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Abstract: Algorithmic decision-making has become ubiquitous in our societal and economic lives.
With more and more decisions being delegated to algorithms, we have also encountered increasing
evidence of ethical issues with respect to biases and lack of fairness pertaining to algorithmic
decision-making outcomes. Such outcomes may lead to detrimental consequences to minority
groups in terms of gender, ethnicity, and race. As a response, recent research has shifted from
design of algorithms that merely pursue purely optimal outcomes with respect to a fixed objective
function into ones that also ensure additional fairness properties. In this study, we aim to provide a
broad and accessible overview of the recent research endeavor aimed at introducing fairness into
algorithms used in automated decision-making in three principle domains, namely, multi-winner
voting, machine learning, and recommender systems. Even though these domains have developed
separately from each other, they share commonality with respect to decision-making as an application,
which requires evaluation of a given set of alternatives that needs to be ranked with respect to a
clearly defined objective function. More specifically, these relate to tasks such as (1) collectively
selecting a fixed number of winner (or potentially high valued) alternatives from a given initial
set of alternatives; (2) clustering a given set of alternatives into disjoint groups based on various
similarity measures; or (3) finding a consensus ranking of entire or a subset of given alternatives.
To this end, we illustrate a multitude of fairness properties studied in these three streams of literature,
discuss their commonalities and interrelationships, synthesize what we know so far, and provide a
useful perspective for future research.

Keywords: algorithmic fairness; bias; machine learning; recommender system; algorithmic
decision-making; multi-winner-voting; proportional representation; survey

1. Introduction

Decision-making by algorithms is becoming a ubiquitous part of our societal and economic
lives. Algorithmic decisions increasingly appear in a plethora of domains such as healthcare, legal,
education, banking, e-commerce, etc. In healthcare, for example, algorithms are being used to
routinely monitor biochemical signals in patients, and immediately alert clinicians when anomalies
arise [1]. Deep learning algorithms are able to process anonymized electronic health records and flag
potential emergencies, to which clinicians are then promptly able to respond. Similarly, in US courts,
an algorithmic system known as COMPASS is used to estimate the risk of recidivism. Human Resource
departments in various companies are increasingly resorting to algorithms that are able to filter
from the initial set of potential applications to reduce human time and effort in the evaluation of
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applications [2]. Similarly, universities and colleges have begun using algorithmic predictions on
big data to estimate which students will do well before accepting their admission applications [3].
With banks moving towards mobile payments to offer a seamless and fast customer experience,
payment services based on machine learning algorithms verify and identify credit fraud in real-time.
Similarly, insurance companies use automated data credibility assessment methods to quickly perform
complex rounds of approval, verification, and evaluation so as to flag duplicate or otherwise unusual
activities. Online retailers such as Amazon and Alibaba routinely deploy recommender systems
algorithms in order to filter the set of product items that are displayed on the users dashboard. It is
becoming evident that (with or without our desire) algorithmic decisions leave their footprints in our
day to day activities from the way we do grocery shopping to the way we do banking. This increasing
application and deployment of algorithmic decision-making in economy and society are driven by
their high accuracy, effectiveness, low cost, and efficiency. Acceleration in the adoption of algorithmic
decision-making is further supported by the access to mass volumes of data that is being currently
collected in the digital economy as well as advancement in development of hardware such as General
Processing Units (GPUs) and Tensor Precessing Units (TPUs).

In addition to the notable benefits and growing prevalence of algorithmic decisions, we are
also witnessing growing concerns and skepticism in academia and popular media with respect to
algorithmic unfairness and the evidences that they may inadvertently discriminate against certain
minority groups. Evidence has shown that algorithmic decisions not only counteract and expose biases
but also afford new mechanisms for introducing biases with unintended and detrimental effects [4].
Specifically, algorithmic decisions have been shown to amplify biases and unfairness embedded in
data in terms of sensitive features such as gender, culture, race, etc. For example, in their recent study,
Caliskan, Bryson, and Narayanan [5] found that natural language processing algorithms do capture
historic discrimination against gender, such as by more closely associating words like “doctor” with
males and “nurse” with females. As such algorithms are trained on historical data, past discrimination
and stereotypes prevalant in the society are reflected in their predictions. These concerns become
particularly alarming when algorithmic decisions are interacting and influencing almost every
aspect of economic and social life of groups and individuals. As an example, consider the work
of Angwin et al. [6], who found that COMPASS is biased against African-American defendants.
As the tools’ error rates were asymmetric, African-American defendants were more vulnerable to be
incorrectly labeled as higher-risk than they actually were when compared to their white defendants.
In another example, recommender algorithms deployed for personalization have been shown to
propagate or even create biases that may influence decisions and opinions of the user at the receiving
end [7,8]. Such phenomena has been observed in social media platforms such as Facebook and Twitter,
resulting in an inflation in the polarization of society by over 20 percent in the last eight years [9].
Algorithmic decisions have also been shown to amplify biases with respect to gender embedded
in data. For example, algorithms trained on data which feature under representation of women in
science, technology, engineering and mathematics (STEM) topics output decisions more biased towards
men [10].

Nevertheless, it is encouraging to observe that as a response to the above-mentioned scrutiny
and following debates in popular media, computer science scholars have been swift in beginning to
collaborate with lawyers, policy-makers, economists, social scientists, and others in designing fair,
transparent, and reliable algorithms. This has also led to the organization of the relatively new yet
much influential ACM conference on Fairness Accountability and Transparency in Machine Learning
(FATML), which is particularly targeted at bringing together researchers and practitioners interested in
fairness, accountability, and transparency in socio-technical systems. Even though these outlets mainly
focus on algorithmic fairness pertaining to machine learning algorithms, this represents an important
step in achieving fairness in algorithmic decision-making in general.

Taking a further step in this direction, in this paper, we review the proliferation of research on
fairness in algorithms, synthesize our present understanding, and conclude with identification of
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major challenges (if any) and pressing open questions and future research directions. We particularly
look into three domains of research on decision-making, namely, multi-winner voting algorithms
(Section 2), machine Learning algorithms (Section 3), and recommendation systems algorithms
(Section 4). A major portion of recent research on fairness in algorithmic decision-making falls
into one of these three domains. We recall many concrete concepts of fairness in these areas and discuss
their importance, interrelationships, as well as other related problems. Notably, understanding and
keeping in touch with latest research in fairness in algorithms is of great importance to policy makers
and practitioners interested in introducing algorithmic decision-making into their organizations and
businesses. This article also aims to provide a concise overview to readers looking for an outlook
on diverse dimensions of algorithmic fairness research in one place. This is important because, as is
evident in our review, algorithmic fairness research is advancing in diverging directions with a variety
of definitions, designs of fair algorithms and mechanisms being developed with uncorrelated and non
intersecting idiosyncratic assumptions. It is therefore imperative to have some sort of convergence in
the further development of the field in order to facilitate more beneficial societal impact.

Note that research has revealed that biases in algorithmic decision can come from multitude
of sources, such as human decisions on how the data was collected, noisy preferences provided by
decision makers, features selected, steps taken in cleaning and preprocessing the data, and even
the choice of algorithms itself. These elements are largely dependent on courses of action taken
by the user of the algorithm. However, in this article, our main focus is to stick with fairness in
algorithmic decision-making precluding the biases introduced by the courses of action by humans.
Accordingly, given as input a set of alternatives A = {a1, a2, . . . , an}, the decision-making task is
required to evaluate this set based on a clearly defined objective function. Based on this evaluation,
the decision-making algorithm groups the alternatives and ranks the groups into a particular order.
This function symbolizes applications such as (1) collectively selecting a fixed number of winners from
a set of alternatives; (2) clustering the set of alternatives into disjoint groups; or (3) finding a consensus
ranking of a smaller subset of or all alternatives. We believe these specific tasks are covered by the
applications of algorithms in multi-winner voting, machine learning, and recommender systems.

2. Multi-Winner Voting

Collective decision-making is a significant branch of social choice theory and has wide applications
in both economics and computer systems. Examples of applications include political elections,
committee selections (e.g., journal editorial board selection), selecting items to display in online shops,
recommending multiple items to users in recommender systems, company or institute employee
recruitment, heuristic algorithms selection in meta-heuristics, selecting data to load into caches in
cloud computing systems, etc. Concretely, collective decision-making is mainly concerned with
deriving consensus outcomes based on preferences of a number of decision-making participants over
possible outcomes. Without a doubt, voting is one of the most popular approaches for collective
decision-making. In this setting, we have a set of candidates C (possible outcomes), a set of voters V
(decision-making participants) each of whom has a preference over candidates in C, and then we
either aim to select a subset of exactly k candidates as winners for some integer, k, or find a ranking of
candidates from the best to the worst for the community. It should be pointed out that voters need not
necessarily to be human beings, they can also be certain criteria, robots, functions, or even algorithms.
A large number of algorithms or multi-winner voting rules have been proposed for the purpose of the
former. However, as fairness properties were not comprehensively taken into account when these rules
were coined, many of them may result in unfair outcomes. For instance, assume that we have 100 voters
who are divided into two groups: the majority and the minority. In particular, the majority consists of
90 voters, all of whom approve their spoiled candidates c1, c2, . . . , c10. The remaining 10 voters, who are
a minority, approve only the last candidate denoted by c′, probably because only this candidate has
positive utility to them. If we aim to select 10 winners and apply the prevalent approval voting, then
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{c1, c2, . . . , c10} will be selected, as they are approved by the maximum number of voters. This result
is clearly biased against the minority since their opinion is completely ignored.

