
algorithms

Article

Faster and Better Nested Dissection Orders for
Customizable Contraction Hierarchies

Lars Gottesbüren *, Michael Hamann, Tim Niklas Uhl and Dorothea Wagner

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Am Fasanengarten 5,
76131 Karlsruhe, Germany; michael.hamann@kit.edu (M.H.); niklas.uhl@online.de (T.N.U.);
dorothea.wagner@kit.edu (D.W.)
* Correspondence: lars.gottesbueren@kit.edu

Received: 29 June 2019; Accepted: 04 September 2019; Published: 16 September 2019
����������
�������

Abstract: Graph partitioning has many applications. We consider the acceleration of shortest
path queries in road networks using Customizable Contraction Hierarchies (CCH). It is based on
computing a nested dissection order by recursively dividing the road network into parts. Recently,
with FlowCutter and Inertial Flow, two flow-based graph bipartitioning algorithms have been
proposed for road networks. While FlowCutter achieves high-quality results and thus fast query
times, it is rather slow. Inertial Flow is particularly fast due to the use of geographical information
while still achieving decent query times. We combine the techniques of both algorithms to achieve
more than six times faster preprocessing times than FlowCutter and even faster queries on the Europe
road network. We show that, using 16 cores of a shared-memory machine, this preprocessing needs
four minutes.

Keywords: graph partitioning; nested dissection; route planning; customizable contraction hierarchies

1. Introduction

The goal of graph partitioning is to divide a graph into a given number of roughly equally
sized parts by removing a small number of edges or nodes. Graph partitioning has many practical
applications, such as accelerating matrix multiplication, dividing compute workloads, image
processing, circuit design, and the focus of this work, accelerating shortest path computations in
road networks. For an overview of the state-of-the-art in graph partitioning, we refer the reader to a
survey article [1].

Computing shortest paths in road networks is a fundamental building block in applications such
as navigation systems (e.g., Google Maps), logistics planning, and traffic simulation. Unfortunately,
Dijkstra’s algorithm [2] takes over a second for a single query on continental-size road networks with
tens of millions of nodes, rendering it infeasible for interactive scenarios. This has led to a large amount
of research on speedup techniques [3], which often use an expensive preprocessing phase to enable
fast queries. Arc-Flags [4,5] is one of the early techniques that use graph partitioning. It has been
frequently used to enhance other techniques, e.g., SHARC [6], combining shortcuts [7] and Arc-Flags,
ReachFlags [8], combining Reach [9] and Arc-Flags as well as CHASE [8], combining Contraction
Hierarchies [10] and Arc-Flags. In navigation systems, the graph topology changes infrequently,
but the metric (arc weights) changes frequently, e.g., due to traffic congestion or road closures.
To accommodate this, modern speedup techniques split the preprocessing phase into an expensive
metric-independent preprocessing phase and a fast metric-dependent customization phase. The two
state-of-the-art techniques are Multilevel Overlays, also known as Customizable Route Planning [11],
which use nested k-way partitions and Customizable Contraction Hierarchies (CCHs) [12], which

Algorithms 2019, 12, 196; doi:10.3390/a12090196 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/12/9/196?type=check_update&version=1
http://dx.doi.org/10.3390/a12090196
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 196 2 of 20

use nested dissection orders [13]. In this work, we focus on CCHs, which extend classic two-phase
Contraction Hierarchies [10] to the three-phase approach with customization.

Contraction Hierarchies simulate contracting all nodes in a given order and insert shortcut
arcs between the neighbors of a contracted node. These represent paths via the contracted nodes.
Shortest s–t path queries are answered by, e.g., a bidirectional Dijkstra search [2] from s and t,
which only considers shortcut and original arcs to higher-ranked nodes. Thus, nodes which lie
on many shortest paths should be ranked high in the order. Customizable Contraction Hierarchies [12]
use contraction orders computed via recursive balanced node separators (nested dissection) in
order to achieve a logarithmic search space depth with few added shortcuts. Node separators
are considered to lie on many shortest paths, as any path between the components crosses the
separator. The weights of the contraction hierarchy can then be quickly customized to any metric,
allowing, e.g., the incorporation of real-time traffic information. The running time needed for the
customization and the shortest path queries depends on the quality of the calculated order. Previously
proposed partitioning tools for computing separators in road networks include FlowCutter [14], Inertial
Flow [15], KaHiP [16], Metis [17], PUNCH [18], and Buffoon [19]. KaHiP and Metis are general-purpose
graph partitioning tools. PUNCH and Buffoon are special-purpose partitioners, which aim to use
geographical features of road networks such as rivers or mountains. Rivers and mountains form very
small cuts and were dubbed natural cuts in [18]. PUNCH identifies and deletes natural cuts, then
contracts the remaining components and subsequently runs a variety of highly randomized local
search algorithms. Buffoon incorporates the idea of natural cuts into KaHiP, running its evolutionary
multilevel partitioner instead of the flat local searches of PUNCH. In [14], it was shown that FlowCutter
is also able to identify and leverage natural cuts. Inertial Flow is another special-purpose partitioner
that is even based on using the geographic embedding of the road network.

We combine the idea of Inertial Flow to use geographic coordinates with the incremental cut
computations of FlowCutter. This allows us to compute a series of cuts with suitable balances much
faster than FlowCutter while still achieving high quality. In an extensive experimental evaluation, we
compare our new algorithm InertialFlowCutter to the state-of-the-art. Thus far, FlowCutter has been
the best method for computing CCH orders. InertialFlowCutter computes slightly better CCH orders
than FlowCutter and is a factor of 5.7 and 6.6 faster on the road networks of the USA and Europe,
respectively—our two most relevant instances. Using 16 cores of a shared-memory machine, we can
compute CCH orders for these instances in four minutes.

In Section 2, we briefly present the existing Inertial Flow and FlowCutter algorithms and describe
how we combined them. In Section 3, we describe the setup and results of our experimental study.
We conclude with a discussion of our results and future research directions in Section 4.

This paper recreates the experiments from [14] and uses a lot of the same setup. Therefore, there
is substantial content overlap. To keep this paper self-contained, we repeat the parts we use.
Our contributions are the InertialFlowCutter algorithm, an improved Inertial Flow implementation and
a reproduction of the experiments from [14], including InertialFlowCutter and a newer KaHiP version.

2. Materials and Methods

After introducing preliminaries, we describe the existing biparitioning algorithms FlowCutter
and Inertial Flow on a high level, before discussing how to combine them into our new algorithm
InertialFlowCutter. We refer the interested reader to [14] for implementation details and a more
in-depth discussion of the FlowCutter algorithm. Then, we discuss our application Customizable
Contraction Hierarchies (CCH), what makes a good CCH order, and how we use recursive bisection to
compute them.

2.1. Preliminaries

An undirected graph G = (V, E) consists of a set of nodes V and a set of edges E ⊆ (V
2). A directed

graph G = (V, A) has directed arcs A ⊆ V × V instead of undirected edges. It is symmetric if for

Algorithms 2019, 12, 196 3 of 20

every arc (x, y) ∈ A, the reverse arc (y, x) is in A. For ease of notation, we do not distinguish between
undirected and symmetric graphs in this paper, and we use them interchangeably, whichever better
suits the description. Let n := |V| denote the number of nodes and let m := |E| denote the number of
edges of an undirected graph. All graphs in this paper contain neither self-loops (x, x) nor multiedges.
H = (V′, A′) is a subgraph of G if V′ ⊆ V and A′ ⊆ A. The subgraph induced by a node set U ⊆ V
is defined as G[U] := (U, {(u, v) ∈ A ∩ (U ×U)}), the graph with nodes U and all arcs of G with
endpoints in U. The degree deg(x) = |{(x, y) ∈ A}| is the number of outgoing arcs of x. A path is
a sequence of edges such that consecutive edges overlap in a node. A graph is called k-connected
if there are k node-disjoint paths between every pair of nodes. The k-connected components of
a graph are the node-induced subgraphs, which are inclusion-maximal regarding k-connectivity.
1-connected components are called connected components, while 2-connected components are called
biconnected components.

