297 7 0.343 128 0.891 6 0.305 16 0.074 4 0.324 32 0.223 4
40 0.138 0.162 32 0.012 7 0.176 128 0.142 8 0.130 8 0.006 4 0.119 8 0.009 3
41 0.630 0.620 1024 0.938 6 0.597 128 0.352 7 0.584 1024 1.875 7 0.568 32 0.088 3
42 0.484 0.375 8 0.016 5 0.375 128 0.750 5 0.375 32 0.125 3 0.375 16 0.094 4
43 0.319 0.235 512 0.256 7 0.210 512 0.768 7 0.303 2 0.002 3 0.202 64 0.096 3
44 0.658 0.678 128 0.068 10 0.671 128 0.204 9 0.664 4 0.004 4 0.653 4 0.006 7
45 0.000 0.329 128 0.213 5 0.333 128 0.639 6 0.317 4 0.013 5 0.225 4 0.020 4
46 0.000 0.317 8 0.013 8 0.382 32 0.160 5 0.325 32 0.106 4 0.317 32 0.160 4
47 0.438 0.432 32 0.125 8 0.458 64 0.750 7 0.420 128 1.000 5 0.416 128 1.500 4
48 0.045 0.077 16 0.667 9 0.109 8 1.000 8 0.044 16 1.333 3 0.047 16 2.000 4
49 0.507 0.528 512 0.711 8 0.541 16 0.067 8 0.456 16 0.044 4 0.419 16 0.067 4
50 0.246 0.148 64 0.100 7 0.197 128 0.603 5 0.197 16 0.050 6 0.148 8 0.038 4
51 0.425 0.370 256 0.803 6 0.329 8 0.075 6 0.356 8 0.050 6 0.274 16 0.150 4
52 0.067 0.667 2 0.004 3 0.667 2 0.013 3 0.067 16 0.071 3 0.067 2 0.013 3
53 0.316 0.322 64 0.646 7 0.309 32 0.970 9 0.325 32 0.646 5 0.325 64 1.939 6
54 0.055 0.592 16 0.667 10 0.665 8 1.000 9 0.089 16 1.333 3 0.087 16 2.000 3
55 0.481 0.429 2 0.025 3 0.429 4 0.150 3 0.435 2 0.050 3 0.468 32 1.200 3
56 0.234 0.368 64 0.800 8 0.419 16 0.600 4 0.237 64 1.600 5 0.265 16 0.600 5
57 0.487 0.597 64 0.800 6 0.565 8 0.300 7 0.494 8 0.200 3 0.481 8 0.300 3
58 0.121 0.149 16 0.190 5 0.215 16 0.571 6 0.118 32 0.762 5 0.125 32 1.143 6
59 0.171 0.448 512 0.683 10 0.792 128 0.512 10 0.183 32 0.085 4 0.181 16 0.064 5
60 0.120 0.408 512 0.683 10 0.673 128 0.512 10 0.115 128 0.341 5 0.117 16 0.064 8
61 0.133 0.833 2 0.004 3 0.833 2 0.011 3 0.100 128 0.449 3 0.100 64 0.337 3
62 0.479 0.455 32 0.075 6 0.438 64 0.450 8 0.455 256 1.199 5 0.442 16 0.112 3
63 0.239 0.357 32 0.400 5 0.383 4 0.150 3 0.220 64 1.600 4 0.227 32 1.200 4
64 0.891 0.908 64 0.063 8 0.905 4 0.012 6 0.905 128 0.250 8 0.878 4 0.012 3
65 0.909 0.933 128 0.064 8 0.933 64 0.096 6 0.928 8 0.008 3 0.817 2 0.003 3
66 0.712 0.861 64 0.032 5 0.875 512 0.768 3 0.841 32 0.032 4 0.649 2 0.003 3
67 0.861 0.904 1024 0.512 5 0.923 64 0.096 4 0.904 64 0.064 3 0.861 2 0.003 3
68 0.038 0.048 128 0.889 9 0.105 16 0.333 8 0.029 32 0.444 3 0.000 8 0.167 3
69 0.022 0.072 128 0.889 6 0.072 32 0.667 6 0.044 32 0.444 5 0.033 32 0.667 6
70 0.215 0.537 32 0.400 6 0.424 2 0.075 6 0.180 64 1.600 3 0.176 16 0.600 3
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Table 3. Cont.

