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Abstract: In recent years, binary coding methods have become increasingly popular for tasks of
searching approximate nearest neighbors (ANNs). High-dimensional data can be quantized into
binary codes to give an efficient similarity approximation via a Hamming distance. However, most of
existing schemes consider the importance of each binary bit as the same and treat training samples
at different positions equally, which causes many data pairs to share the same Hamming distance
and a larger retrieval loss at the top position. To handle these problems, we propose a novel method
dubbed by the top-position-sensitive ordinal-relation-preserving bitwise weight (TORBW) method.
The core idea is to penalize data points without preserving an ordinal relation at the top position
of a ranking list more than those at the bottom and assign different weight values to their binary
bits according to the distribution of query data. Specifically, we design an iterative optimization
mechanism to simultaneously learn binary codes and bitwise weights, which makes their learning
processes related to each other. When the iterative procedure converges, the binary codes and bitwise
weights are effectively adapted to each other. To reduce the training complexity, we relax the discrete
constraints of both the binary codes and the indicator function. Furthermore, we pretrain a tensor
ordinal graph to decrease the time consumption of computing a relative similarity relationship among
data points. Experimental results on three large-scale ANN search benchmark datasets, i.e., SIFT1M,
GIST1M, and Cifar10, show that the proposed TORBW method can achieve superior performance
over state-of-the-art approaches.

Keywords: image retrieval; binary code; hash algorithm; bitwise weights; top-rank-sensitive;
ordinal-relation-preserving

1. Introduction

With the rapid development of massive image collections, it has been challenging to search for
visually relevant images effectively and efficiently [1,2]. In contrast to commonly used methods that
exhaustively search for the most similar images in one high-dimensional space, hashing methods map
floating point data into binary codes and achieve tasks of searching approximate nearest neighbors
(ANNs) using Hamming distances. Therefore, hashing methods can accelerate ANN search procedures
and save on storage. Recently, hashing methods have been applied in the area of computer vision and
machine learning [3–6].

The pioneering method, locality-sensitive hashing (LSH) [7], randomly generates linear hashing
functions and computes binary codes based on projection signs. The learning process is independent
of training samples, and the performance cannot obviously improve as the number of binary bits
increases [8]. To fix the above problem, many data-dependent hashing algorithms have been proposed
to preserve training samples’ similarity relationships in Hamming spaces. Generally speaking,
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according to the similarity-preserving restriction, we roughly divide data-dependent hashing
algorithms into pairwise similarity-preserving hashing [8–12] and ordinal relation-preserving
ones [1,13].

The former kind of hashing algorithms, such as k-means hashing (KMH) [9], iterative quantitation
(ITQ) [10], anchor graph hashing (AGH) [8], minimal loss hashing (MLH) [11], and semantic hashing [12],
aim to preserve the original similarity relationship of a data pair in a Hamming space. AGH [8] first
learns training centers by the k-means algorithm. Then, it utilizes a spectral graph to represent the
neighbor information and computes binary codes by a graph cut mechanism. ITQ [10] maps similar
data points into the same vertex of a cubic and assigns them the same binary code. KMH [9] learns
binary codes by minimizing quantization loss and similarity loss to make encoding results well fit the
distribution of training data. In semantic hashing [12], Hamming distances among data points with
the same label should be small enough; otherwise, their Hamming distances should be larger than
the threshold. MLH [11] aims to penalize similar (or dissimilar) points when they have large (small)
Hamming distance values to assign by a hinge-like loss function.

The above methods have shown promising performance for searching semantic neighbors,
but ANN search tasks mainly focuses on an ordinal relation among data points. To fulfill
this requirement, ordinal-relation-preserving hashing, such as triplet loss hashing (TLH) [14],
ordinal constraint hashing (OCH) [1], and order-preserving hashing (OPH) [13], were proposed
to preserve data points’ Euclidean ranking orders in a Hamming space. OPH [13] divides all data
points into different clusters and demands the ranking orders of cluster centers should be consistent in
different spaces. TLH [14] defines a relative-similarity-preserving restriction based on triplet elements
and demands the Hamming distance of similar data pairs should be smaller than that of dissimilar data
pairs. Wang [15] also adopted a similarity-preserving restriction in [14] to learn binary codes. Recently,
deep learning mechanisms have been adopted to dramatically improve the performance of binary
coding techniques [16–19]. However, high performance has been coupled with high computational
and storage overhead. As declared in ITQ [10], binary coding methods should be efficient and scalable
for encoding new high-dimensional data.