2.1.1. Separators and Cuts

Let V1, V2 ⊂ V be a bipartition of V = V1 ∪ V2 into two non-empty disjoint sets, called blocks.
The cut induced by (V1, V2) is the set of edges cut(V1, V2) := {(v1, v2) ⊆ E ∩ (V1 × V2)} between
V1 and V2. The cut size is | cut(V1, V2)|. We often use the terms cut and bipartition interchangeably.
Sometimes, we say a bipartition is induced by a set of cut edges. A node separator partition is a
partition of V = Q ∪ V1 ∪ V2 into three disjoint sets (Q, V1, V2) such that there is no edge between
V1 and V2. We call Q the separator and V1, V2 the blocks or components of the separator. |Q| is the
separator size. For an ε ∈ [0, 1], a cut or separator is ε-balanced if max(|V1|, |V2|) ≤ d(1 + ε)n/2e.
We often call ε the imbalance, as larger values correspond to less balanced cuts. The balanced graph
bipartitioning [balanced node separator] problem is to find an ε-balanced cut [separator] of minimum size.
Let S, T ⊂ V be two fixed, disjoint, non-empty subsets of V. An edge cut [node separator] is an S–T
edge cut [node separator] if S ⊆ V1 and T ⊆ V2.

2.1.2. Maximum Flows

A flow networkN = (V, A, S, T, c) is a simple symmetric directed graph (V, A) with two disjoint
non-empty terminal node sets S, T (V, also called the source and target node set, as well as a capacity
function c : A→ R≥0. A flow inN is a function f : A→ R subject to the capacity constraint f (a) ≤ c(a)
for all arcs a, flow conservation ∑(u,v)∈A f ((u, v)) = 0 for all nonterminal nodes v, and skew symmetry
f ((u, v)) = − f ((v, u)) for all arcs (u, v). In this paper, we consider only unit flows and unit capacities,
i.e., f : A → {−1, 0, 1}, c : A → {0, 1}. The value of a flow | f | := ∑s∈S,(s,u)∈A f ((s, u)) is the amount
of flow leaving S. The residual capacity r f (a) := c(a)− f (a) is the additional amount of flow that can
pass through a without violating the capacity constraint. The residual network with respect to f is
the directed graph N f = (V, A f), where A f := {a ∈ A|r f (a) > 0}. An augmenting path is an S–T path
in N f . A node v is called source-reachable if there is a path from S to v in N f . We denote the set of
source-reachable nodes by Sr, and define the set of target-reachable nodes Tr analogously. The flow f is
a maximum flow if | f | is maximal among all possible flows in N . This is the case if and only if there is
no augmenting path in N f . The well-known max-flow–min-cut theorem [20] states that the value of
a maximum flow equals the capacity of a minimum S–T edge cut. (Sr, V \ Sr) is the source-side cut,
and (V \ Tr, Tr) is the target-side cut of a maximum flow.

2.2. Flowcutter

FlowCutter is an algorithm for the balanced graph bipartitioning problem. The idea of its
core algorithm is to solve a sequence of incremental max flow problems, which induce cuts with
monotonically increasing cut size and balance, until the latest cut induces an ε-balanced bipartition.
The flow problems are incremental in the sense that the terminal nodes S, T of the previous flow
problem are subsets of the terminals in the next flow problem. This nesting allows us to reuse the flow
computed in previous iterations.

Algorithms 2019, 12, 196 4 of 20

Given randomly chosen starting terminal nodes s, t, we set S := {s}, T := {t} and compute a
maximum S–T flow. Then, we transform the S-reachable nodes Sr to sources if |Sr| ≤ |Tr|, or Tr to
targets otherwise. Assume |Sr| ≤ |Tr| without loss of generality. Now S induces a minimum S–T cut
CS. If CS is ε-balanced, the algorithm terminates. Otherwise, we transform one additional node, called
piercing node, to a source. The piercing node is chosen from the nodes incident to the cut CS and not in
S. This step is called piercing the cut CS. It ensures that we will find a different cut in the next iteration.
Subsequently, we augment the previous flow to a maximum flow that considers the new source node.
These steps are repeated until the latest cut induces an ε-balanced bipartition. Algorithm 1 shows
pseudocode for FlowCutter.

Algorithm 1: FlowCutter

1 Draw s, t ∈ V uniformly at random and let S← {s}, T ← {t}
2 Let f : A→ {−1, 0, 1}, a 7→ 0
3 while no ε-balanced bipartition found do
4 update f to a max S–T flow and compute Sr, Tr
5 if |SR| ≤ |TR| then
6 S← Sr
7 derive and report source-side cut CS
8 select piercing nodes p for CS
9 S← S ∪ {p}

10 else
11 T ← Tr
12 derive and report target-side cut CT
13 select piercing node p for CT
14 T ← T ∪ {p}

A significant detail of the piercing step is that piercing nodes which are not reachable from the
opposite side are preferred. Choosing such nodes for piercing does not create augmenting paths. Thus,
the cut size does not increase in the next iteration. This is called the avoid-augmenting-paths heuristic.
A secondary distance-based piercing heuristic is used to break ties, when the avoid-augmenting-paths
heuristic gives multiple choices. It chooses the node p which minimizes dist(p, t)− dist(s, p), where
dist is the hop distance, precomputed via Breadth-First-Search from s and t. Roughly speaking,
this attempts to prevent the cut sides from meeting before perfect balance. It also has a geometric
interpretation, which is explained in [14].

We choose the starting terminal nodes s and t uniformly at random. Experiments [14] indicate
that 20 terminal pairs are sufficient to obtain high quality partitions of road networks.

For computing maximum flows, we use the basic Ford–Fulkerson algorithm [20], with Pseudo-
Depth-First-Search for finding augmenting paths. Pseudo-Depth-First-Search directly marks all
adjacent nodes as visited when processing a node. It can be implemented like Breadth-First-Search
using a stack instead of a queue.

A major advantage of FlowCutter over other partitioning tools is the fact that it computes
multiple cuts. From this set of cuts, we derive the Pareto cutset, which we define as the set of all
nondominated cuts. A cut C2 is dominated by a cut C1 if C2 has neither better balance nor smaller
cut size than C1. Instead of selecting a maximum imbalance a priori, we can select a good trade-off
between cut size and imbalance from the Pareto cutset.

2.3. Inertial Flow

Given a line l ∈ R2, Inertial Flow projects the geographic coordinates of the nodes onto their
closest points on l. The nodes are sorted by order of appearance on l. For a parameter α ∈ [0, 0.5], the
first bα · nc nodes are chosen as S. Analogously, the last bα · nc nodes are chosen as T. In the next step,

Algorithms 2019, 12, 196 5 of 20

a maximum S–T flow is computed from which a minimum S–T cut is derived. Figure 1 illustrates
the initialization. Instead of line, we use the term direction. In [15], α is set to 0.2 and four directions
are used: West–East, South–North, Southwest–Northeast, and Southeast–Northwest. This simple
approach works surprisingly well for road networks.

T

S

Figure 1. Inertial Flow projection and initialization. Nodes are projected onto their closest point on the
blue direction. S and T are highlighted.

2.4. Combining Inertial Flow and Flowcutter into InertialFlowCutter

One drawback of Inertial Flow is the restriction to an a priori chosen imbalance, i.e., a value of α.
We enhance FlowCutter by initializing S and T in the same way as Inertial Flow, though with a smaller
parameter α than proposed for Inertial Flow. Additionally, we pierce cuts with multiple nodes from
the Inertial Flow order at once. We call this bulk piercing. This way, we enumerate multiple Inertial
Flow cuts simultaneously, without having to restart the flow computations. Furthermore, we can skip
some of the first, highly imbalanced cuts of FlowCutter that are irrelevant for our application.

We introduce three additional parameters γa, γo ∈ (0, 0.5] and δ ∈ (0, 1) to formalize bulk piercing.
Let L be a permutation of the nodes, ordered according to a direction. For the source side, we use bulk
piercing as long as S contains at most γa · n nodes. Furthermore, we limit ourselves to piercing the first
γo · n nodes of L. Parameter δ influences the step size. The idea is to decrease the step size as the cuts
become more balanced. When we decide to apply bulk piercing, we settle the next δ(1−δ

2 n− |S|) nodes
to S, when piercing the source side. To enforce the limit set by γo, we pierce fewer nodes if necessary.
For the target side, we apply this analogously starting from the end of the order. If bulk piercing can not
be applied, we revert to the standard FlowCutter method of selecting single piercing nodes incident to
the cut. Additionally, we always prioritize the avoid-augmenting-paths heuristic over bulk piercing. In
our experiments, we conduct a parameter study which yields α = 0.05, γa = 0.4, γo = 0.25 and δ = 0.05
as reasonable choices. In Figure 2, we show an example for the InertialFlowCutter piercing step.