ID EU
Error

SAX
Error

SAX
w

SAX
Ratio SAX α ESAX

Error
ESAX

w
ESAX
Ratio

ESAX
α

SAXTD
Error

SAXTD
w

SAXTD
Ratio

SAXTD
α

SAXBD
Error

SAXBD
w

SAXBD
Ratio

SAXBD
α

71 0.192 0.292 8 0.100 6 0.289 16 0.600 4 0.144 64 1.600 3 0.131 32 1.200 3
72 0.293 0.976 64 0.800 4 0.746 2 0.075 7 0.278 64 1.600 3 0.244 8 0.300 3
73 0.605 0.608 16 0.022 5 0.632 32 0.133 5 0.581 2 0.006 3 0.520 8 0.033 3
74 0.360 0.180 1024 0.360 4 0.220 256 0.270 4 0.160 32 0.023 3 0.140 1024 1.080 4
75 0.640 0.597 16 0.022 6 0.573 32 0.133 8 0.576 16 0.044 3 0.555 2 0.008 3
76 0.102 0.193 32 0.021 8 0.310 4 0.008 7 0.278 4 0.005 5 0.053 32 0.064 5
77 0.402 0.471 64 0.043 9 0.669 4 0.008 10 0.511 4 0.005 7 0.211 32 0.064 7
78 0.209 0.287 64 0.043 9 0.529 4 0.008 9 0.476 4 0.005 6 0.116 32 0.064 5
79 0.461 0.428 8 0.016 4 0.411 64 0.384 5 0.406 128 0.512 6 0.361 128 0.768 4
80 0.248 0.278 512 1.000 10 0.290 64 0.375 9 0.247 16 0.063 4 0.232 32 0.188 3
81 0.659 0.533 64 0.089 7 0.547 16 0.067 5 0.347 4 0.011 6 0.365 4 0.017 6
82 0.047 0.240 8 0.533 8 0.273 4 0.800 7 0.167 2 0.267 3 0.060 4 0.800 3
83 0.304 0.306 64 0.914 6 0.146 8 0.343 4 0.303 64 1.829 4 0.243 8 0.343 3
84 0.141 0.120 64 0.985 6 0.188 16 0.738 5 0.143 32 0.985 5 0.136 16 0.738 10
85 0.054 0.354 128 0.545 4 0.354 64 0.817 4 0.038 64 0.545 3 0.043 32 0.409 3
86 0.211 0.408 128 1.000 10 0.440 32 0.750 10 0.208 32 0.500 4 0.125 16 0.375 5
87 0.101 0.137 128 0.322 9 0.192 128 0.965 8 0.104 16 0.080 5 0.095 8 0.060 7
88 0.120 0.047 16 0.267 8 0.147 16 0.800 8 0.100 8 0.267 8 0.050 16 0.800 8
89 0.320 0.311 64 0.231 6 0.373 8 0.087 5 0.307 8 0.058 4 0.246 4 0.043 3
90 0.192 0.123 128 0.373 7 0.177 64 0.560 4 0.138 16 0.093 5 0.123 64 0.560 5
91 0.240 0.380 32 0.116 6 0.240 4 0.044 7 0.160 64 0.465 3 0.000 2 0.022 3
92 0.253 0.311 8 0.098 7 0.254 8 0.293 7 0.166 64 1.561 4 0.057 4 0.146 3
93 0.093 0.039 16 0.125 9 0.217 4 0.094 10 0.063 16 0.250 8 0.048 8 0.188 6
94 0.194 0.194 16 0.107 9 0.160 8 0.160 6 0.208 16 0.213 4 0.014 4 0.080 3
95 0.005 0.002 128 0.842 6 0.002 32 0.632 7 0.003 32 0.421 5 0.003 32 0.632 7
96 0.389 0.500 2 0.009 3 0.500 2 0.026 3 0.407 64 0.547 3 0.426 16 0.205 3
97 0.382 0.381 64 0.237 8 0.384 64 0.711 10 0.382 16 0.119 7 0.381 16 0.178 4
98 0.545 0.481 256 0.284 4 0.558 128 0.427 4 0.468 32 0.071 4 0.442 32 0.107 4
99 0.390 0.351 512 0.569 4 0.338 128 0.427 5 0.312 512 1.138 4 0.312 8 0.027 4
100 0.170 0.198 64 0.150 10 0.174 64 0.451 10 0.176 64 0.300 6 0.166 16 0.113 5
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Table 4. The Wilcoxon signed ranks test results of the SAX-BD vs. other methods. A p-value less than
or equal to 0.05 indicates a significant improvement. n* means positive, n means equal and n0 means
negative. The larger the value of n*, the better performance of SAX-TD.