In this section, we shall survey recent progress on the study of fairness properties in multi-winner
decision-making. Regarding fairness, an important concern is fair for whom and fair at which level.
These two questions are important guidance for us to define different fairness properties. In voting,
we have two types of entities, namely, the candidates and the voters, both of whom may need
to be fairly considered. For single-winner voting rules (k = 1), which aim to select exactly one
winner, the neutrality property ensures that candidates are treated equally, whereas the anonymity
property ensures that voters are treated equally [11]. Recall that neutrality says that the winners’
identities remain the same after candidates are renamed, and anonymity says that all voters have
the equal power and the order of them have no impact on the results (see the work by the authors
of [12] for the formal definitions). These two properties have long been studied in the literature.
Neutrality and anonymity are of course also desired for multi-winner voting rules, where a fixed
number of winners are selected [13,14]. However, these two properties only provide individual-level
fairness by regarding each voter and each candidate as an independent individual, but do not say
anything about group-level fairness, which is of particular importance in some real-world applications.
Consider the above example and consider what should be a fair result for both the majority and the
minority. As the minority accounts to 10% of all voters, should 10% of the winners also come from
their approved candidates? If this is the case, then a fair result would be that selecting c′ and nine
of {c1, c2, . . . , c10} as the winners. To fill the gap, proportional fairness properties of multi-winner
decision-making have been proposed and received a considerable amount of study in the literature in
recent years. Generally speaking, these properties stipulate that certain groups of voters should be
proportionally represented in a committee according to the strengths of their numbers.

This section is devoted to numerous important proportionality properties studied in the recent
literature. We discuss mainly two preference models: the dichotomous preference model and the linear
preference model.

Dichotomous preference. Each voter classifies candidates into two classes, namely, the approved
candidates and the disapproved candidates. In particular, all approved candidates are preferred to all
disapproved candidates, and candidates inside each class are equally preferred.
Linear preference. Each voter ranks all candidates in a linear order �, from the best to the worst.
For two candidates, a and b, a � b means that the corresponding voter strictly prefers a to b.

Multi-winner voting rules with dichotomous preferences are often referred to as approval-based
multi-winner voting rules, and with linear preferences are referred to as ranking-based rules.

We divide our discussions into four subsections. In Sections 2.1 and 2.2, we survey fairness
properties for ranking-based and approval-based voting, respectively. These properties are aimed at
certain groups of voters. We shall give the definitions of these properties, discuss the relations among
them, point out the complexity of two important problems related to these concepts, and offer an
overview of the most important voting rules studied in the literature and whether they fulfill these
properties. In Section 2.3, we discuss recent research on the setting where candidates have sensitive
attributes or are labeled, and fairness are provided for groups of candidates. Section 2.4 is aimed at
discussing stability concept-based fairness properties.

2.1. Voter Fairness in Ranking-Based Voting

We consider first ranking-based voting where voters are asked to report linear order preferences
over candidates. A voter v’s preference is denoted by �v, so that a �v b represents that this voter
prefers the candidate a to the candidate b. A crucial notion in this setting is solid coalition which was
first mentioned in the work by the authors of [15]. Particularly, for a subset C′ ⊆ C of candidates,
a solid coalition is a subset of voters U ⊆ V such that all voters in U rank all candidates in C′ above all
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the other candidates, i.e., for all voters v ∈ U, it holds that a �v b for all a ∈ C′ and b ∈ C \ C′. In this
case, we say that U supports C′ and call U a C′-solid coalition.

The following proportional property provides fairness for solid coalitions: it states that for a solid
coalition of a certain scale, a guaranteed number of candidates supported by this coalition should be
selected as winners.

q-Proportionality for solid coalition (q-PSC) [16]. For a rational number, q, a k-committee w ⊆ C
satisfies q-PSC if for every positive integer ` and for every solid coalition U ⊆ V supporting some
C′ ⊆ C such that |U| ≥ `q, it holds that |w ∩ C′| ≥ min{`, |C′|}.

Normally, we are only interested in the case where n
k+1 < q ≤ n

k , where n denotes the number
of voters. One of the reason is that when k = 1, i.e., we select only one winner, a q-PSC committee
is a singleton consisting of a candidate who is most preferred by at least a majority of the voters,
whenever such a candidate exists (note that such a candidate must be a Condorcet winner). In addition,
q-PSC is not guaranteed to exist if q ≤ n/(k + 1). Moreover, if q > n/k, any q-PSC committee must
provide some counter-intuitive properties (see the work by the authors of [16] for the details).

Specifically, if q is equal to the so-called Hare quota n/k, the property is referred to as Hare-PSC
(qH-PSC). Besides, if q is equal to the Droop quota

⌊
n

k+1

⌋
+ 1, the property is referred to as

Droop-PSC (qD-PSC).
Proportionality for solid coalition seems to be first considered by Dummett [15]. Many of its

variants have been studied very recently [16,17]. For example, the weak q-PSC puts constraints only on
solid coalitions supporting a limited sized committee, and asks a committee w to contain all candidates
who are supported by these solid coalitions.

Weak q-PSC. [16]. A committee w ⊆ C satisfies weak q-PSC if the following holds, for every
positive integer `, every C′ ⊆ C such that |C′| ≤ `, and every C′-solid coalition U of size at least `q,
it holds that C′ ⊆ w.

Similar to q-PSC, we are particularly interested in the case where n
k+1 < q ≤ n

k . Weak qH-PSC
and weak qD-PSC are referred to as weak q-PSC, where q takes the Hare quota and the Droop quota,
respectively. Both PSC and weak PSC are designed to guarantee fairness for voters at group levels,
but they differ at the degree of fairness they could provide. In fact, due to the definitions, we know
that q-PSC implies weak q-PSC, but not necessarily the other way around.

Given a concept of fairness, a significant question is whether we can compute a committee
providing the fairness efficiently. Let τ be a fairness property.

τ-Computing

Input: An election (C, V) and a positive integer k ≤ |C|.
Question: Is there a k-committee w ⊆ C which provides the τ property at (C, V)?

Prior to the proposal of many fairness properties, a large body of voting rules have been
extensively and widely studied in the literature. Analyzing whether the outcomes of these voting rules
provide some specific fairness property is of also particular importance. This motivation brings the
following decision problem into the line of research.

τ-Testing

Input: An election (C, V) and a committee w ⊆ C.
Question: Does w satisfy τ at (C, V)?

Concerning the first decision problem, Aziz and Lee [16] proved that both computing and testing
q-PSC and weak q-PSC are polynomial-time solvable for all possible values of q. See Table 1.
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Table 1. Complexity of computing a committee satisfying a proportional property, or testing whether
a given committee satisfies a proportional property. In the table, “P” stands for “polynomial-time
solvable”. All results are from the work by the authors of [16].

Complexity of Computing Complexity of Testing

q-PSC P P
weak q-PSC P P

For the second decision problem, we survey the results for many voting rules studied in the
literature. Let (C, V) be an election. For a vote �∈ V, the position of a candidate c in �, denoted by
pos�(c), is the number of candidates ranked before c plus one, i.e.,

pos�(c) = |{c′ ∈ C \ {c} : c′ � c}|+ 1.

Committee scoring rules. Under a committee scoring rule, each voter provides a score to each
committee based on the positions of the committee-members in the preference of this voter,
and winning committees are those with the maximum total score. Committee scoring rules
were first studied by Elkind et al. [17] as a general framework to encapsulate many concrete
multi-winner voting rules, including, e.g., Bloc, k-Borda, Chamberlin–Courant, etc.

• k-Borda. Each voter gives m− i points to each candidate ranked in the i-th position, where m
denotes the number of candidates. The score of a committee from a voter is the sum of the
scores of all its members from the voter.

• Bloc. Every voter gives 1 point to all of their top k ranked candidates. The score of a
committee from a voter is the sum of the scores of all its members from the voter.

• Single nontransferable vote (SNTV). Every voter gives 1 point to her top ranked candidate.
The score of a committee from a voter is the sum of the scores of all its members from
the voter.