S TSr Tr TS

Sr

Tr

Figure 2. One piercing step of InertialFlowCutter. S in dark green, Sr \ S in bright green, T in bright
blue, Tr \ T in dark blue. The vertical lines depict jumps in the Inertial Flow order. The cuts are depicted
in red. The orange stripes in the left figure depict the piercing nodes for the source-side cut. In this case,
they overlap with Tr, which means that in the next iteration, the cut size increases. The right figure
shows the piercing nodes settled to S as well as the newly computed cuts and Sr, Tr. The previous
source-side cut is dashed.

Algorithms 2019, 12, 196 6 of 20

2.5. Running Multiple InertialFlowCutter Instances

To improve solution quality, we run q ∈ N instances of InertialFlowCutter with different directions.
An instance is called a cutter. We use the directions (cos(ϕ), sin(ϕ)) for ϕ = kπ

q and k ∈ [0, . . . , q− 1].
To include the directions proposed in [15], q should be a multiple of 4. To improve running time,
we run cutters simultaneously in an interleaved fashion as already proposed in [14]. We always schedule
the cutters with the currently smallest flow value to either push one additional unit of flow or derive
a cut. For the latter, we improve the balance by piercing the cut as long as this does not create an
augmenting path. One standalone cutter runs in O(cm), where c is the size of the largest output cut.
Roughly speaking, this stems from performing one graph traversal, e.g., Pseudo-DFS, per unit of
flow. The exact details can be found in [14]. Flow-based execution interleaving ensures that no cutter
performs more flow augmentations than the other cutters. Thus, the running time for q cutters is
O(qcm), where c is the size of the largest found cut among all cutters. We specifically avoid computing
some cuts that the standalone cutters would find. Consider the simple example with q = 2, where
the second cutter immediately finds a perfectly balanced cut with cut size c, but the first cutter only
finds one cut with cut size C � c. If the first cutter runs until a cut is found, we invested Cm work
but should only have invested cm.

In the case of InertialFlowCutter, it is actually important to employ flow-based interleaving and
not just run a cutter until the next cut is found, as after a bulk piercing step, the next cut might be
significantly larger. For road networks and FlowCutter, this difference is insignificant in practice, as the
cut increases by just one most of the time.

2.6. Customizable Contraction Hierarchies

A Customizable Contraction Hierarchy (CCH) is an index data structure which allows fast shortest
path queries and fast adaptation to new metrics (arc weights) in road networks. It consists of three
phases: a preprocessing phase which only uses the network topology but not the arcs weights, a faster
customization phase which adapts the index to new arc weights, and a query phase which quickly
answers shortest path queries.

The preprocessing phase computes a contraction order of the nodes, e.g., via nested dissection,
and then simulates contracting all nodes in that order, inserting shortcut arcs between all neighbors of
a contracted node. Shortcuts represent two-arc paths via the contracted node.

The customization phase assigns correct weights to shortcuts by processing all arcs (u, v) in the
order ascending by rank of u, i.e., the position of u in the order. To process an arc (u, v), it enumerates
all triangles 〈u, w, v〉 where w has lower rank than u and v, and updates the weight of (u, v) if the path
(u, w, v) is shorter.

There are two different algorithms for s–t queries. For every shortest s–t path in the original graph,
there is a shortest s–t path in the CCH that consists of two paths (s, . . . , x) and (x, . . . , t) such that the
arcs in the first path are from lower-ranked to higher-ranked nodes, whereas the arcs in the second
path are from higher-ranked to lower-ranked nodes [10]. The first, basic query algorithm performs
bidirectional Dijkstra search from s and t and relaxes only arcs to higher-ranked nodes. The second
query algorithm uses the elimination tree of a CCH to avoid priority queues, which are typically
a bottleneck. In the elimination tree, the parent of a node is its lowest-ranked upward neighbor.
The ancestors of a node v are exactly the nodes in the upward search space of v in the basic query [21].
For the s–t query, the outgoing arcs of all nodes on the path from s to the root and all incoming arcs of
all nodes on the path from t to the root are relaxed. The node z minimizing the distance from s to z
plus the distance from z to t determines the distance between s and t.

The query complexity is linear in the number of arcs incident to nodes on the paths from s and t
to the root. Similarly, the customization running time depends on the number of triangles in the CCH.
Fewer shortcuts result in less memory consumption and faster queries. We aim to minimize these
metrics by computing high quality contraction orders.

Algorithms 2019, 12, 196 7 of 20

2.7. Nested Dissection Orders for Road Networks

The framework to compute contraction orders is the same as for FlowCutter in [14] and our
implementation builds upon theirs [22]. We only exchange the partitioning algorithm and parallelize it.
For self-containedness, we repeat it here.

2.7.1. Recursive Bisection

We compute contraction orders via recursive bisection, using node separators instead of edge cuts.
This method is also called nested dissection [13]. Let (Q, V1, V2) be a node separator partition. Then,
we recursively compute orders for G[V1] and G[V2] and return the order of G[V1] followed by the order
of G[V2] followed by Q. Q can be in an arbitrary order. We opt for the input order. Recursion stops
once the graphs are trees or cliques. For cliques, any order is optimal. For trees, we use an algorithm to
compute an order with minimal elimination tree depth in linear time [23,24].

In the nested dissection implementation from [22], a recursive call first computes a node separator
Q, then deletes the edges {(u, v) ∈ E | u ∈ Q or v ∈ Q} incident to that separator and then reorders
the nodes in preorder. Preorder is the order in which nodes are first visited in a Depth-First-Search
from some starting node—in this implementation, the one with smallest ID. The preorder identifies
connected components of the new graph, which are the subgraphs to recurse on, as well as assigns
local node and arc identifiers for them. This is also done once at the beginning, without computing
a separator, in case the input graph is disconnected.

2.7.2. Separators

InertialFlowCutter computes edge cuts. We use a standard construction [25] to model node
capacities as edge capacities in flow networks. It expands the undirected input graph G = (V, E) into
a directed graph G′ = (V′, A′). For every node v ∈ V, there is an in-node vi and an out-node vo in V′,
joined by a directed arc (vi, vo), called the bridge arc of v. Furthermore, for every edge {u, v} ∈ E, there
are two directed external arcs (uo, vi) and (vo, ui) ∈ A′. Since we restrict ourselves to unit capacity flow
networks, we can not assign infinite capacity to external arcs, and thus, the cuts contain both bridge
arcs and external arcs. Bridge arcs directly correspond to a node in the separator. For the external arcs
in the cut, we place the incident node on the larger side of the cut in the separator.

2.7.3. Choosing Cuts from the Pareto Cutset

InertialFlowCutter yields a sequence of nondominated cuts with monotonically increasing cut
size and balance, whereas standard partitioners yield a single cut for some prespecified imbalance.
We need to choose one cut, to recurse on the sides of the corresponding separator. The expansion of
a cut is its cut size divided by the number of nodes on the smaller side. This gives a certain trade-off
between cut size and balance. We choose the cut with minimum expansion and ε < 0.6, i.e., at least 20%
of the nodes on the smaller side. While this approach is certainly not optimal, it works well enough.
It is not clear how to choose the optimum cut without considering the whole hierarchy of cuts in
deeper levels of recursion.

2.7.4. Special Preprocessing

Road networks contain many nodes of degree 1 or 2. The graph size can be drastically reduced
by eliminating them in a preprocessing step that is performed only once. First, we compute the
largest biconnected component B in linear time using [26] and remove all edges between B and
the rest of the graph G. The remaining graph usually consists of a large B and many tiny, often
tree-like components. We compute orders for the components separately and concatenate them in an
arbitrary order. The order for B is placed after the orders of the smaller components.

A degree-2-chain is a path (x, y1, . . . , yk, z) where all deg(yi) = 2 but deg(x) > 2 and deg(z) 6= 2.
We divide the nodes into two graphs G≥3 and G≤2 with degrees at least 3 and at most 2, by computing

Algorithms 2019, 12, 196 8 of 20

all degree-2-chains in linear time and splitting along them. If deg(z) > 2, we insert an edge between x
and z since z is in G≥3. We compute contraction orders for the connected components of G≤2 separately
and concatenate them in an arbitrary order. Since these are paths, we can use the algorithm for trees.
The order for G≥3 is placed after the one for G≤2. We compute degree-2 chains by iterating over
all arcs (x, y). If deg(x) > 2 and deg(y) ≤ 2, then x is the start of a degree-2 chain. We follow this
chain recursively: As long as deg(y) = 2, the only arc of y that is not (y, x) comes next in the chain.
If deg(y) = 1 or deg(y) ≥ 3, the chain is finished at y. This algorithm runs in linear time as it considers
every arc at most twice.