Methods n* n n0 p-Value

SAX-BD vs. Euclidean 79 15 6 p < 0.05
SAX-BD vs. SAX 83 11 6 p < 0.05

SAX-BD vs. ESAX 87 10 3 p < 0.05
SAX-BD vs. SAX-TD 69 22 10 p < 0.05

To provide a more intuitive illustration of the performance of the different measures compared
in Tables 3 and 4, we use scatter plots for pairwise comparisons. In a scatter plot, the accuracy
rates of two measures under comparison are used as the x and y coordinates of a dot, where a dot
represents a data set. When a dot above the diagonal line, the ‘y’ method performs better than the ‘x’
method. In addition, the further a dot is from the diagonal line, the greater the margin of an accuracy
improvement. The region with more dots indicates a better method than the other.

In the following, we explain the results in Figure 6.
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We illustrate the performance of our distance measure against the Euclidean distance, SAX distance,
ESAX distance, SAX-TD distance in Figure 6a–d, respectively. Our method outperforms the other four
methods by a large margin, both in the number of points and the distance of these points from the
diagonals. From these figures, we can see that most of the points are far away from the diagonals,
which indicates that our method has much lower error rates on most of the data sets.
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To show the continuity performance of our method and other three methods, we run the
experiments on data set Yoga. We firstly compare the classification error rates with different w while α
is fixed at 3, and then with different α while w is fixed at 4 (to illustrate the classification error rates
using small parameters). Secondly, we use w, which varies, while α is fixed at 10, and then α varies
while w is fixed at 128 (to illustrate the classification error rates using large parameters).

SAX-TD and SAX-BD has lower error rates than the other two methods when the parameters are
small and large, SAX-BD has lower error rates than the SAX-TD. The results are shown in Figure 7.
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Figure 7. The classification error rates of SAX, ESAX, SAX-TD and SAX-BD with different parameters w
and α. For (a), on Gun-Point, w varies while α is fixed at 3, for (b), on Gun-Point, varies while w is fixed
at 4. For (c), on Yoga, w varies while α is fixed at 10, for (d), on Yoga, varies while w is fixed at 128.

The dimensionality reduction ratios are calculated using the w when the four methods achieve
their smallest classification error rates on each data set, shown in Figure 8. The SAX-TD and SAX-BD
representation use more values than SAX, SAX-TD use fewer values than ESAX. In fact, our method has
a low dimensionality reduction ratio in majority datasets, and even uses fewer values than SAX-TD.
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We also recorded the running time of SAX-TD and SAX-BD with different α from 3 to 10 shown in
Figure 9. The experimental results indicated that we have made a greater improvement at the cost of
only a little time, and that’s well worth it.
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5. Conclusions

Our proposed SAX-BD algorithm uses the boundary distance as a new distance metric to obtain a
new time series representation. We analyze some cases that ESAX and SAX-TD cannot solve, and it is
known that the classification accuracy of ESAX algorithm is not as good as SAX-TD. We combine the
advantages of these two methods, analyzing and deriving our method as an extension of these two
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methods. We also proved that our improved distance measure not only keeps a lower-bound to the
Euclidean distance, but also has a low dimensionality reduction ratio in majority datasets. In terms of
the expression complexity of time series, our algorithm SAX-BD and ESAX algorithm are three times
more than SAX, and two times more than SAX-TD. However, in terms of running time, we spend just a
little more. In terms of the classification accuracy, we have improved this a lot, that means a good
compromise has made between dimensional reduction and classification accuracy. For future work,
we intend to change our original algorithm to make time advantage.
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