• Chamberlin–Courant (CC). Different from the above three rules where all members of the
winning committee are counted to accumulate the satisfaction of a voter, in CC, for each
voter, only the best candidate in the winning committee contributes to the satisfaction
of this voter. In other words, each voter is assumed to be only represented by her best
candidate in the winning committee. Precisely, each voter has a nonincreasing mapping
α : N→ N, such that α(i) is a voter’s satisfaction of a candidate ranked in the i-th position.
For a voter v with preference �v and a nonempty committee w ⊆ C, let topw(�v) be the
top-ranked candidate of v among w, i.e., topw(�v) is the candidate c ∈ w, such that c �v c′

for all c′ ∈ w \ {c}. The CC score of a committee w ⊆ C from a voter with mapping α is
then α(pos�v(top

w(�v))). In this section, we consider only the Borda satisfaction function
α : N→ N, which, for m candidates, holds that α(i) = m− i.

Monroe’s rule. This rule is similar to the CC rule but with a further restriction that every candidate
can represent at most d n

k e voters. Let g : V → C be an assignment function and g−(c), c ∈ C be
the set of voters, �∈ V, such that g(�) = c. Moreover, let G be the set of all assignment functions
from V to C. The Monroe score of a k-committee w ⊆ C is then defined as

max
g∈G s.t.

|g−(c)|≤n/k for all c∈C

{
∑
�∈V

α�(g(v))

}
,

where α� : N→ N is a mapping as in CC. Monroe’s rule selects k-committees with the maximum
score as winning committees.
Single-transferable voting (STV). STV rules are a large class of voting rules each of which is
featured by a rational number q and some vote-reweighting approach. A common principle
of these rules is to guarantee certain groups of voters are proportionally represented. Fixing a
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rational quota q and a vote-reweighting approach, the STV rule selects winning committees
iteratively as shown below. For a candidate c, let Vtop(c) be the set of voters ranking c in the top.

1. Initially, we associate to each voter v ∈ V a weight denoted by weight(v). (Usually, all voters
have weight 1 initially, but this is not necessarily the case.)

2. If there is a candidate, c ∈ C, that is ranked in the top by at least q voters, that candidate
is added to the winning committee. Then, we apply the vote-reweighting approach
so that the total weight of all votes ranking c in the top are reduced by min{q, p},
where p = ∑v∈Vtop(c) weight(v) is the sum of the weights of all voters ranking c in the top
before the reweighting. Moreover, the candidate c is deleted from C and from all votes.

3. If there is no such a candidate c as discussed above, then a candidate that is ranked in the
top by the least number of voters is eliminated.

4. The procedure terminates until k candidates are selected.

Many of concrete STV rules have been considered in the literature (see the works by the authors
of [18,19] for a history and a summary of many important STV rules). However, for simplicity,
in this survey, we discuss only STV rules where initially all voters have weight 1, and the uniform
reweighting approach is used in Step 2. Particularly, according to this reweighting approach,
in Step 2, the weight of a voter v which ranks c in the top is reduced to min{0,weight(v) · (1− q

p )}.
Two important STV rules are those when q is equal to the Hare quota or the Droop quota, i.e., q = n

k

and q =
⌊

n
k+1

⌋
+ 1. We denote these two special STV rules as D-STV and H-STV, respectively.

Much research has been done to investigate whether the above defined multi-winner voting
rules provide the PSC fairness property, see Table 2 for a summary of the current known results.
According to this table, by using STV rules, we are able to obtain, in polynomial time, winning
committees that provide both qH-PSC and qD-PSC fairness simultaneously. Nevertheless, it is important
to point out that STV rules fail many monotonic properties [16]. For a nice remedy, Aziz and Lee
recently proposed a new rule, which they named “Expanding Approvals Rule” (EAR). In particular,
they showed that EAR has the following advantages compared with any other concrete rules studied
in the literature to date. First, an EAR winning committee can be always computed in polynomial-time.
Second, EAR committees provide both qH-PSC and qD-PSC fairness. Third, EAR committees satisfy
many monotonic properties. Finally, EAR works not only for strict preference elections but also for the
case where voters hold weak order preferences over candidates. See the work by the authors of [16]
for the definition of EAR and the detailed discussions.

Table 2. A summary of the PSC properties satisfied by several important multi-winner voting rules and
the complexity of computing a winning committee with respect to these rules. In the table, “N” means
that the rule in the corresponding row does not satisfy the property in the corresponding column,
and “Y” means that the rule satisfies the property. Observing that weak q-PSC is a too strong property
for many rules to satisfy, Elkind et al. [17] studied three weak versions, namely, solid coalitions,
consensus committee, and unanimity. They showed that each of SNTV, Bloc, k-Borda, CC, and Monroe
fails at least one of these weak versions, and these results imply the ones for these rules in the table.

qH-PSC qD-PSC Weak qH-PSC Weak qD-PSC Complexity

k-Borda N [17] N [17] N [17] N [17] P (trivial)
Bloc N [17] N [17] N [17] N [17] P (trivial)

SNTV N [17] N [17] N [17] N [17] P (trivial)
CC N [17] N [17] N [17] N [17] NP-complete [20]

Monroe N [17] N [17] N [17] N [17] NP-complete [21]
H-STV Y [16] Y [16] Y [16] Y [16] P (trivial)
D-STV Y [16] Y [16] Y [16] Y [16] P (trivial)
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2.2. Voter Fairness in Approval-Based Voting

This section is devoted to fairness properties of approved-based multi-winner voting rules, where
each vote v ∈ V consists of a subset of candidates, the candidates approved by the corresponding
voter. Several important proportional properties have been put forward in the literature. In general,
these properties aim at providing fairness for certain group of voters who approve some candidates
in common. In particular, they ensure that for such a group of enough large size, at least a certain
number of candidates approved by all (or some) members of this group should be selected.

Justified representation (JR). A k-committee, w ⊆ C, provides JR, if, for every subset U ⊆ V of
at least n

k votes such that
⋂

u∈U u 6= ∅, at least one of the candidates approved by some vote in U
is included in w, i.e.,

w ∩
( ⋃

u∈U
u

)
6= ∅.

This property was proposed by Aziz et al. [22,23].
Proportional justified representation (PJR). A k-committee ,w ⊆ C, provides PJR if for every
positive integer ` ≤ k, and for every subset U ⊆ V of at least ` · n

k votes such that |⋂u∈U u| ≥ `,
the committee w contains at least ` candidates from

⋃
u∈U u, i.e., |w∩ (⋃u∈U u) | ≥ `. This property

was proposed in the work by the authors of [24].
Extended justified representation (EJR). A k-committee w ⊆ C provides EJR if for every positive
integer ` ≤ k and for every subset U ⊆ V of at least t ≥ ` · n

k votes such that |⋂u∈U u| ≥ `,
the committee w contains at least ` candidates from every vote u ∈ U, i.e., |w ∩ u| ≥ ` for all
u ∈ U. This property was proposed by Aziz et al. [23].
Perfect representation (PR). PR is defined for special elections. Particularly, let (C, V) be an
election such that |V| = t · k for some integer t. A k-committee w = {c1, c2, . . . , ck} provides PR if
there is a partition (V1, V2, . . . , Vk) of V such that |Vi| = t for all 1 ≤ i ≤ k and ci is approved by
all votes in Vi. This property was studied in the work by the authors of [24].

From the definitions, it is easy to see that EJR implies PJR, and PJR implies JR [22,24].
As discussed in the previous section, two important questions are (1) whether we can always

calculate a committee providing a certain property efficiently and (2) whether we can determine
whether a given committee provides a certain fairness property efficiently. For JR, we have positive
answers to both questions. However, for the two more refined concepts EJR and PJR, we have only the
positive answer to the first question. See Table 3 for a summary of the concrete results.

Table 3. Complexity of computing a committee satisfying a proportional property or testing whether a
given committee satisfies a proportional property.

Complexity of Computing Complexity of Testing

justified representation P [23] P [23]
extended Justified representation P [25] co-NP-complete [23]

proportional Justified representation P [24] co-NP-complete [25]
perfect representation NP-complete [24] P [24]

The next important question is, therefore, whether there are committees providing several fairness
properties simultaneously, and whether we calculate such a committee in polynomial time if it exists.
We check the answer by surveying several well-studied and natural multi-winner voting rules.

Approval voting (AV). The AV score of a candidate is the number of votes approving this
candidate, and a winning k-committee consists of k candidates with the highest AV scores.
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Satisfaction approval voting (SAV). The SAV score of a candidate c is defined as

∑
c∈v∈V

1
|v| − ∑

v∈V,
c 6∈v

1
m− |v|

where m denotes that number of candidates. A winning k-committee consists of k candidates with
the highest SAV scores.
Minimax approval voting (MAV). This rule aims to find a committee that is most close to every
voter’s opinion. More precisely, the Hamming distance between a committee w and a vote v is
dH(v, w) = |w \ v|+ |v \ w|, and this rule selects a k-committee w minimizing maxv∈V dH(v, w).
Proportional approval voting (PAV). The PAV score of a committee w is defined as

∑
v∈V,

v∩w 6=∅

(
1 +

1
2
+ · · ·+ 1

|v ∩ w|

)
.