2.8. Parallelization

Recursive bisection is straightforward to parallelize by computing orders on the separated blocks
independently, using task-based parallelism. This only employs parallelism after the first separators
have been found.

Therefore, we additionally parallelize InertialFlowCutter. The implementation of FlowCutter [22]
contains a simple parallelization. In a round, all cutters with the currently smallest cut are advanced to
their next cut in parallel. Before the next round, all threads synchronize. This approach exhibits poor
core utilization since only a few cutters may have the smallest cut in a round and threads perform
different amounts of work, leading to skewed load distribution.

Instead, we employ a simple wait-free task-based parallelization scheme, which guarantees that
the cutters with the t currently smallest flow values are making progress, for t threads executing
in parallel. Algorithm 2 illustrates this scheme in pseudocode. For every cutter, we store two atomic
flags: a free flag, which indicates that currently no task holds this cutter, and an active flag, which
indicates that this cutter can still yield a cut with better expansion than previously found cuts. In the
beginning, every cutter is active and free.

Recall that q is the number of cutters. We create q tasks, and the task scheduler launches t ≤ q
parallel tasks, potentially adding more when resources from other parts of the recursive bisection
become available. A task executes a loop in which it first acquires a cutter with the currently smallest
flow out of the free and active cutters, then performs a chunk of work on it and releases the cutter again.
A chunk of work consists of deactivating the cutter, if it can not improve expansion and otherwise
running one Pseudo-Depth-First-Search, which either pushes one unit of flow or derives a cut. If the
cut has at least 20% of the nodes on the smaller side and improves expansion, we acquire a lock and
store the cut. A task terminates once it fails to acquire a free and active cutter, as there are now more
tasks than active cutters.

If less than q tasks are running simultaneously, the tasks switch between cutters. If all cutters
are acquired and the task’s currently acquired cutter remains active, we continue working on it,
to avoid the overhead of releasing and immediately re-acquiring the same cutter. Note that, due to the
parallelization, cuts are not necessarily enumerated in the order of increasing cut size, and dominated
cuts may also be reported.

Algorithms 2019, 12, 196 9 of 20

Algorithm 2: Parallel InertialFlowCutter

1 active(c)← true for c ∈ {1, . . . , q}
2 free(c)← true for c ∈ {1, . . . , q}
3 Launch q parallel tasks executing Worker
4 Function Worker:
5 while true do
6 c← −1
7 for i ∈ {1, . . . , q} do
8 if active(i) is true then
9 atomically test and set free(i) to false

10 if old value was true and active(i) is still true then
11 c← i
12 break

13 if c = −1 then
14 return

15 do
16 if cutter c can improve the expansion then
17 augment flow or calculate cut on cutter c
18 else
19 active(c)← false

20 if cutter c has a cut that improves the expansion then
21 acquire lock and report cut

22 while active(c) is true and no cutter is free
23 free(c)← true

3. Results

In this section, we discuss our experimental setup and results.

3.1. Experimental Setup

In Section 3.6, we discuss our parameter study to obtain reasonable parameters for
InertialFlowCutter. Our remaining experiments follow the setup in [14], comparing FlowCutter,
KaHiP, Metis, and Inertial Flow to InertialFlowCutter, regarding CCH performance as well as cut sizes
for different imbalances on the input graph without biconnectivity and degree-2 chain preprocessing.
The latter are referred to as top-level Pareto cut experiments. Our benchmark set consists of the road
networks of Colorado, California, and Nevada, the USA and Western Europe, see Table 1, made
available during the DIMACS implementation challenge on shortest paths [27].

Table 1. Benchmark road networks.

Graph n m

Colorado 436 · 103 106

California and Nevada 1.9 · 106 4.6 · 106

USA 24 · 106 57 · 106

Europe 18 · 106 44 · 106

The CCH performance experiments compare the different partitioners based on the time to
compute a contraction order, the median running time of nine customization runs, the average time
of 106 random s–t queries, as well as the criteria introduced in Section 2.6. Unless explicitly stated
as parallel, all reported running times are sequential on an Intel Xeon E5-1630 v3 Haswell processor

Algorithms 2019, 12, 196 10 of 20

clocked at 3.7 GHz with 10 MB L3 cache and 128 GB DDR4 RAM (2133 MHz). We additionally
report running times for computing contraction orders in parallel on a shared-memory machine
with two 8-core Intel Xeon Gold 6144 Skylake CPUs, clocked at 3.5GHz with 24.75 MB L3 cache and
192 GB DDR4 RAM (2666 MHz). InertialFlowCutter is implemented in C++, and the code is compiled
with g++ version 8.2 with optimization level 3. We use Intel’s Threading Building Blocks library
for shared-memory parallelism. Our InertialFlowCutter implementation and evaluation scripts are
available on GitHub [28].

3.2. CCH Implementation

We used the CCH implementation in RoutingKit [29]. There are different CCH customization
and query variants. RoutingKit implements basic customization with upper triangles instead of lower
triangles, no witness searches, no precomputed triangles, and no instruction-level parallelism. We used
the sequential customization. For queries, we used elimination tree search. There has been a recent,
very simple improvement [30], which drastically accelerates elimination tree search for short-range
queries. It is not implemented in RoutingKit, but random s–t queries tend to be long-range, so the
effect would be negligible for our experiments.

3.3. Partitioner Implementations and Nested Dissection Setup

In [14], the KaHiP versions 0.61 and 1.00 are used. We did not re-run the preprocessing for those
old versions of KaHiP but used the orders and order computation running times of [14]. We did re-run
customizations and queries. The order computation running times are comparable as the experiments
ran on the same machine. We added the latest KaHiP version 2.11, which is available on GitHub [31].
For all three versions, the strong preset of KaHiP was used. We refer to the three KaHiP variants
as K0.61, K1.00, and K2.11. For the CCH order experiments, we kept versions K0.61 and K1.00 but
omitted them for the top-level cut experiments because K2.11 is better for top-level cuts.

We used Metis 5.1.0, available from the authors’ website [32], which we denote by M in our tables.
We used InertialFlowCutter with 〈4, 8, 12, 16〉 directions and denote the configurations by IFC4,

IFC8, IFC12, and IFC16, respectively.
We used our own Inertial Flow implementation with the four directions proposed in [15].

It is available at our repository [28]. Instead of Dinic algorithm [33], we used Ford–Fulkerson,
as preliminary experiments indicate it is faster. Furthermore, we filtered source nodes that are only
connected to other sources and target nodes that are only connected to other targets. Instead of sorting
nodes along a direction, we partitioned the node-array such that the first and last α · n nodes are
the desired terminals, using std::nth_element. These optimizations reduce the running time from
1017 s [14] down to 450 s for a CCH order on Europe. Additionally, we used flow-based interleaving on
Inertial Flow. This was already included in the Inertial Flow implementation used in [14]. We denote
Inertial Flow by I in our tables.

The original FlowCutter implementation used in [14] is available on GitHub [22]. We used
a slightly modified version that has been adjusted to use Intel’s Threading Building Blocks instead
of OpenMP for optional parallelism. All parallelism is disabled for FlowCutter in our experiments.
We used FlowCutter with 〈3, 20, 100〉 random source-target pairs and denote the variants by F3, F20,
and F100, respectively.

Implementations of Buffoon [19] and PUNCH [18] are not publicly available. Therefore, these are
not included in our experiments.

We now discuss the different node ordering setups used in the experiments. Metis offers its own
node ordering tool ndmetis, which we used. For Inertial Flow, K1.00 and K2.11, we used a nested
dissection implementation, which computes one edge cut per level and recurses until components are
trees or cliques, which are solved directly. Separators are derived by picking the nodes incident to one
side of the edge cut. For comparability with [12,14], we used an older nested dissection implementation
for K0.61, which, on every level, repeatedly computes edge cuts until no smaller cut is found for

Algorithms 2019, 12, 196 11 of 20

ten consecutive iterations. For InertialFlowCutter and FlowCutter, we employed the setup that was
proposed for FlowCutter in [14] that has also been described in Section 2.7. Our nested dissection
implementation is based on the implementation in the FlowCutter repository [22]. We made minor
changes and parallelized it, as described in Section 2.8.

We tried to employ the special preprocessing techniques for KaHiP 2.11. While this made order
computation faster, the order quality was much worse regarding all criteria.