The hash algorithms mentioned above treat all binary bits equally, and the Hamming distances
are discrete integer values. Therefore, many data points with different binary codes would share
the same Hamming distance to a query data, and their ranking orders are tied in Hamming spaces.
To solve this problem, bitwise weight methods assign different weight values to binary bits and
utilize weighted Hamming distances to resort retrieval results. QaRank [20,21] demands that
query-adaptive weights should minimize intra-class similarities and maintain inter-class relations
among the top similar images. QsRank [22] directly considers a floating point query sample and a
target nearest neighbor radius as inputs, and it is designed only for principal component analysis
hashing. In WhRank [23], bitwise weights are adaptive to training samples and sensitive to query
data. QRank [24] learns query-adaptive weights by exploiting the discriminative power of each hash
function and their complements.

Although the aforementioned hash methods and bitwise weights methods have shown
their efficacy for ANN search tasks, we would argue that most of them treat data points at
different ranking positions equally. Furthermore, few of them explore learning hash functions
and bitwise weights functions simultaneously. To this end, we propose a novel top-position-sensitive
ordinal-relation-preserving bitwise weight (TORBW) method, as shown in Figure 1. We iteratively
learn binary codes and bitwise weights and demand them to satisfy the top-position-sensitive
relative-similarity-preserving restriction. For the ANN search task, we utilize weighted Hamming
distances to distinguish data pairs that share the same similarity degree. The main contributions of
this work are concluded as follows:

(1) When learning binary codes and bitwise weights, we propose to penalize data points without
preserving an ordinal relation at the top position of a ranking list more than those at the bottom.
This measure helps to reduce the probability of chaos ranking occurring at the top position.
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(2) Unlike a general two-step mechanism, we simultaneously learn binary codes and bitwise weights
by an iterative mechanism, and they can feedback into each other. When the mechanism converges,
the binary codes and bitwise weights are effectively adapted to each other.

(3) A tensor ordinal graph (TOG) is precomputed to represent a relative similarity relationship of
any two data pairs, which can effectively reduce the training complexity.
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Figure 1. Flow chart of the proposed top-position-sensitive ordinal-relation-preserving bitwise weight
(TORBW) method. A tensor ordinal graph is constructed to approximate a similarity relationship of
any two data pairs, and we establish a top-position-sensitive ordinal-relation-preserving restriction
to improve the performance. We adopt an iterative optimization mechanism to simultaneously learn
binary codes and bitwise weights. During the retrieval of approximate nearest neighbors, we utilize
weighted hamming distances to resort a chaos ranking list in a Hamming space.

The rest of this paper is organized as follows: Section 2 describes the proposed TORBW method
and the adopted iterative optimization mechanism. In Section 3, we show and discuss experimental
results. Finally, we conclude this paper in Section 4.

2. Method

2.1. Top-Position-Sensitive Ordinal-Relation-Preserving Restriction

We define X∈Rd×N as a training dataset, which includes N samples, and xi∈Rd×1 is the i-th data
point. Our aim is to simultaneously learn a set of hash functions and bitwise weight functions. Thus,
we can map xi into r-bit binary code bi = {h1(xi), · · · , hr(xi)} and generate its bitwise weights [w1(xi), · · · ,
wr(xi)]. Here, hc(xi) = sgn(uc

Txi+b) represents the c-th hash function, and sgn(·) is the sign function.
If uc ← [uc b] and xi ← [xi 1], we can rewrite the c-th hash function as hc(xi) = sgn (uc

Txi). Similarly,
we define the c-th bit weight function as wc(xi) = vc

Txi, and it is sensitive to query sample xi.
In this paper, we achieve an ANN search task in two steps [20–23]. First, we retrieve nearest

neighbors by Hamming distances as in most commonly used hash algorithms [1,9,11–13]. Then,
for data points that share the same Hamming distance to a query sample, the weighted Hamming
distance dwh(·,·) is utilized to resort their ranking orders, as shown in Equation (1):

dwh(xi, x j) =
r∑

c=1

wc(x j) ·
(
bc(xi) ⊗ bc(x j)

)
. (1)

Therefore, to guarantee the performance of an ANN search task, the data points’ ordinal relation
should be well preserved in both a Hamming space and a weighted Hamming space. Generally,
existing ordinal-relation-preserving restrictions treat each data point at different ranking positions
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equally [1,13]. In contrast, evaluation standards of ANN search tasks, such as mean average precision
(mAP), pay more attention to samples at the top position [25]. To achieve the above requirement,
we define a top-position-sensitive ordinal-relation-preserving restriction as in Equation (2), which can
effectively optimize the precision at the top position:

L(xi, x j) = log(1 + RE(xi, x j) + RH(xi, x j)), (2)

where RE and RH represent the position of xj at the ranking lists of xi’s nearest neighbors in different
spaces. For the loss function defined in Equation (2), its first-order derivation is larger than zero,
and the second-order derivation is smaller than zero. Obviously, L(xi, xj) is a monotonic nondecreasing
function, and its growth ration drastically decreases as the ranking order increases. Therefore, the loss
function L(xi, xj) can penalize more of the samples without preserving its original ranking orders at the
top position than those at the bottom.

As defined in Equation (3), RE(xi, xj) represents the ranking order of xj to xi in a Euclidean space:

RE(xi, x j) =
n∑

k=1

I(d(xi, xk) < d(xi, x j)), (3)

where d(·,·) represents the Euclidean distance. As shown in Equation (4), RH(xi, xj) calculates the
number of dissimilar samples with closer positions than xj in a Hamming space:

RH(xi, x j) =
n∑

l=1

I(dwh(xi, xl) < dwh(xi, x j)), (4)

where dwh(·,·) returns the weighted Hamming distance and RH is computed on the basis of RE. The first
question is how to compute the ranking list RE. The naive method of forming triplet data (xi, xj, xk) is to
select a similar data pair (xi, xk) and a dissimilar data pair (xi, xj) with a Euclidean distance. However,
this kind of representation needs to randomly select triple tuples and compare the similarity degree
among all data points side by side, which is time-consuming and needs costly memory. To avoid the
above situation, we learn a TOG to represent a relative similarity relationship of any two data pairs in
advance [1].

Given a dataset X, we first construct an affinity graph S, as shown in Equation (5):

S(i, j) =

0, i = j

e−||xi−x j ||
2
2/2σ2

, otherwise
, (5)

where the value in S represents the similarity degree of a data pair and is computed according to a
Euclidean distance. Next, we further define a dissimilar graph DS, and DS(i, j) = 1/S(i, j),

We can formulate a TOG as shown in Equation (6):

G = S⊗DS, (6)

where
⊗

is defined as G(ij, kl) = S(i, j)·DS(k, l). Therefore, each entry of G relates to two data pairs,
and the relative similarity relationship of any two data pairs (i, j, i, k) can be represented through the
TOG, as shown in Equation (7): δi j < δik, G(i j, ik) > 1

δi j > δik, G(i j, ik) ≤ 1
, (7)

where δij represents the similarity degree of data pair (xi, xj). Thus, we can form RE(xi, xj) by directly
counting elements, of which values are smaller than 1 in the column ij. RH(xi, xj) can be generated by
selecting triplet elements with dwh(xi, xj) > dwh(xi, xk) in the set RE(xi, xj).
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2.2. Relaxation and Iterative Optimization

In this section, we describe the process of learning hash and bitwise weight functions by minimizing
loss function L(·,·). Different from the two-step mechanism, we design an iterative optimization
mechanism that simultaneously learns parameters of hash and bitwise weight functions [9,10].

As binary codes and indicator functions are discrete integer values, directly optimizing loss
function L(·,·) becomes difficult. To fix this problem, we adopt a relaxation mechanism.

First, we utilize tanh(·) instead of the encoding function as shown in Equation (8), and the weighted
Hamming distance is rewritten as in Equation (9):

hc(x) = sgn(uc
Tx) ≈ tanh(uc

Tx), (8)

dwh(xi, x j) =
1
2
(

r∑
c=1

wc(x j) −
r∑

c=1

wc(x j) · hc(xi) · hc(x j)). (9)

Secondly, we employ the sigmoid function to approximate the indicator function as in shown in
Equation (10):

I(dwh(xi, xk) ≤ dwh(xi, x j)) ≈ G(z) =
1

1 + exp(−z)
. (10)

The definition of z is shown in Equation (11):

z = dwh(xi, xk) − dwh(xi, x j). (11)

After the above relaxation procedure, we utilize a stochastic gradient descent algorithm to optimize
the objective function in Equation (12):

O =
∑
i, j

L(xi, x j) =
∑
i, j

log(1 + RE(xi, x j) + RH(xi, x j)). (12)

For the parameter of the c-th hash function uc, the partial derivation of the objective function O is
shown in Equation (13):

∂O
∂uc

=
RH(xi,x j)