A winning k-committee is an one with the maximum score.
Sequential proportional approval voting (seq-PAV). This rule provides an approximation
solution to PAV rule. It selects k winners in k rounds, one in each round. Precisely, initially we let
w = ∅. Assume that we have an i-committee w after round i < k. Then, in the next round, we find
a candidate c which offers the maximum PAV score of w ∪ {c}, and we extend w by resetting
w := w ∪ {c}. After k rounds, w contains exactly k candidates.
Chamberlin–Courant approval voting (CCAV). This rule is a variant of CC rule for
approval-based voting. In particular, a voter satisfies with a committee if and only if this
committee contains at least one of her approved candidates. This rule selects a k-committee
that satisfies the maximum number of voters.
Monroe’s approval voting (MonAV). This is a variant of Monroe’s rule for approval-based voting
and is similar to CCAV. In CCAV, a candidate can satisfy all voters who approve this candidate.
However, in MonAV, we require that each candidate is assigned to at most

⌈ n
k
⌉

voters approving
this candidate and, moreover, each voter can be assigned to at most one candidate. The MonAV
score of a committee is the maximum number of voters who are satisfied by this committee and
fulfill the above conditions.

In addition to the above rules, a class of important rules, coined by Phragmén, have been studied.
These rules determine the winners in a reverse-thinking approach. Particularly, assume that we know
the k winners. The rules assume that each of this winners has a unit point which is distributed over all
voters approving this candidate in a way to achieve some objective (Phragén’s rules differ only at the
objectives). Then, the selected winners should be those that yield the optimal objective over all subsets
of k candidates. We give the formal definitions below.

A load distribution is a two-dimensional array x = (xv,c)v∈V,c∈C satisfying the following conditions.

1. For each v ∈ V and c ∈ C it holds that

0 ≤ xv,c ≤ 1.

2. For every c ∈ C and v ∈ V, if c 6∈ v, then

xv,c = 0.

This corresponds to winner that is only distributed over voters approving that winner.
3. It holds that

∑
v∈V,c∈C

xv,c = k.

That is, there are in total k pointes to be distributed.
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4. For every c ∈ C, it holds that

∑
v∈V

xv,c ∈ {0, 1}.

This together with the previous restriction ensure that exactly k candidates have points
to distribute.

For a load distribution x and a vote v, let xv = ∑c∈C xv,c. Particularly, xv is referred to as the voter
load of v. Due to the last two conditions in the definition of load distribution, we know that each load
distribution x gives us a unique k-committee

f (x) =

{
c ∈ C : ∑

v∈V
xv,c = 1

}
.

Note that for a k-committee w, there can be multiple load distributions x such that f (x) = w.

max-Phragmén. This rule first calculates a load distribution x such that maxv∈V xv is minimized.
Then, f (x) is the winning committee.
var-Phragmén. This rule first calculates a load distribution x such that ∑v∈V x2

v =

∑v∈V(∑c∈C xv,c)2 is minimized. Then, f (x) is the winning committee.
seq-Phragmén. This rule takes k rounds to select the winners, one for each round. For a
candidate c, let Vc = {v ∈ V : c ∈ v} be the set of voters approving c. Initially, let w = ∅.
Let x(j)

v denote the voter loads after round j. At first, all voters have a load of 0, i.e., x(0)v = 0 for
all v ∈ V. As a first candidate, we select one c ∈ C that receives the most approvals and add c
into w. Then, the voter load of each voter approving this selected candidate is increased to 1

|Vc | .
In the next round, we choose a candidate that induces a (new) maximal voter load that is as small
as possible, but now we have to take into account that some voters already have a non-zero load.
The new maximal load if some candidate c ∈ C is chosen as the (j + 1)-st committee member is
measured as

s(j+1)
c =

1 + ∑c∈v∈V x(j)
v

|Vc|
.

In other words, if c is chosen, then we adjust the voter loads of all voters approving c, so that they
have the same voter load afterwards. Let c be the candidate that minimizes s(j+1)

c among those
that are not yet in w. Then we add c to w and set x(j+1)

v := s(j+1)
c for all v ∈ Vc. After k rounds,

the committee w consists of exactly k candidates. Note that we also obtain a load distribution x
such that f (x) = w.

The above rules have been extensively studied in the literature from different aspects [26–34].
However, the proportionality properties defined above of these rules have only received attention
recently. Fernández et al. [24] proved that winner determination for all multi-winner voting rules that
satisfy PR must be NP-hard. This directly implies that AV, SAV, and seqPAV do not fulfill PR as winner
determination for these rules are polynomial-time solvable. Fernández and Fisteus [35] showed that
MAV does not satisfy PR. Aziz et al. [23] showed that AV, SAV, MAV, and seqPAV do not satisfy JR.
As PJR and EJR imply JR, it must be that AV, MAV, SAV, and seqPAV fail also PJR and EJR. So, none of
AV, MAV, SAV, and seqPAV satisfy any properties studied in this section. The proportional properties
of other rules have also been studied in the literature and we summarize them in Table 4.
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Table 4. A summary of proportional properties of important approval-based multi-winner voting rules
and the complexity of winner determination for these rules. In the table, “N” means that the rule in the
corresponding row does not satisfy the property in the corresponding column, and “Y” means that the
rule satisfies the property.

EJR PJR JR PR Complexity

AV N [23] N [23,24] N [23] N [24,35] P (trivial)
SAV N [23] N [23,24] N [23] N [24,26,35] P [26]

seqPAV N [23] N [23,24] N [23] N [24,26,35] P [26]
MAV N [23] N [23,24] N [23] N [23] NP-complete [36]
CCAV N [23] N [24] Y [23] Y [35] NP-complete [37]

MonAV N [23] N [24] Y [23] Y [24] NP-complete [21]
var-Phragmén N [38] N [38] Y [38] Y [38] NP-complete [38]
seq-Phragmén N [38] Y [38] Y [38] N [38] P [38]
max-Phragmén N [38] Y [38] Y [38] Y [38] NP-complete [38]

PAV Y [23] Y [24] Y [23] N [24] NP-complete [26]

With the help of Table 4, we know that the answer to the following important question is in
the negative:

Is there a natural rule (or an algorithm) whose outcome always provide JR, EJR, PJR,
and PR simultaneously?

But do we still have some hope? The answer is unfortunately in the negative again. In fact,
Fernández et al. [24] proved that there are no voting rules whose outcome always provides both PR
and EJR. In particular, they construct an election instance where none of the PR committees provides
EJR (Theorem 4 in the work by the authors of [24]). This negative result is in fact their motivation to
propose the PJR property. Due to the fact that EJR implies PJR, and PJR implies JR, and the above
impossibility result, our question then breaks down to the following two questions. First, is there
any natural EJR rule? Second, is there any natural rule whose outcome always provide PR and PJR?
The results in Table 4 provide a comprehensive answer: among the rules in the table, PAV is the only
one that provides EJR, and thus provides JR and PJR too, and max-Phragmén is the only one that
guarantees PJR and PR, and thus provides JR too. However, an obvious disadvantage of PAV and
max-Phragmén is that computing a winning committee for them turned out to be a computationally
hard problem. To overcome this dilemma, we need to explore alternative rules that satisfy these
properties. Max-Phragmén seems unlikely to have any proper alternative to remedy the disadvantage,
since it has been shown that computing any PR committee is NP-complete [24]. For PAV, there do
exist good alternatives. In particular, very recently, Aziz et al. [25] crafted two polynomial-time
algorithms (multi-winner voting rules) whose outcome always provides EJR, and thus provides JR
and PJR as well. It should be pointed out that other approaches to overcoming the dilemma include
designing fixed-parameter algorithms or polynomial-time algorithms for some domain-restricted
elections. This work has been conducted for PAV in recent years (see, e.g., [34,39,40]).

2.3. Fairness for Candidates with Sensitive Attributes

In the previous two sections, we mainly survey fairness properties designed for certain groups
of voters. In some real-word applications, candidates have sensitive attributes. In these applications,
fairness for groups of candidates has to be imposed into the decision-making procedure to avoid
discrimination. In this section, we survey the recent progress of the study on this topic. We still assume
that a fixed number k of winners shall be selected.

Ceils, Huang, and Vishnoi [41] studied fairness in the setting where candidates are in a
number of groups, each of which corresponds to a sensitive attribute such as gender, ethnicity, etc.
Notably, each candidate may have several attributes and hence the groups may be non-disjoint.
They studied a quite general framework which requires that a winning committee should be a one that
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maximizes the score with respect to some defined scoring function, and fulfills the restriction that for
each group of candidates with a specific attribute, a prescribed fraction of the group members must
be selected.