Starting with version 1.00, KaHiP includes a more sophisticated multilevel node separator
algorithm [34]. It was omitted from the experiments in [14] because it took 19 hours to compute
an order for the small California graph, using one separator per level, and did not finish in reasonable
time on the larger instances. Therefore, we still exclude it.

3.4. Order Experiments

In this section, we compare the different partitioners with respect to the quality of computed
CCH orders and running time of the preprocessing. Table 2 contains a large collection of metrics and
measurements for the four road networks of California, Colorado, Europe, and the USA. Recall that
the query time is averaged over 106 queries with distinct start and end nodes chosen uniformly at
random, the customization time is the median over nine runs. The order computation time is from a
single run, since it is infeasible to run certain partitioners multiple times in a reasonable timeframe.

3.4.1. Quality

Over all nodes v, we report the average and maximum number of ancestors in the elimination
tree, as well as the number of arcs incident to the ancestors. These metrics assess the search space
sizes of an elimination tree query. The query times in Table 2 are correlated with search space size,
as expected. The partitioner with the smallest average number of nodes and arcs in the search space
always yields the fastest queries. Furthermore, we report the number of arcs in the CCH, i.e., shortcut
and original arcs, the number of triangles, and an upper bound on the treewidth, which we obtained
using the CCH order as an elimination ordering. A CCH is essentially a chordal supergraph of the
input. Thus, CCHs are closely related to tree decompositions and elimination orderings. The relation
between tree decompositions and Contraction Hierarchies is further explained in [35]. A low treewidth
usually corresponds to good performance with respect to the other metrics. However, as the treewidth
is defined by the largest bag in the tree decomposition which may depend on the size of few separators
and disregards the size of all smaller separators, this is not always consistent. In the context of shortest
path queries, a better average is preferable to a slightly reduced maximum.

On the California and USA road networks, IFC12 yields the fastest queries and smallest average
search space sizes, while on Europe IFC8 does. On Colorado, our smallest road network, F100 is
slightly ahead of the InertialFlowCutter variants by 0.2 to 0.3 microseconds query time. IFC16 yields
the fastest customization times for Colorado, Europe, and the USA, while IFC12 yields the fastest
customization times for California. Customization times are correlated with the number of triangles.
However, for Europe and the USA, the smallest number does not yield the fastest customizations.
Even though we take the median of nine runs, this may still be due to random fluctuations.

FlowCutter with at least 20 cutters has slightly worse average search space sizes and query
times than InertialFlowCutter for California and the USA but falls behind for Europe. Thus,
InertialFlowCutter computes the best CCH orders, with FlowCutter close behind. The different
KaHiP variants and Inertial Flow compute the next best orders, while Metis is ranked last by a
large margin.

Algorithms 2019, 12, 196 12 of 20

Table 2. Customizable Contraction Hierarchy (CCH) order experiments. The best values (smallest) per
metric and graph are highlighted.

Search Space CCH Up. Running Times

Nodes Arcs [·103] Arcs #Tri. Tw. Order Cust. Query

Avg. Max. Avg. Max. [·106] [·106] Bd. [s] [ms] [µs]

C
ol

M 155.6 354 6.1 22.0 13.7 63.9 102 1.8 58.8 21.1
K0.61 135.1 357 4.6 21.6 16.7 72.4 103 3837.1 66.4 16.9
K1.00 136.4 357 4.8 22.1 15.0 69.1 99 1052.4 62.0 17.1
K2.11 135.1 363 4.7 22.8 14.9 68.4 100 924.6 61.8 16.9

I 151.3 543 6.2 37.7 15.0 73.9 119 3.0 63.7 20.1
F3 127.2 277 4.1 14.4 12.8 47.4 85 9.4 46.7 15.8

F20 122.5 263 3.8 13.8 12.5 43.8 87 55.9 44.3 14.7
F100 122.3 263 3.8 13.8 12.5 43.7 87 274.5 44.4 14.6
IFC4 123.2 261 3.9 13.7 12.5 44.1 100 6.9 43.5 14.9
IFC8 123.3 261 3.9 13.7 12.5 43.9 100 12.9 43.4 14.9
IFC12 123.1 263 3.9 14.0 12.5 43.6 87 18.7 43.3 14.8
IFC16 123.1 262 3.9 14.0 12.5 43.5 87 24.3 43.2 14.8

C
al

M 275.5 543 17.3 53.2 65.0 364.1 180 9.8 310.1 47.9
K0.61 187.7 483 7.0 37.0 74.8 342.4 160 18,659.3 316.4 24.9
K1.00 184.9 471 6.8 37.9 69.5 334.4 143 6023.6 302.3 24.7
K2.11 184.8 449 6.8 36.5 69.5 332.4 162 4374.9 300.8 24.7

I 191.4 605 7.1 53.4 68.8 341.3 161 16.0 301.7 25.4
F3 178.8 361 6.2 24.9 59.2 235.4 132 57.9 240.2 23.3

F20 169.6 383 5.6 26.3 58.0 218.5 132 358.5 229.7 21.9
F100 169.6 386 5.6 26.3 58.0 218.3 132 1759.2 229.9 21.9
IFC4 170.0 380 5.6 26.2 58.0 217.6 132 42.3 225.1 21.7
IFC8 169.8 380 5.6 26.2 58.0 217.7 132 79.0 225.1 21.7
IFC12 169.4 380 5.6 26.2 57.9 217.2 132 115.2 224.8 21.6
IFC16 170.2 381 5.7 26.2 58.0 218.4 132 151.9 225.8 21.9

Eu
r

M 1167.3 1914 373.1 765.9 697.4 13,238.1 828 124.6 8302.3 645.3
K0.61 638.6 1224 114.3 284.1 739.2 5782.5 482 213,091.1 4464.5 229.1
K1.00 652.5 1279 113.4 286.7 683.3 5745.4 451 242,680.5 4169.7 223.7
K2.11 652.6 1198 113.5 262.4 683.1 5637.7 449 49,553.1 4125.0 224.1

I 732.6 1569 149.6 413.6 674.0 5897.3 516 450.3 4177.1 280.0
F3 743.7 1156 138.1 283.7 602.1 5004.2 493 2227.9 3682.0 262.0

F20 622.3 1142 106.6 262.1 588.3 4624.1 454 16,130.5 3527.4 211.4
F100 615.5 1101 103.2 237.2 588.4 4606.6 449 79,176.6 3511.0 206.7
IFC4 663.0 1087 108.8 246.7 589.3 4644.9 447 1245.7 3506.8 223.1
IFC8 608.6 1092 102.1 246.7 588.6 4587.1 454 2448.1 3508.5 203.8
IFC12 611.1 1094 103.3 247.2 588.8 4627.5 454 3608.6 3511.9 205.7
IFC16 609.5 1092 102.8 246.7 588.7 4616.6 454 4780.2 3505.0 204.2

U
SA

M 1020.9 1763 273.6 666.7 861.7 12,738.5 733 171.9 7804.3 491.4
K0.61 575.5 1041 71.3 185.0 979.0 7371.2 366 265,567.3 5449.2 158.4
K1.00 540.3 1063 62.3 208.1 887.4 6483.3 439 315,942.6 4717.3 135.6
K2.11 543.7 1015 63.2 190.2 887.4 6454.6 336 68,828.1 4711.4 137.2

I 533.7 1371 62.0 290.9 887.9 6820.5 384 439.5 4821.1 135.5
F3 512.0 929 57.5 163.0 758.9 4845.6 332 1813.0 3812.8 126.2

F20 491.2 861 52.9 154.0 743.4 4425.2 312 11,443.1 3610.6 119.0
F100 491.1 864 52.8 153.9 743.6 4431.6 311 56,934.7 3608.3 118.5
IFC4 491.7 865 52.8 153.4 743.1 4421.9 310 1028.4 3608.2 118.4
IFC8 491.4 859 52.8 153.4 743.0 4423.6 312 2022.9 3606.8 121.7
IFC12 490.7 865 52.7 153.4 742.8 4409.7 311 2977.3 3599.6 118.1
IFC16 491.1 860 52.8 153.4 742.9 4421.8 312 3938.5 3592.8 118.2

The ratio between maximum and average search space size is most strongly pronounced for
Inertial Flow. This indicates that Inertial Flow works well for most separators, but the quality degrades
for a few. InertialFlowCutter resolves this problem.

Algorithms 2019, 12, 196 13 of 20

There is an interesting difference in the number of cutters necessary for good CCH orders with
InertialFlowCutter and FlowCutter. In [14], F20 is the recommended configuration. The performance
differences between F20 and F100 are marginal (except for Europe). However, using just three cutters
seems insufficient to get rid of bad random choices.