1+RE(xi,x j)+RH(xi,x j)
·
∂RH(xi,x j)

∂uc

=
RH(xi,x j)

1+RE(xi,x j)+RH(xi,x j)
·

∂
∑
k

G(dwh(xi,xk)−dwh(xi,x j))

∂uc

=
RH(xi,x j)

1+RE(xi,x j)+RH(xi,x j)
·
∑
k
(G(z)(1−G(z))) · [ ∂dwh(xi,xk)

∂uc
−
∂dwh(xi,x j)

∂uc
]

(13)

The partial derivation of the weighted Hamming distance is shown in Equation (14):

∂dwh(xi, xk)

∂uc
=

wc(xk)

2
· [(1− h2

c (xi)) ◦ hc(xk) + (1− h2
c (xk)) ◦ hc(xi)], (14)

where ◦ represents the element-wise product. As a result, we can update the value of the parameter uc

shown in Equation (15):

uc = uc − λ1
∂O
∂uc

. (15)

For vc of the c-th bitwise weight function, the partial derivation of the objective function is shown
in Equation (16):
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∂O
∂vc

=
RH(xi,x j)

1+RE(xi,x j)+RH(xi,x j)
·
∂RH(xi,x j)

∂vc

=
RH(xi,x j)

1+RE(xi,x j)+RH(xi,x j)
·

∂
∑
k

G(dwh(xi,xk)−dwh(xi,x j))

∂vc

=
RH(xi,x j)

1+RE(xi,x j)+RH(xi,x j)
·
∑
k
(G(z)(1−G(z))) · [ ∂dwh(xi,xk)

∂vc
−
∂dwh(xi,x j)

∂vc
]

=
RH(xi,x j)

1+RE(xi,x j)+RH(xi,x j)
·
∑
k
(G(z)(1−G(z))) · [ xk

2 (1− hc(xi)hc(xk)) −
x j
2 (1− hc(xi)hc(x j))]

(16)

As a result, we can update the parameter vc shown in Equation (17):

vc = vc − λ2
∂O
∂vc

. (17)

The details of the proposed TORBW method are shown in Algorithm 1.

Algorithm 1 TORBW

Input: Data set X={x1,· · · , xn}, the number of binary bits r, and parameters λ1 and λ2.
Output: The coefficients of hash functions (u1, · · · , ur) and bitwise weight functions (v1, · · · , vr).

1: Choose training samples from X by the k-means algorithm;
2: Compute an affinity graph S and a dissimilar graph DS by Equation (5);
3: Construct a tensor ordinal graph G by Equation (6);
4: Generate an ordinal relations set of triplet elements (xi, xj, xk) by G
5: for c=1:r
6: repeat
7: Compute the partial derivation by Equation (13);
8: Update the value of uc by Equation (15);
9: Compute the partial derivation by Equation (16);
10: Update the value of vc by Equation (17);
11: until convergence or reaching the maximum iteration number
12: end for.

3. Experimental Results and Discussion

In this section, we first introduce three publicly available datasets for ANN search experiments.
Then, we describe the compared methods and the ANN search performance evaluation metrics. Finally,
we compare the proposed TORBW method against several state-of-the-art hashing algorithms and
bitwise weight methods.

3.1. Database and Setup

We conduct ANN search experiments on three datasets, i.e., SIFT1M [26], GIST1M [27],
and Cifar10 [28] datasets. SIFT1M [26] consists of one million SIFT [29] descriptors with 128
dimensions. In SIFT1M, we randomly select 100,000 samples as a training dataset, and 10,000 data
points are used as query samples. GIST1M [27] includes one million GIST [30] descriptors that have
320 dimensions, and we respectively select 100,000 data points as a training data and query samples.
In Cifar10 [28], there are six thousand tiny images, which are described as 320-dimensional GIST
descriptors [30]. We utilize all image descriptors in Cifar10 as training samples, and one thousand
samples are considered as query data points.

3.2. Compared Methods and Evaluation Metrics

To prove that the proposed TORBW method can achieve excellent ANN search performance,
we compare the TORBW method against five hashing algorithms and two bitwise weight methods.
Among them, LSH [7], AGH [8], KMH [9], Top-RSBC [25], and OCH [1] aim to generate excellent
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binary codes. WhRank [23] and QRank [24] learn bitwise weights to resort the tied ranking orders,
and we use them to further boost the ANN search performances of LSH [7], AGH [8], and KMH [9].