Formally, let f : 2C → R≥0 be a scoring function. Moreover, let C1, C2, . . . , Ct ⊆ C be subsets of
candidates (it may that Ci ∩ Cj 6= ∅), and for each Ci, 1 ≤ i ≤ t, let `i and ui be two integers such that
0 ≤ `i ≤ ui ≤ |Ci|. Then, the goal of an f -multi-winner voting rule is to select a k-committee w ⊆ C
with the maximum score under the restriction that for each Ci, 1 ≤ i ≤ t it holds that `i ≤ |w∩Ci| ≤ ui.

The framework is so general that it only stipulates the maximum and the minimum numbers
of candidates that should be selected from each group in general but leaves the settings of these
two values to ad hoc applications. Particularly, `is and uis can be constants, or any function of
the number of candidates in the groups, the total number of candidates, etc. As argued by the
authors, the framework generalizes several important proportional fairness properties studied in the
literature including such as fully proportional representation [42], fixed-degressive proportionality [43],
flexible proportionality [44], etc.

Given that the framework is so general, it is not surprising that computing a winning committee
is a computationally hard problem. Given this negative result, the authors explored numerous
approximation algorithms for calculating committees satisfying the above fairness constraints.
Their results largely depend on the maximum number of groups each candidate is included.
For example, they showed that if everyone belongs to exactly one group, i.e., (C1, C2, . . . , Ct) form a
partition of C, there is a (1− 1/e)-approximation algorithm, and they showed that this is probability
optimal. However, in the case where some candidate belongs to at least three groups, checking whether
there is a feasible solution is already NP-hard, and even in the case where feasible solutions exist,
finding a solution with approximation factor ω(log4/4) remains NP-hard, where4 is the maximum
number of groups each candidate belongs to. For many other interesting theoretical results, we refer
to Tables 1 and 2 in [41]. The authors also conducted an experimental work to show that for many
rules, the constrained version outputs a committee which is very close to the unconstrained version.
Table 4 in [41] summarizes their findings regarding this issue.

Almost at the same time Ceils, Huang, and Vishno [41] posted their paper on Arix (https://arxiv.
org/abs/1710.10057); Bredereck et al. [45] posted on Arix (https://arxiv.org/abs/1711.06527) a paper
investigating a similar model. However, they mainly focused on the parameterized complexity and
computational complexity of the winner determination problem. Similar constraints have been also
considered in party-based voting (a apportionment problem) [46], where each party nominates several
candidates and a total number of k seats should be distributed to these parties based on the preferences
of voters to parties.

2.4. Stable Fairness

Cheng et al. [47] recently put forward a notion of group fairness inspired by the concept of core
in cooperative game theory. In general, it says that a committee is fair to a group of voters if they
cannot obtain a committee of proportional size that is strictly better for all members by deviating.
Formally, for two committees S ⊆ C and S′ ⊆ C, let V(S, S′) be the number of voters prefer S′ to S.
We say that S′ blocks S if and only if

V(S, S′) ≥ |S
′|

k
· n

where n is the number of voters and k is the desired winning committee size. A committee S is i-stable
for some integer i, such that 1 ≤ i ≤ k if and only if there does not exist a committee S′ of size at most i
which blocks S. Cheng et al. [47] showed that their notion generalizes some previous studied notions
such as justified representation. They also extended their notion to Stable Lotteries and Approximate
Stability, and studied the existence of these stable solutions and how efficient they can be calculated.
We refer to the work by the authors of [47] for the details.

https://arxiv.org/abs/1710.10057
https://arxiv.org/abs/1710.10057
https://arxiv.org/abs/1711.06527
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3. Machine Learning Algorithms

Machine learning (ML) algorithms have gained a lot of attention in recent years due to their
growing predictive capabilities. In this paper, we mainly cover supervised machine learning. The other
two classes of machine learning, namely, unsupervised machine learning and reinforcement machine
learning algorithms, have gained comparatively lesser research attention with respect to fairness and
also remains beyond the scope of our review.

Supervised machine learning algorithms are provided a set of input “features” denoted by
x(i) ∈ X and output “target” labels y(i) ∈ Y , which is jointly called “training set” (X ,Y). Given the
training set, supervised machine learning algorithms learn a function h : X 7→ Y such that h(x)
is a “good” predictor for the corresponding value of y (for an unknown x), where h denotes
“hypothesis”. Based on the distribution of Y , such a task could either be “regression” (where y(i) ∈ Y
is continuous) or “classification” (where y(i) ∈ Y is a discrete class). A machine learning algorithm
is evaluated based on its ability to correctly predict label y′ for an unseen data point (x′). Notably,
such algorithms represent automated data-driven decision-making which functions by learning from
historical decisions, often taken by humans. The utility of such systems (both classification and
regression) is optimized by minimizing the errors while training and prediction over given training
set. When given an initial set of alternatives, such tasks could represent clustering or classifying a set
of alternatives into disjoint groups. Arguably, it is possible that when being trained and optimized
for making such decisions (especially for individuals belonging to different protected classes), some
classes might be unfairly treated with respect to the outcome and the error rates of the algorithmic
decision-making. To account for and avoid such unfairness, the studies in fairness in machine learning
has introduced various notions of unfairness. In the next sections, we provide a brief review on various
such definitions (Section 3.1) and mechanisms (Section 3.2) of fair machine learning algorithms.

3.1. Fairness Notions

The literature on fair ML algorithms has predominately drawn on the concepts and definition of
fairness from legal domain. Popular concepts such as direct discrimination (or “disparate treatment”)
and indirect discrimination (or “disparate impact”) are based on various antidiscrimination laws that
prohibit unfair treatment of individuals based on sensitive attributes such as gender, race, etc. [4].
Disparate treatment occurs when the decision an individual user receives is prone to change with
respect to changes in her corresponding sensitive attribute information. Similarly, disparate impact
occurs when the decision outcomes disproportionately benefit or hurt members of certain sensitive
attribute groups. More formally,

Disparate Treatment. Given dataset D = (A, X, Y), with a set of sensitive attributes A (such as
race, gender, etc.), remaining attributes X, and binary class to be predicted Y, predicted binary
class Ŷ, disparate treatment is said to exist in data D if

Pr(Ŷ|X) 6= Pr(Ŷ|X, A).

Disparate Impact. Given dataset D = (A, X, Y), with a set of sensitive attributes A (such as race,
gender, etc.), remaining attributes X, and binary class to be predicted Y, disparate impact is said
to exist in data D if

Pr(Y = 1|A = 0)
Pr(Y = 1|A = 1)

≤ τ = 0.8

for positive outcome class 1 and majority protected attribute 1 where Pr(Y = y|A = a) denotes
the conditional probability that the class outcome in y ∈ Y given sensitive attribute a ∈ A.

For the convenience of the readers, in Table 5, we provide concise summary of various definitions
of fairness in literature.
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In our review, we observed that a majority of recent studies have focused on design of automated
decision-making systems that aim at avoiding one or both of these unfairness notions. For example,
consider the work of Feldman et al. [48], who developed a test for disparate impact as well as methods
by which data might be made unbiased. Luong et al. [49] provided a method of discrimination
discovery and prevention from a dataset of historical decisions by adopting a variant of k-NN
classification. Zemel et al. [50] proposed a learning algorithm for fair classification that achieved
both group fairness and individual fairness by formulating the fairness as an optimization problem
of finding a good representation of the data with two competing goals: to encode data as well
as possible while simultaneously obfuscating any information about membership in the protected
group. Zafar et al. [51] introduced a flexible constraint-based framework to enable the design of fair
margin-based classifiers which make use of a general and intuitive measure of decision boundary
unfairness. In a more recent work, Zafar et al. [52] introduced an alternative notion of unfairness
called disparate mistreatment. A classifier is said to suffer from disparate mistreatment if the
misclassification rates for different groups of individuals having different values of the sensitive
attribute A are different. Zafar et al. [52] proposed that disparate mistreatment in binary classification
task can be specified with respect to various misclassification measures such as overall misclassification
rate, false positive rate, false negative rate, false omission rate, and false discovery rate. We have
also witnessed recent works drawing on fairness concepts from economics and social welfare such as
equality, Gini distribution, etc., in its conceptualization of fairness.

Despite gaining tremendous research attention in recent years, a major feature of fair ML literature
has been an extensive set of definitions of fairness to choose from and various empirical and theoretical
findings suggesting the impossibility of satisfying various fairness definitions at the same time.
Nevertheless, in our review, we aim to cluster fairness in machine learning algorithms studied in the
extant literature into three main categories, namely, anticlassification, statistical parity, and calibration.