For the InertialFlowCutter variants, four cutters suffice most of the time. The search space sizes,
query times and customization times are very similar. This is also confirmed by the top-level cut
experiments in Section 3.5. It seems the Inertial Flow guidance is sufficiently strong to eliminate bad
random choices. Again, only for Europe, the queries for IFC4 are slower, which is why we recommend
using IFC8. The better query running times justify the twice as long preprocessing.

Europe also stands out when comparing Inertial Flow query performances. For Europe, Inertial
Flow only beats Metis, but, for the USA, it beats all KaHiP versions and Metis. The query performance
difference of 57 microseconds between Inertial Flow and IFC4 for Europe suggests that the incremental
cut computations of InertialFlowCutter make a significant difference and are worth the longer
preprocessing times compared to Inertial Flow.

3.4.2. Preprocessing Time

Previously, CCH performance came at the cost of high preprocessing time. We compute better
CCH orders than FlowCutter in a much shorter time.

KaHiP 0.61 and KaHiP 1.00 are by far the slowest. KaHiP 2.11 is faster than F100 but slower
than F20. All InertialFlowCutter variants are faster than F20. IFC8 and F3 have similar running times.
Metis is the fastest by a large margin, and Inertial Flow is the second fastest.

The two old KaHiP versions are slow for different reasons. As already mentioned, K0.61 computes
at least 10 cuts, as opposed to K1.00 and K2.11. K1.00 is slow because the running time for top-level
cuts with ε ≥ 0.2 increases unexpectedly, according to [14].

Using 16 cores and IFC8, we compute a CCH order of Europe in just 242 s, with 2258 s sequential
running time on the Skylake machine. This corresponds to a speedup of 9.3 over the sequential version.
See Table 3. Note that, due to using eight cutters, at most eight threads work on a single separator.
Therefore, in particular for the top-level separator, at most 8 of the 16 cores are used. The top-level
separator alone needs about 50 s using eight cores. Due to unfortunate scheduling and unbalanced
separators, it happens also at later stages that a single separator needs to be computed before any
further tasks can be created. Using eight cores, we get a much better speedup of 6.8 for Europe; up to
four cores, we see an almost perfect speedup for all but the smallest road network. This is because
some cutters need less running time than others. Thus, there is actually less potential for parallelism
than the number of cutters suggests.

Table 3. Running times in seconds of IFC8, using up to 16 cores of the Skylake CPU.

Graph
Cores

1 2 4 8 16

Col Time [s] 11.6 6.1 3.3 2.1 1.7
Speedup 1.0 1.9 3.5 5.5 6.8

Cal Time [s] 71.5 36.7 19.2 11.3 7.2
Speedup 1.0 1.9 3.7 6.3 9.9

Eur Time [s] 2257.8 1160.0 600.7 334.2 241.8
Speedup 1.0 1.9 3.8 6.8 9.3

USA Time [s] 1869.5 947.9 497.0 275.5 173.2
Speedup 1.0 2.0 3.8 6.8 10.8

Algorithms 2019, 12, 196 14 of 20

3.5. Pareto Cut Experiments

For the top-level cut experiments, we permute the nodes in preorder from a randomly selected
start node, using the same start node for all partitioners. As discussed in Section 2.7, this is part of the
recursive calls in the nested dissection implementation from [22]. We include it here to recreate the
environment of a nested dissection on the top level.

In Tables 4–7, we report the found cuts for various values of ε for all road networks. We use the
partitioners KaHiP 2.11, IFC4, IFC8, IFC12, F3, F20, Metis, and Inertial Flow. We also report the actually
achieved imbalance, the running time, and whether the sides of the cut are connected (•) or not (◦). We
report ε = 0.0 only if perfect balance was achieved; otherwise, if the rounded value is 0.0, we report
< 0.1%. KaHIP was not able to achieve perfect balance for any of the graphs if perfect balance was
desired. We note this by crossing out the respective values. This is due to our use of the KaHiP library
interface that does not support enforcing balance. Metis simply rejects ε = 0, which is why we mark
the corresponding entries with a dash. Perfect balance is not actually useful for the application. We
solely include it to analyze the different Pareto cuts.

Note that for FlowCutter and InertialFlowCutter, the running time always includes the
computation of all more imbalanced cuts, i.e., to generate the full set of cuts, only the running
time of the perfectly balanced cut is needed, while for all other partitioners, the sum of all reported
running times is needed.

Concerning the performance, Metis wins, but almost all reported cuts are larger than the cuts
reported by FlowCutter, InertialFlowCutter, and KaHiP. Inertial Flow is also quite fast but, due to its
design, produces cuts that are much more balanced than desired and thus can not achieve as small
cuts as the other partitioners.

Table 4. Pareto cuts of Colorado.

m
ax

ε Achieved ε [%] Cut Size

IFC4 IFC8 IFC12 F3 F20 K2.11 M I IFC4 IFC8 IFC12 F3 F20 K2.11 M I

0 0.0 0.0 0.0 0.0 0.0 ��1.0 – 0.0 60 48 48 44 44 ��35 – 259
1 0.4 0.6 0.2 0.8 0.8 1.0 0.0 0.1 47 41 38 28 28 34 37 96
3 2.8 2.8 1.9 0.8 0.8 2.8 0.0 0.7 36 36 36 28 28 33 57 70
5 4.3 4.3 4.3 0.8 0.8 4.4 2.7 0.9 28 28 28 28 28 32 39 60

10 8.9 8.9 8.9 0.8 9.1 8.9 <0.1 1.4 22 22 22 28 22 22 43 46
20 11.6 11.6 11.6 18.8 18.8 18.8 16.7 14.0 20 20 20 19 19 19 230 27
30 27.6 27.6 27.6 27.6 27.6 10.3 <0.1 23.1 14 14 14 14 14 21 44 21
50 40.6 40.6 40.6 40.6 40.6 34.1 44.3 36.4 12 12 12 12 12 13 22 14
70 57.6 57.6 57.6 40.6 57.6 40.6 41.2 48.8 11 11 11 12 11 12 1287 12
90 81.2 89.0 81.2 83.5 87.3 89.4 47.4 81.5 9 6 9 11 8 5 971 9

m
ax

ε Are Sides Connected? Running Time [s]

IFC4 IFC8 IFC12 F3 F20 K2.11 M I IFC4 IFC8 IFC12 F3 F20 K2.11 M I

0 • • • • • • – ◦ 0.6 0.8 1.2 1.6 10.8 2.1 – 0.1
1 • • • • • • • ◦ 0.5 0.7 1.0 1.3 8.5 2.4 0.1 0.1
3 • • • • • • • ◦ 0.4 0.6 0.9 1.3 8.5 3.4 0.1 0.1
5 • • • • • • • ◦ 0.3 0.5 0.7 1.3 8.5 4.6 0.1 0.1

10 • • • • • • • ◦ 0.2 0.4 0.6 1.3 7.1 13.4 0.1 0.1
20 • • • • • • ◦ • 0.2 0.4 0.5 0.9 6.4 26.2 0.1 0.1
30 • • • • • • • • 0.2 0.3 0.4 0.7 5.0 26.7 0.1 0.1
50 • • • • • • • ◦ 0.1 0.3 0.3 0.6 4.4 17.8 0.1 0.1
70 • • • • • • ◦ • 0.1 0.2 0.3 0.6 4.0 43.7 0.1 0.1
90 • • • • • • ◦ • 0.1 0.2 0.3 0.6 3.0 27.7 0.1 0.2

Algorithms 2019, 12, 196 15 of 20

Table 5. Pareto cuts of California and Nevada.
m

ax
ε Achieved ε [%] Cut Size

IFC4 IFC8 IFC12 F3 F20 K2.11 M I IFC4 IFC8 IFC12 F3 F20 K2.11 M I

0 0.0 0.0 0.0 0.0 0.0 ��1.0 – 0.0 57 46 46 80 43 ��48 – 306
1 1.0 1.0 1.0 0.2 0.2 0.2 0.0 0.6 39 35 35 61 31 31 63 93
3 2.3 2.3 2.3 2.4 2.3 2.3 <0.1 1.1 29 29 29 50 29 29 51 64
5 2.3 2.3 2.3 4.3 2.3 2.3 <0.1 1.6 29 29 29 34 29 29 56 62