In this experiment, we use the criterions recall [31,32] and mAP to evaluate the ANN search
performances. recall represents the fraction of positive data that are successfully returned as defined in
Equation (18).

recall =
Npositive

Nall
, (18)

where Npositive means the number of positive data that are retrieved and Nall is the number of the true
nearest neighbors. We further use mAP to exactly express which position the i-th positive data point
locates in, and the definition is shown in Equation (19):

mAP =
1
|Q|

|Q|∑
i=1

1
Ki

Ki∑
j=1

j
rank( j)

, (19)

where |Q| represents the number of query samples, Ki is the number of the i-th query sample’s ground
truth and rank(j) is the ranking position of the j-th true positive sample in the retrieval results.

3.3. Experimental Results

In this section, we first encode floating data into 32-, 64-, and 128-bit binary codes by the hash
methods (TORBW, LSH [7], AGH [8], KMH [9], Top-RSBC [25], and OCH [1]) and achieve ANN search
tasks according to Hamming distances. Then, TORBW, WhRank [23], and QRank [24] assign different
weight values to each binary bit and utilize the weighted Hamming distances to resort the tied ranking
orders. The ANN search experimental results are shown in Tables 1–3 and Figures 2–4. We separately
define the ground truth as 10 and 100 nearest neighbors in the Euclidean space.

Table 1. The mAP (%) values of the comparative experiments on the GIST1M dataset.

Ground Truth 10 100
Binary Bits 32 64 128 32 64 128

TORBW 4.25 7.86 10.72 3.92 7.65 10.53
OCH 4.03 7.64 10.53 3.75 7.42 10.27

Top-RSBC 3.95 7.42 10.48 3.71 7.26 10.17
KMH_QRank 3.87 7.18 10.22 3.61 6.85 10.03

KMH 2.35 4.42 6.79 2.17 4.27 6.54
AGH_QRank 2.38 5.96 8.63 2.16 5.82 8.47

AGH_WhRank 1.93 4.89 6.31 1.62 4.63 6.08
AGH 1.62 3.21 4.19 1.35 3.01 3.96

LSH_QRank 1.33 3.32 6.83 1.08 3.07 6.58
LSH_WhRank 1.09 2.13 4.86 0.85 1.88 4.62

LSH 0.89 1.99 2.75 0.67 1.67 2.56

Table 2. The mAP (%) values of the comparative experiments on the Cifar10 dataset.

Ground Truth 10 100
Binary Bits 32 64 128 32 64 128

TORBW 11.84 17.12 21.26 11.52 16.81 20.96
OCH 11.61 16.95 21.02 11.38 16.65 20.71

Top-RSBC 11.46 16.58 20.94 11.24 16.37 20.63
KMH_QRank 11.25 16.37 20.73 11.02 16.08 20.45

KMH 8.56 11.59 15.12 8.31 11.35 14.86
AGH_QRank 7.22 9.46 15.53 6.94 9.25 15.27

AGH_WhRank 5.06 7.94 13.92 4.85 7.76 13.53
AGH 4.02 7.68 13.21 3.72 7.45 12.98

LSH_QRank 4.15 8.58 14.00 4.02 8.34 13.75
LSH_WhRank 4.03 7.30 9.99 3.76 7.18 9.67

LSH 2.68 5.83 9.36 2.47 5.57 9.03
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Table 3. The mAP (%) values of the comparative experiments on the SIFT1M dataset.

Ground Truth 10 100
Binary Bits 32 64 128 32 64 128

TORBW 5.83 16.82 21.05 5.54 16.71 31.59
OCH 5.62 16.57 20.76 5.37 16.42 30.48

Top-RSBC 5.43 16.38 20.43 5.06 16.21 25.37
KMH_QRank 5.05 16.21 20.06 4.82 16.07 18.35

KMH 4.38 8.89 10.17 3.98 8.76 8.92
AGH_QRank 4.87 15.03 29.74 4.67 14.86 29.64

AGH_WhRank 3.12 8.73 18.02 2.92 8.53 17.75
AGH 2.93 5.64 7.85 2.81 5.46 7.62

LSH_QRank 3.74 10.22 25.15 3.48 10.07 24.89
LSH_WhRank 2.81 6.14 15.92 2.67 5.94 15.71

LSH 2.24 5.44 7.47 2.03 5.17 7.18
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Figure 4. The recall curves of the comparative experiments on the SIFT1M dataset mapped into 32-bit
(a), 64-bit (b), and 128-bit (c) binary codes. The numbers of the true nearest neighbors in the first row
and the second row are 10 and 100, respectively.