1. Anticlassification, also known as unawareness, seeks to achieve fairness in ML outcomes by
excluding the use of protected features such as race, gender, or ethnicity from the statistical
model. This notion is consistent with disparate treatment. Despite being intuitive, easy-to-use
and having legal support, a crucial difficulty of this approach is that a protected feature might be
correlated with many other unprotected features, and it is practically infeasible to identify all such
covariate “proxies” and remove them from the statistical model. For example, protected class race
might be correlated with various other features, such as education level, salary, life-expectancy,
etc., and removing all these proxies from the statistical model could have detrimental effects in
predictive performance. Consider we have a vector xi ∈ Rt that represents the visible attributes
of individual i such as race, gender, education level, age, etc. An algorithmic decision can be
represented as a function d : Rt 7→ {0, 1}, where d(x) = k, k ∈ {0, 1}, means that action ak is
taken. Suppose that x can be partitioned into protected and unprotected features: x = (xp, xu).
Let Xp denote the set of all protected features. Then, anticlassification requires that decisions do
not consider protected attributes, more formally,

d(x) = d(x′) for all x, x′ such that xu = x′.

Several other variants of anticlassification are also proposed in the literature [53,54].
2. Statistical parity (also known by the names of demographic parity, independence, statistical

parity, and classification parity) requires that common measures of predictive accuracy and
performance errors remain uniform across various groups segmented by the protected features.
This includes notions such as statistical parity, equality of accuracy, equality of false positive/false
negative rates, and equality of positive/negative predictive values [55–57]. The main idea of
this notion is to quantify and equate benefit and harm of the impact of the ML prediction to
groups segmented by protected attributes equally and to distribute the errors among different
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stakeholders equally [55]. This notion of fairness has recently found application in criminal
justice [58] and is consistent with disparate impact.

The measure of classification parity based on false positive rate and the proportion of decisions
that are positive have received considerable attention in machine learning domain [55,59,60].
For formal definition, please refer to Table 5.

Recent research by Hu and Chen [61] suggests that the enforcement of statistical parity criteria
in the short-term benefits building up the reputation of the disadvantageous minority in labor
market in the long run. Note that, a critical flaw of notion of statistical parity is that it is easy to
satisfy it by some arbitrary configuration, for example selecting best and qualified candidates
from one group and random alternatives from the other group can still satisfy statistical parity.
Moreover, the definition also ignores any possible correlation between positive outcome and
protected attributes.

3. Calibration requires that ML outcomes remain independent of protected features after controlling
for estimated risk. Calibration relates to the fairness of risk scores and requires that for a given
risk score, the proportion of individuals re-offending remains uniform across protected groups.
Calibration is beneficial as a fairness condition as it does not require much intervention in the
existing decision-making process [62]. A major disadvantage of calibration is that it has been
shown that risk score can be manipulated to appear calibrated by ignoring information about the
favored group [63]. Formally, given risk scores s(x), calibration is satisfied when

Pr(Y = 1 | s(x), A) = Pr(Y = 1 | s(x)).

Despite these multitude of notions measuring fairness from a diverse perspective, recent research
has identified theoretical and empirical evidence that each of them suffer from significant statistical
limitations [57]. The above-described notions of fairness only aim to ensure equality between
group averages, particularly drawn from protected classes such as gender, race, etc. In contrast,
”individual notion” takes into account additional characteristics of individual features and looks into
differences between individuals rather than groups. Individual fairness is satisfied when similar
individuals are treated similarly. Users are treated as individuals regardless of their group membership
(either protected or unprotected group). Individual fairness is quantified by the distance between
the predicted outcomes and the distance between the individual characteristics [64]. Josef et al. [65]
introduced the study of fairness in multi-armed bandit problems which ensures that given a pool
of individuals, a worse individual is never favored over a better one, despite a learning algorithm’s
uncertainty over the true payoff. A major drawback of the existing individual notion of fairness is
the need to make strong initial assumptions. For instance, the notion coined by Dwork et al. [64]
assumes the existence of prior agreed upon similarity metric which is nontrivial to compute and that of
Joseph et al. [65] requires significant assumptions of the underlying functional form of the relationship
between features and labels for any possible practical application. Another drawback pertains to the
difficulty in selecting an appropriate metric function to measure the similarity of two inputs [66].

It is also beneficial to note that a new and emerging notion of fairness considers “causal” notion
draws on literature on causal discovery and inference in its definitions [67–69]. Another emerging
literature proposes that the right notion of fairness depends on the context right notion of fairness,
which depends on the context [60,70]. Please refer to Table 5 for specific definition.
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Table 5. Different types of fairness in recommender systems.

Fairness Definition Description

Equalized Odds Predicted outcome Ŷ satisfies equalized odds with respect to protected attribute A and
true outcome Y, if Ŷ and A are independent conditional on Y, more specifically
P(Ŷ = 1|A = 0, Y = y) = P(Ŷ = 1|A = 1, Y = y) [55]

Equal Opportunity A binary predictor Ŷ satisfies equal opportunity with respect to A and Y if
P(Ŷ = 1|A = 0, Y = 1) = P(Ŷ = 1|A = 1, Y = 1) [55]

Statistical Parity A predictor Ŷ satisfies demographic parity if P(Ŷ|A = 0) = P(Ŷ|A = 1) [64]

Counterfactual Fairness For a given causal model (U, V, F) where V ≡ A ∪ X, predictor Ŷ is said to be
“counterfactually fair” if under any context X = x and
A = a, P(ŶA← [a)(U) = y|X = x, A = a) = P(ŶA← [a′ (U) = y|X = x, A = a),
for all y and for any value a′ attainable by A [68]

Fairness through awareness An algorithm is fair if it gives similar predictions to similar individuals. Any two
individuals who are similar with respect to a similarity metric defined for a particular
task should be classified similarly [64].

Individual fairness Let O be a measurable space and δ(O) be the space of the distribution over O.
If M : X 7→ δ(O) denotes a map that maps each individual to a distribution of outcomes,
the formulation of individual fairness is then D(M(X ), M(X ′)) ≤ d(X ,X ′),
where X ,X ′ ∈ Rd are two metric functions on the input space and the output space,
respectively [64].

3.2. Fairness Mechanisms

Next we turn to discuss the three fairness mechanisms clustered on the timing of the application
of debiasing mechanism into preprocessing, in-processing, and postprocessing.

A. Preprocessing. Preprocessing methods deal with removing the protected features or their
covariates before training the model. Similar to anticlassification, this method come with severe
disadvantages as the protected feature might be correlated with many other unprotected features,
and it is practically infeasible to identify all such covariates and exclude them without losing a
lot on predictive accuracy. Kamiran and Calders [71] suggest a set of data processing techniques
aimed at ensuring fairness for classification tasks. These include suppression, massaging the
dataset, reweighting, and sampling.

Suppression. In this process, exactly like anticlassification, all the features that correlate
with the protected set of features Xp are first identified which are then removed from the
classification model.
Massaging the dataset. In this process, labels of some data points are manipulated in order
to remove existing discrimination from the training data. In order to find a good set of labels
to change, Kamiran and Calders [71] proposed a combination of ranking and learning.
Reweighting. Instead of changing the labels, in this method the tuples in the training dataset
are assigned asymmetric weights in order to overcome the bias
Sampling. Kamiran and Calders [71] introduced “uniform sampling” and “preferential
sampling”, where the training data is sampled with the help of a ranker as a
debiasing method.

Kamiran and Calders [71] found that suppression of the protected attributes does not always
result in the removal of bias and massaging and preferential sampling techniques performed best
for debiasing with a minimal loss in accuracy.

Another idea developed in preprocessing is to learn a new representation of the data such that
it removes the information correlated to the sensitive attribute [50,72,73]. The central algorithm
such as classification then use the cleaned data. An advantage of this method is that the analyst
can avoid the need to modify the classifier or access sensitive attributes during test time.

B. In-processing. In this method, the optimization procedure is modified to incorporate cost of
unfairness. This is typically done by addition of a constraint to the optimizing problem or
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addition of cost of fairness as a regularizer. For example, Agarwal et al. incorporate cost-sensitive
classification into their original objective function [59]. Given a dataset, {(xi, c0

i , c1
i )}n

i=1, where c0
i

is the cost of predicting 0 on xi and c1
i is the cost of predicting 1 on xi, a cost-sensitive classification

algorithm given the dataset outputs

ĥ = arg min
h∈H

h(xi)c1
i + (1− h(xi))c0

i .

where h(xi) represents the original objective function without cost sensitivity.

More generally, the reduction approach by Agarwal et al. suggests the reduction of training
with fairness constraints and solving a series of cost-sensitive classifications using off-the-shelf
methods [59].

An important advantage of this method is that there is no need to access sensitive attributes at
test time. This method also provides higher flexibility in terms of trade-off between accuracy and
fairness measures. An important disadvantage is that this method is task specific and requires
modification of classifier which can often exponentially increase the computational complexity.