10 2.3 2.3 2.3 5.3 2.3 2.3 0.3 0.6 29 29 29 29 29 29 44 37
20 16.7 16.7 16.7 5.3 16.7 16.7 <0.1 2.7 28 28 28 29 28 28 47 29
30 16.7 16.7 16.7 5.3 16.7 2.3 <0.1 5.5 28 28 28 29 28 29 50 29
50 42.3 42.3 42.3 5.3 49.1 2.3 33.3 40.8 25 25 25 29 24 29 3118 27
70 42.3 42.3 42.3 67.0 49.1 2.3 41.2 42.6 25 25 25 28 24 29 3343 26
90 85.4 85.4 85.4 90.0 89.8 49.1 47.4 85.6 18 18 18 15 14 24 3040 18

m
ax

ε Are Sides Connected? Running Time [s]

IFC4 IFC8 IFC12 F3 F20 K2.11 M I IFC4 IFC8 IFC12 F3 F20 K2.11 M I

0 • • • • • • – ◦ 2.5 3.5 5.0 11.8 58.9 10.6 – 0.3
1 • • • • • • • ◦ 1.9 3.0 4.3 11.1 49.6 13.0 0.7 0.3
3 • • • • • • • ◦ 1.4 2.5 3.5 10.1 47.5 22.7 0.7 0.3
5 • • • • • • • ◦ 1.4 2.5 3.5 8.1 47.5 36.8 0.7 0.4

10 • • • • • • • ◦ 1.4 2.5 3.5 7.2 47.5 74.5 0.7 0.4
20 • • • • • • • • 1.4 2.3 3.4 7.2 46.0 104.0 0.7 0.5
30 • • • • • • • • 1.4 2.3 3.4 7.2 46.0 172.6 0.7 0.6
50 • • • • • • ◦ ◦ 1.2 2.0 2.9 7.2 40.2 210.8 0.7 1.1
70 • • • • • • ◦ ◦ 1.2 2.0 2.9 6.9 40.2 227.6 0.7 1.5
90 • • • • • • ◦ • 0.8 1.4 2.1 3.9 23.5 110.5 0.7 1.6

Table 6. Pareto cuts of Europe.

m
ax

ε Achieved ε [%] Cut Size

IFC4 IFC8 IFC12 F3 F20 K2.11 M I IFC4 IFC8 IFC12 F3 F20 K2.11 M I

0 0.0 0.0 0.0 0.0 0.0 ��1.0 – 0.0 311 289 288 273 271 ��148 – 1578
1 1.0 1.0 0.3 0.7 0.3 1.0 <0.1 0.3 274 274 243 246 224 148 393 417
3 3.0 3.0 2.3 0.7 1.3 2.6 <0.1 0.4 259 241 238 246 219 130 434 340
5 4.8 4.8 4.2 4.6 5.0 2.9 <0.1 0.2 226 226 215 211 207 129 452 299

10 9.5 9.5 9.5 9.5 9.5 7.9 <0.1 0.2 188 188 188 188 188 112 468 284
20 9.5 9.5 9.5 9.5 9.5 7.8 <0.1 7.5 188 188 188 188 188 113 403 229
30 9.5 9.5 9.5 9.5 9.5 26.8 <0.1 9.1 188 188 188 188 188 104 463 202
50 49.0 49.0 49.0 9.5 43.7 8.2 33.3 9.5 23 23 23 188 39 111 16,151 188
70 49.0 70.0 49.0 64.5 67.5 32.1 41.2 64.7 23 20 23 58 22 86 23,021 38
90 72.8 72.8 72.8 72.8 72.8 72.8 72.8 72.8 2 2 2 2 2 2 2 2

m
ax

ε Are Sides Connected? Running Time [s]

IFC4 IFC8 IFC12 F3 F20 K2.11 M I IFC4 IFC8 IFC12 F3 F20 K2.11 M I

0 • • • • • • – ◦ 98.4 183.3 253.0 503.6 3240.0 141.5 – 5.1
1 • • • • • • ◦ ◦ 91.9 179.3 232.1 475.1 2965.1 193.9 8.1 3.9
3 • • • • • • • ◦ 89.2 169.0 229.7 475.1 2930.9 352.4 8.1 4.8
5 • • • • • • ◦ ◦ 81.9 162.5 216.3 428.0 2839.4 639.1 8.1 6.4

10 • • • • • ◦ ◦ • 67.1 138.5 192.9 390.1 2647.1 2256.7 8.1 11.2
20 • • • • • ◦ ◦ ◦ 67.1 138.5 192.9 390.1 2647.1 3618.4 8.1 23.6
30 • • • • • ◦ ◦ • 67.1 138.5 192.9 390.1 2647.1 2406.7 8.1 41.7
50 • • • • • ◦ ◦ • 10.7 16.7 24.1 390.1 613.5 4233.7 8.2 86.5
70 • • • • • ◦ ◦ • 10.7 14.9 24.1 124.1 361.8 3351.5 8.2 23.7
90 • • • • • • • • 4.3 7.9 11.9 6.5 49.1 3353.0 8.1 4.8

Algorithms 2019, 12, 196 16 of 20

Table 7. Pareto cuts of the USA.
m

ax
ε Achieved ε [%] Cut Size

IFC4 IFC8 IFC12 F3 F20 K2.11 M I IFC4 IFC8 IFC12 F3 F20 K2.11 M I

0 0.0 0.0 0.0 0.0 0.0 ��0.8 – 0.0 115 115 115 115 115 ��118 – 1579
1 0.6 0.6 0.6 0.6 0.6 0.5 0.0 0.4 82 82 82 82 82 94 178 406
3 2.3 2.3 2.3 2.3 2.3 2.4 <0.1 0.1 76 76 76 76 76 73 192 257
5 3.8 3.8 3.8 3.8 3.8 3.8 0.0 0.1 61 61 61 61 61 61 289 186

10 3.8 3.8 3.8 3.8 3.8 3.8 <0.1 3.2 61 61 61 61 61 61 253 81
20 3.8 3.8 3.8 3.8 3.8 3.8 <0.1 3.9 61 61 61 61 61 61 222 61
30 3.8 3.8 3.8 3.8 3.8 3.8 <0.1 3.9 61 61 61 61 61 61 232 61
50 3.8 3.8 3.8 3.8 3.8 3.8 3.7 3.9 61 61 61 61 61 61 242 61
70 69.6 69.6 69.6 69.6 69.6 3.8 41.2 66.5 46 46 46 46 46 61 41,976 61
90 69.6 69.6 69.6 69.6 69.6 69.6 47.4 70.3 46 46 46 46 46 46 45,409 46

m
ax

ε Are Sides Connected? Running Time [s]

IFC4 IFC8 IFC12 F3 F20 K2.11 M I IFC4 IFC8 IFC12 F3 F20 K2.11 M I

0 • • • • • • – ◦ 60.6 102.0 145.3 246.9 1963.9 179.2 – 6.5
1 • • • • • • • ◦ 43.7 81.5 117.4 234.5 1628.9 246.5 10.9 5.1
3 • • • • • ◦ ◦ ◦ 40.4 75.7 108.2 223.9 1533.5 691.4 10.9 5.5
5 • • • • • • • ◦ 31.8 60.2 86.0 198.0 1290.5 1329.8 10.9 6.0
10 • • • • • • • • 31.8 60.2 86.0 198.0 1290.5 1710.7 10.9 6.2
20 • • • • • • ◦ • 31.8 60.2 86.0 198.0 1290.5 2983.5 10.9 9.3
30 • • • • • • • • 31.8 60.2 86.0 198.0 1290.5 4891.8 10.9 16.6
50 • • • • • • ◦ • 31.8 60.2 86.0 198.0 1290.5 5307.4 10.9 32.4
70 • • • • • • ◦ • 24.4 44.7 63.2 154.2 985.1 5445.2 11.2 50.9
90 • • • • • • ◦ • 24.4 44.7 63.2 154.2 985.1 10,637.7 11.2 61.2

KaHIP achieves exceptionally small, highly balanced cuts on the Europe road network. On the
other road networks, it is similar to or worse than F20 in terms of cut size. This is due to the special
geography of the Europe road network. It excludes large parts of Eastern Europe, which is why there
is a cut of size 2 and ε = 72.8% imbalance that separates Norway, Sweden, and Finland from the rest of
Europe. For ε = 10%, KaHiP computes a cut with 112 edges, which separates the European mainland
from the Iberian peninsula, Britain, Scandinavia minus Denmark, Italy, and Austria [14]. The Alps
separate Italy from the rest of Europe. Britain is only connected via ferries, and the Iberian peninsula is
separated from the remaining mainland by the Pyrenees. One side of the cut is not connected because
the only ferry between Britain and Scandinavia runs between Britain and Denmark. FlowCutter is
unable to find cuts with disconnected sides without a modified initialization. By handpicking terminals
for FlowCutter, a similar cut with only 87 edges and 15% imbalance, which places Austria with the
mainland instead, is found in [14]. However, it turns out that the FlowCutter CCH order using the 87
edge cut as a top-level separator is not much better than plain FlowCutter. This indicates that it does
not matter at what level of recursion the different cuts are found.