We perform ANOVA tests by matlab function “anovan1()” and show the experimental results
in Table 4. From the experimental results, we know that the improvements made by our algorithm
are significant.

Table 4. ANOVA tests on three widely benchmark datasets.

SIFT1M GIST1M Cifar10

p value 6.57 × 10–8 1.76 × 10–5 1.9 × 10–3

In LSH [7], the learning process is independent from training samples, and the ANN search
performance cannot evidently improve as the number of binary bits increases [8]. Thus, to obtain a
satisfying ANN search performance, LSH needs a long binary code or multiple hash tables. In contrast,
data-dependent algorithms, such as TORBW, OCH [1], Top-RSBC [25], KMH [9], and AGH [8], utilize a
kind of machine learning mechanism to learn hashing functions, which can minimize the ANN search
performance loss on a training database. The data-dependent hashing algorithms can achieve a better
ANN search performance with compact binary codes. In this paper, the maximum number of binary
bits is only 128, and the data-dependent hashing algorithms are superior to LSH. AGH [8] generates
centers with the k-means algorithm and learns binary codes with the spectral graph cut mechanism.
However, AGH demands that the distribution of training samples should be uniform [10]. In practice,
the databases used in this paper do not obey a uniform distribution. KMH [9] learns encoding centers,
which can minimize both quantization loss and similarity loss. As a result, the performance of KMH is
better than that of AGH. AGH and KMH aim to preserve a pointwise similarity relationship. Top-RSBC
defines a pairwise similarity relationship restriction for learning hashing functions, which can further
enhance the power of preserving a similarity relationship among samples. The ANN search task
emphasizes preserving an ordinal relation. To fulfill this task, TORBW and OCH [1] generate binary
codes, which can preserve an original ordinal relation among data points in a Hamming space. Thus,
TORBW and OCH have a superior performance over AGH, KMH, and LSH. As described above,
the binary coding methods, OCH [1], Top-RSBC [25], and KMH [9], have shown efficacy for ANN
search tasks, but they consider the importance of each binary bit equally. Therefore, many data with
different binary codes would share the same Hamming distance to a query sample, and the tied
ranking orders that exist in their retrieval results would result in inferior performance. To avoid the
above ambiguous situation, TORBW, WhRank [23], and QRank [24] assign different weight values
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to each binary bit, and they use the weighted Hamming distance to resort the retrieval results. As a
result, bitwise weight methods can effectively improve the ANN search performances of binary coding
methods. The bitwise weights in TORBW and QRank [24] are particularly sensitive to query data
points, and they have a better performance. The aforementioned methods including WhRank [23],
QRank [24], OCH [1], KMH [9], ITQ [10], and LSH [7] treat all data points equally. However, evaluation
criterions of ANN search tasks pay more attention at the top position of the retrieval results. To satisfy
this requirement, TORBW and Top-RSBC [25] penalize mistakes at the top position more than those at
the bottom. Therefore, TORBW and Top-RSBC can well preserve a similarity relationship among data
points at the top position. As described above, TORBW can effectively preserve ordinal relations and
utilizes query-sensitive bitwise weights to reduce the tied ranking orders occurring at the top position.
Finally, TORBW achieves an excellent ANN search performance.

4. Conclusions

In this paper, we propose a novel method dubbed as the TORBW method, which simultaneously
generates hash functions and bitwise weight functions. To guarantee the performance of an ANN
search task, we demand the preservation of an original ordinal relation among data points in both
a Hamming space and a weighted Hamming space. We utilize a TOG to represent a relative
similarity relationship between any two data pairs, which can reduce the complexity of constructing
a training dataset. Different from a two-step mechanism, which separately learns binary codes and
bitwise weights, TORBW adopts an iterative mechanism to simultaneously optimize them. When the
algorithm converges, binary codes and bitwise weights are effectively adapted to each other. Generally,
training samples are considered to be equal. In contrast, we assign a large weight value to training
samples at the top position during the learning process. As a result, it can effectively reduce the
probability of tied ranking orders occurring at the top position of a ranking list. Extensive experiments
on three benchmark datasets demonstrate that TORBW has a better ANN search performance than
many existing state-of-the-art binary coding methods and bitwise weight methods. In this paper,
we adopt linear hashing functions to map data into binary codes. However, the practical dataset
may be linearly inseparable. In future work, we will employ a kernel formulation for target hashing
functions to further enhance the performance of preserving ordinal relations.
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