The method to optimize counterfactual fairness also falls into this category. Kusner et al. [68]
propose “counterfactual fairness” that explicitly specifies the assumptions about the data
generating process. This can be done by adding a linear or convex surrogate for the fairness
constraint in the learning models. For example, consider a predictive problem with fairness
considerations, where A, X, and Y represent the protected attributes, remaining attributes, and the
output of interest, respectively.

C. Postprocessing. Postprocessing methods require editing the posteriors in order to satisfy the
fairness constraints. The method searches for a proper threshold using the original score function
for each group. We refer to Hard et al. [55] for more details on this postprocessing method.
This method requires test-time access to the protected attribute and lacks flexibility in terms of
trade-off between accuracy and fairness. However, this method benefits from being general and
applicable to any classifier without any modification.

Besides these, there are also some work on fairness in unsupervised learning. In their recent paper,
Bolukbasi et al. [74] analyzed the unfairness present in word embeddings, a popular framework used
to represent text data as vectors and quantitatively demonstrate that word-embeddings contain
biases in their geometry that reflect stereotypes present in our society (for example words like
“programmer” was closer to male names as compared to “homemaker”, which was closer to female
names). Additionally, the authors also introduce various debiasing methods to deal with detrimental
effects of such gender bias. In the similar line, Zhao et al. [75] investigated various datasets and
models associated with multilabel object classification and visual semantic role labeling, and found
that various datasets for these tasks contain significant gender bias which are amplified by the models
trained on these datasets. As an example, the authors found that activities like cooking are highly
associated with females as compared to males. Following these works, a large number of subsequent
work has been devoted to debiasing techniques biases embedded in word embeddings [76–79].

4. Recommender Systems

Recommender systems are among the most pervasive applications of algorithmic decision-making
in industry, with many services using them to support users in finding products or information that
are of potential interest [80]. Such systems find applications in various online platforms such as
Netflix, Linkedin, Amazon, etc., where the alternative set of items is much larger which needs to be
filtered (and a smaller set of items is to be designed) before being presented to the user. There
are various approaches for recommender systems available, such as collaborative filtering [81],
content-based filtering [82], and knowledge-based recommendation [83], or some hybrid combinations
of these. First, collaborative filtering algorithms are based on the assumption of word-of-mouth, that is,
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decisions of users are influenced by other users who are closer to her (such as family and friends).
User-based collaborative filtering [81] identifies the k-nearest neighbors of the focal user and based on
these nearest neighbors calculates a prediction of the focal user’s rating for a specific item. In contrast
to user-based collaborative filtering. Item-based collaborative filtering [84] searches for items rated by
focal user that received similar ratings as items currently under investigation in order to estimate the
probability of its utility. Second, content-based collaborative filtering [82] is based on the assumption
of monotonicity of personal interests. In content-based filtering, the content of already consumed items
are compared with those of the new items that can potentially be recommended to the user. Based on
some “similarity” measure of such comparisons, items that are likely to be of interest to the focal user
are recommended. Third, knowledge-based recommendation [83] also draws on deeper knowledge
(such as semantic knowledge) about the items in addition to ratings and textual item descriptions that
the first two approaches use.

The study of bias and fairness in recommender systems is an emerging research area that is
receiving increasing attention. This is further fueled by evidences of detrimental consequences of
popularity bias in recommender systems where recommenders typically emphaize popular items
over other “long-tail”, less popular ones that may only be popular among small groups of users [85].
Notably, a majority of recommender algorithms can be considered as a subset of machine learning
algorithms. Notwithstanding, we discuss them separately here due to their unique importance and
application pertaining to fairness, and because studying fairness in recommender systems is considered
to be challenging and complex as they often consist of multiple models, must balance multiple goals,
and are difficult to evaluate due to sparsity and dynamism.

Like algorithmic fairness in general, the definition of fairness in recommender systems is as well
challenging. In traditional recommender systems, the optimization only takes place on the accuracy of
performance, that is, how well the algorithm predicts whether a user will like an item or not based on
the utilities of users. Literature in fairness of recommender systems adds in constraints or additional
objectives in order to ensure sufficient item coverage, fairness or diversity when it comes to item
recommendation. Recommender systems with such constraints can better facilitate their adoption and
purchase and fairly deal with the wishes and preferences of all classes/groups of users [86].

Similar to the accuracy–fairness trade-off in machine learning, recommender systems as well
suffer from utility-fairness conundrum as making the recommendations fair will likely reduce utility of
the entire system. Moreover, recommendation systems also suffer from some unique shortcomings as
compared to machine learning fairness in general [87]. For instance, in a recent paper, Farnadi et al. [88]
defined two primary types of bias drawn from imbalance in data. First, observation bias appears due
to the feedback loop in the recommender systems, as item displayed by the recommender system
gets further reinforced in the choice by the agent over the period of time, leading to the increase
in probability for the item to be retained in the system. Moreover, items similar to such an item
also get more weightage by the system to be further recommended. Second, biases that come from
imbalance in the data are caused when a systematic bias is present in the data/ experience due to
societal or historical features. Literature has explored approaches towards handling such biases by
increasing the diversity of recommendations [89,90]. Additionally, a more recent line of research
looks at fairness in recommender systems through the use of various metrics. For instance, Yao and
Huang [87] adopt five different fairness metrics in their exploration of fair recommender systems
based on matrix factorization. Burke [91] introduces fairness via neighborhood balancing with a space
linear method.

Although these early works have played a vital role in increasing our understanding of fairness
in recommender systems, most of the existing work in fair recommender systems focus on fairness
in supervised learning setting, and only very recently are researchers moving towards fairness in
unsupervised tasks such as clustering and ranking (See, for example, the works by the authors
of [87,91–93].). Below, we provide a more elaborate overview of the existing literature divided into
three main clusters: (1) fairness for users and group of users (Section 4.1) where we look at research
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work aimed at introducing fairness for users or their groups; (2) fairness for items (Section 4.2) where
fairness is introduced from the side of recommended items, and, finally; (3) multi-stakeholder fairness
(Section 4.3) where fairness incorporates various stakeholders at the same time. In Table 6, we provide
a concise summary of these three domains.

Table 6. Different types of fairness in recommender systems.

Type of RecSys Fairness Focus References

User & Group Ensure fairness for individual or a group of Yao and Huang [87]
Fairness individuals, protected group incurs rating prediction Ning and Karypis [94]

errors in parity with the nonprotected group.

Item Fairness Fairness among item categories when Steck [95]
recommended to users Tsintzou et al. [96]

Multiple Stakeholder Fairness for multiple Burke [91]
Fairness parties involved Abdollahpouri et al. [97]

Mehrotra et al. [98]

4.1. Fairness for Users and Groups of Users

These methods are aimed at ensuring fairness for individual or a group of users. Similar to the
classification or statistical parity discussed in Section 3.1, fairness for users consider group fairness in
which protected group incurs rating prediction errors in parity with the nonprotected group. Yao and
Huang [87] studied fairness in collaborative-filtering settings and identify new fairness metrics that can
be optimized by adding fairness terms to the learning objective. They also show via experiments that
their new metrics can better measure fairness than the baseline and are effectively useful in reducing
bias. In another paper, Ning and Karypis [94] aimed to achieve the same notion of user fairness
by adding a regularization term to the collaborative filtering objective function that measures the
deviation with respect to the total weight assigned to the protected and nonprotected group member.

A related but separate line of work looks at individual fairness in group recommendation,
where the goal is to design systems that recommend to a group of users while respecting the individual
preferences of the group members. In such a setting, the objective is not only to maximize the overall
satisfaction among group members but also to ensure that the recommendations are fair in terms of
minimizing the feeling of dissatisfaction among group members. Earlier work in this line mainly view
fairness issues from the perspective of game theory and voting theory by treating the group decision
process either as non-cooperative game or as a voting campaign without clearly modeling the trade-off
between overall satisfaction and fairness of users [99–102].

In a more recent work, Lin et al. [103] investigated the group recommendation problem from
a computational lens. Their method tries to maximize the satisfaction of each group member while
minimizing the unfairness between them. The authors conceptualize such fairness-aware group
recommendation as a multiobjective optimization problem consisting of two independent objectives:
individual fairness and social welfare. In a similar line of research, user fairness is modeled in terms of
satisfaction of the user with the group recommendation. Qi et al. [104] propose probabilistic models
that capture the preference of a group towards a recommended package, and incorporate fairness into
it by ensuring further devouring so that no user is consistently slighted by the item selection in the
package. This idea has been further developed in subsequent papers [105,106]. For example, in [105],
Serbos et al. develop fairness measures for package recommendation based on “proportionality”
and “envy-fairness”.

Proportionality. Given a package , P, and a parameter , 4, we say that a user u likes an item
i ∈ P if i is ranked in the top-4% of the preferences of u over all items. Consequently, for a user ,
u, and a package , P, we say that P is m-proportional for u, for m ≥ 1, if there exists at least m
items in P, which are liked by u.
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Envy-freeness. Given a group G, a package P, and a parameter4, we say that a user u ∈ G is
envy-free for an item i ∈ P, if r(u, i) is in top -4% of the preferences in the set {r(u, i) : v ∈ G}.
Consequently, for a user u, a package P and a group G, we say that the package P is m-envy-free
for u, for m ≥ 1, if u is envy-free for at least m items in P.

The authors develop algorithms that can construct a package of items for a group of users
satisfying either proportionality or envy-freeness.

A separate but related line of work looks at individual fairness in group recommendation.
Sacharidis [107] looks into the minimum utility a group member receives as the notion of fairness.
The author further proposes a technique that is able to rank the items by considering all admissible
ways in which a group might reach a decision.

4.2. Fairness for Items

Although recent research has been focused on the importance of identifying fairness and diversity
in terms of aspects of user preferences as a quality of recommendations, growing research attention
is also being received by fairness in terms of groups of items. For example, researches have
looked into algorithms that guarantee fairness among item categories when recommended to
users. Steck [95] looked into the application of movie recommendations and suggested that item
fairness should ensure that the various (past) areas of interest of a user need to be reflected with
their corresponding proportions when making current recommendation. For a particular set of
recommendations to be fair, it must contain items from various groups with a ratio that is equal to the
group ratio present in the subject’s input preferences. To ensure such fairness, the authors propose a
greedy iterative re-ranking (postprocessing) algorithm that can construct a list that balances the utility
of the objects selected and the list’s deviation from the input preferences.

In a similar vein, Tsintzou, Pitoura, and Tsaparas [96] presented another re-ranking method that
achieves fairness by recompiling a set of objects such that the ratio of objects from various groups
(output bias) is the same as the ratio present in the subject’s input preferences (input bias). Such a
method is able to avoid amplifying existing biases in the input by iteratively swapping a low-utility
nonprotected object with a high-utility protected object.

4.3. Multiple Stakeholder Fairness

A unique characteristic of recommender systems is in facilitating mapping or transaction between
parties, such as producers and consumers—a perspective now popularly known as multi-stakeholder
recommendation or two-sided markets. Such platforms benefit from integrating the preferences
of multiple parties into recommendation generation and evaluation. They are now of common
occurrence in online market places designed in a variety of industries such as music (Spotify,
Soundcloud, and Pandora), recruitment (LinkedIn), content and entertainment (Dailymotion and
Youtube), transportation and housing (Airbnb and Uber), etc. A commonality for all these platforms
is that they provide a common place where providers and users congregate and make some form
of transactions. While traditional recommender systems focused specifically towards satisfaction of
consumer by providing a set of relevant content, these multi-sided recommender systems face the
problem of additionally optimizing preferences for providers as well as for platform. Fairness requires
multiple parties to gain or lose equally with respect to the recommendations made. Such a system is
known as multi-stakeholder recommender system and is gaining a lot of recent research attention [108].

A recent paper by Burke [91] provides a great starting point for research in multi-stakeholder
fairness. Burke’s framework divides the stakeholders of a given recommender system into
three categories—consumers, provides, and platforms—and introduces measures that take into
consideration such multisided fairness. In a similar vein, Abdollahpouri et al. [97] describe origins
of multistakeholder recommendation, and the landscape of system designs providing illustrative
examples of current research. This line of research distinguishes itself from fairness consideration in
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earlier works where fairness in recommender systems is typically evaluated on their ability to provide
items that satisfy needs and interests of the end user. In the same line of research, Mehrotra et al. [98]
propose a conceptual computational framework applying counterfactual estimation techniques in order
to understand and evaluate different recommendation policies surrounding the trade-off between
relevance and fairness in the absence of A/B tests, a popularmethod of comparing two versions of
same method against each other to determine which one performs better.

5. Conclusions

Algorithms are taking increasingly prominent decision-making roles in various applications
in societal, organizational, and individual lives. Algorithmic decision-making has proliferated
everywhere from legal to medical and from social media to employee recruitment in firms.
As algorithmic decisions find themselves in major areas of societal impact, it becomes imperative to
ensure that they guarantee some level of fairness and trust, more so when individuals and groups
that represent minorities or protected classes in terms of gender, race, etc., are exposed to the
detrimental consequences of algorithmic decisions. Motivated by the growing attention and interest of
public and academia into fairness in algorithmic decision-making, this article endeavored to collect,
survey and synthesize emerging and existing research aimed at introducing fairness in algorithmic
decision-making. In this work, we provide a useful and simplified taxonomy of the current state of
research in algorithmic fairness with a particular focus on decision-making as an application. Such a
taxonomy and framework for analyzing algorithmic fairness research, we believe should be beneficial
for future research.

5.1. Challenges and Future Research Directions

Our review also identified various challenges with respect to existing research on fair algorithmic
decisions. First, our review identified multiple definitions of what is a fair decision-making algorithm
and diverse approaches to ensuring fairness in algorithmic decisions. This becomes particularly true
as fairness being a social construct gets measured in various notions that often correspond to differing
lens in social sciences, justice, economics, and moral philosophy. Such diverse (and often uncorrelated)
definitions and methods on the one hand provides a variety of tools to address different manifestations
of bias and discrimination embedded in data. On the other hand existence of different definitions
has led the research community into diverging path of research endeavors leading to a defragmented
domain of science.

For instance, consider the two salient measures of fairness, (a) algorithmic fairness that requires
the score that an algorithm produces to be equally accurate for all members vs. (b) algorithmic fairness
that requires that the algorithm produces the same percentage of errors in terms of prediction for each
group under consideration. Even though there exists normative commonality across these measures,
there is so far no algorithmic solution to achieve parity in both these dimensions. Moreover, there is
no consensus in literature on what is the best definition of fairness under a given circumstance.
Theoretical and empirical evidence showing that different definitions of fairness cannot be satisfied
at once makes it even difficult endeavour for policy-makers. To this end, evaluating each definition
and method to decide on which definition and method to consider for a given task is a daunting task.
Therefore, it is important for the algorithmic fairness community to move towards a converging path.
For instance, a unified framework by Speicher et al. [109] is an important and encouraging first step
in this direction. To this end, we hope that this article provides a broad overview for such an effort
to successfully be accomplished. Moreover, our view is that such a unified framework should cross
domains of algorithms and not just remain limited to machine learning.

Second, our review also discovered that a large majority of above reviewed work is centered on the
development of statistical definitions of fairness and methods to expose and remove the corresponding
biases. Research efforts need to be directed to bridge the gap between mathematical and algorithmic
research in academia and their application in practice. See, for example Veale, Kleek, and Binns for such
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a work [110]. In order to make fair algorithms accessible to practitioners, easy-to-use and off-the-shelf
tools need to be developed. We have already seen encouraging first steps in this direction from the
Human–Computer Interaction (HCI) community (see, e.g., the works by the authors of [111,112]).
Future work should therefore aim at linking the definition of fairness studied in research to the
definition of fairness based on user’s perception. For example, in their recent work Srivastava, Heidari,
and Krause [46] found that most simplistic mathematical definitions of fairness (i.e., demographic
parity) most closely matches the people’s idea of fairness in practice. This association remains true
even when the participants were explicitly informed about the existence of other more complicated
notions of fairness [46]. In the same vein, Holstein et al. [113] conducted a systematic investigation
of commercial product teams’ challenges and needs for support in developing fairer ML systems.
The study identified various areas of alignment and disconnect between the challenges faced by teams
in practice and the solutions proposed in the fair ML research literature. Similar research associating
the work in academia and practice should be beneficial in making the fairness in algorithms literature
more realistic and more easily accessible to practitioners.

Third, empirical evidence and mathematical proofs have by now extensively established the
prevalence of inherent trade-offs between the constraints imposed with the notions of fairness and
performance accuracy of algorithms [63,114]. This has practical implications as the designer of the
system and the user need to decide on level of performance accuracy that they are willing to forgo in
order to ensure fairness constraints. Design of algorithms that aim at handling such trade-offs in a
systematic way could be beneficial and further explored.

Fourth, our review has also discovered that fairness in machine learning and recommender
systems is excessively focused on supervised learning. Though there has been some progress in
unsupervised learning such as word embedding and clustering [5,115–117], it is limited as compared
to supervised setting. Future work should further advance fair decision-making with respect to
unsupervised learning algorithms.

5.2. Limitations

Note that, due to lack of space and a choosen design to keep the discussion focused, in this
article we only focus on the fairness in algorithmic decision-making in three main domains,
namely multi-winner voting, machine learning, and recommender systems. It is important to note
that, by design, we have not given enough attention to a large and perhaps equally important
work on peripheral topics such as fairness in natural language understanding, resource allocation,
representation learning, causal learning, etc. This we leave open for the future research to survey.
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