For large imbalances, KaHIP seems unable to leverage the additional freedom to achieve the
much smaller but more unbalanced cuts, like the ones reported by InertialFlowCutter and FlowCutter.
This has already been observed for previous versions of KaHIP [14]. In terms of running time, KaHIP
and F20 are the slowest algorithms. InertialFlowCutter is in all three configurations an order of
magnitude faster than F20. Up to a maximum ε of 10%, the three variants report almost the same
cuts. Apart from the very imbalanced ε = 90% cuts, the cuts are also at most one edge worse than F20.
Only for more balanced cuts more cutters give a significant improvement. Here, in particular on the
Europe road network, F20 is also significantly better than InertialFlowCutter. In the range between
ε = 60% and ε = 10%, which is most relevant for our application, there is thus no significant difference
between F20 and InertialFlowCutter, regardless of the number of cutters. This indicates that on the top
level, the first four directions seem to cover most cuts already. On the other hand, for highly balanced

Algorithms 2019, 12, 196 17 of 20

cuts, the geographic initialization does not help much, as can be seen from the much worse cuts for
InertialFlowCutter. Here, just having more cutters seems to help.

3.6. Parameter Configuration

In this section, we tune the parameters α, δ, γa, γo of InertialFlowCutter. Our goal is to achieve
much faster order computation without sacrificing CCH performance. Recall that α is the fraction
of nodes initially fixed on each side, δ is—roughly speaking—a stepsize, γo is the threshold up to
how many nodes on a side of the projection we perform bulk piercing, and similarly, γa for how
many settled nodes on a side. Table 8 shows a large variety of tested parameter combinations for
InertialFlowCutter with eight directions on the road network of Europe. We selected the parameter
set α = 0.05, δ = 0.05, γa = 0.4, γo = 0.25 based on query and order computation time. The best
entries per column are highlighted in bold. Furthermore, color shades are scaled between values in the
columns. Darker shades correspond to lower values, which are better for every measure.

Table 8. CCH performance of different parameter configurations of IFC8 on Europe. Bold values are
the best in their category. Darker shades indicate better values.

Search Space CCH Up. Running Times

Configuration Nodes Arcs [·103] Arcs #Tri. Tw. Order Cust. Query

α δ γa γo Avg. Max. Avg. Max. [·106] [·106] Bd. [s] [ms] [µs]

0.05 0.05 0.3 0.1 610.2 1092 102.8 248.9 588.7 4586.6 454 2933 3388 204.1
0.05 0.05 0.3 0.15 608.6 1093 102.2 248.9 588.6 4578.1 454 2644 3380 203.2
0.05 0.05 0.35 0.15 608.6 1093 102.2 248.9 588.6 4577.8 454 2655 3385 203.2
0.05 0.05 0.3 0.2 610.6 1096 103.0 248.9 588.9 4621.6 454 2505 3400 204.1
0.05 0.05 0.35 0.2 610.5 1098 103.0 246.4 588.9 4620.8 454 2487 3396 203.9
0.05 0.05 0.4 0.2 610.3 1098 102.9 246.7 588.9 4622.2 454 2495 3400 204.4
0.05 0.05 0.3 0.25 610.5 1096 103.0 248.9 588.9 4630.8 454 2476 3404 204.4
0.05 0.05 0.35 0.25 610.6 1092 103.1 246.4 588.9 4629.6 454 2464 3403 204.3
0.05 0.05 0.4 0.25 608.6 1092 102.1 246.7 588.6 4587.1 454 2448 3401 202.9
0.05 0.05 0.35 0.3 610.6 1092 103.0 246.4 588.8 4628.0 454 2457 3396 204.2
0.05 0.05 0.4 0.3 609.5 1092 102.9 246.7 588.7 4625.6 454 2445 3398 203.7
0.05 0.05 0.4 0.35 609.6 1094 102.9 246.7 588.8 4626.7 454 2445 3404 203.9
0.05 0.1 0.3 0.1 610.3 1092 102.9 248.9 588.8 4594.8 454 2904 3391 204.4
0.05 0.1 0.3 0.15 610.7 1116 103.1 248.9 588.8 4603.4 454 2595 3413 204.5
0.05 0.1 0.35 0.15 608.5 1116 102.2 248.9 588.7 4586.1 454 2589 3399 208.2
0.05 0.1 0.3 0.2 612.4 1094 103.8 248.9 588.9 4628.5 454 2508 3402 205.8
0.05 0.1 0.35 0.2 610.1 1093 102.8 246.4 588.8 4611.8 454 2480 3396 203.8
0.05 0.1 0.4 0.2 610.3 1093 102.9 246.7 588.9 4616.6 454 2489 3398 203.9
0.05 0.1 0.3 0.25 612.3 1094 103.7 248.9 588.9 4628.7 454 2516 3400 205.6
0.05 0.1 0.35 0.25 610.1 1099 102.8 246.4 588.8 4610.3 454 2497 3392 204.1
0.05 0.1 0.4 0.25 608.2 1099 102.0 246.7 588.6 4579.1 454 2478 3388 203.4
0.05 0.1 0.35 0.3 610.2 1093 102.9 246.4 588.8 4614.8 454 2489 3396 204.0
0.05 0.1 0.4 0.3 609.5 1093 102.9 246.7 588.8 4622.7 454 2482 3395 203.8
0.05 0.1 0.4 0.35 609.6 1095 102.9 246.7 588.8 4623.1 454 2475 3397 203.6
0.05 0.15 0.3 0.1 610.3 1092 102.9 248.9 588.8 4594.8 454 2906 3396 204.8
0.05 0.15 0.3 0.15 610.7 1116 103.1 248.9 588.8 4603.0 454 2572 3393 204.5
0.05 0.15 0.35 0.15 608.6 1116 102.2 248.9 588.7 4588.0 454 2568 3396 203.1
0.05 0.15 0.3 0.2 612.6 1116 103.8 248.9 589.0 4637.0 454 2523 3407 205.9
0.05 0.15 0.35 0.2 610.3 1114 102.9 246.6 588.9 4617.3 454 2494 3400 204.4
0.05 0.15 0.4 0.2 610.5 1114 102.9 246.7 588.9 4622.6 454 2504 3402 204.5
0.05 0.15 0.3 0.25 612.6 1100 103.8 248.9 589.1 4644.5 454 2521 3406 205.7
0.05 0.15 0.35 0.25 610.3 1100 102.9 246.4 588.9 4619.2 454 2507 3398 203.9
0.05 0.15 0.4 0.25 608.8 1100 102.1 246.7 588.7 4588.6 454 2489 3393 203.1
0.05 0.15 0.35 0.3 610.4 1100 102.9 246.4 588.9 4624.2 454 2506 3401 204.2
0.05 0.15 0.4 0.3 609.6 1100 102.9 246.7 588.8 4626.9 454 2495 3393 203.8
0.05 0.15 0.4 0.35 609.7 1100 102.9 246.7 588.9 4634.3 454 2492 3408 203.9

0.01 0.05 0.4 0.25 609.0 1095 102.4 248.5 588.7 4596.3 454 2817 3387 203.6
0.025 0.05 0.4 0.25 607.6 1095 101.9 248.5 588.6 4585.2 454 2658 3394 203.1
0.075 0.05 0.4 0.25 633.0 1131 110.8 265.8 588.9 4638.9 450 2402 3416 216.1

0.1 0.05 0.4 0.25 641.9 1140 112.7 274.9 589.0 4650.9 451 2182 3417 219.0
0.125 0.05 0.4 0.25 651.5 1118 106.2 263.8 589.1 4618.0 475 1800 3386 211.9
0.15 0.05 0.4 0.25 651.6 1108 106.2 263.3 589.2 4616.1 475 1656 3390 216.6

Algorithms 2019, 12, 196 18 of 20

First, we consider the top part of Table 8, where we fix α to 0.05 and try different combinations of
δ, γo, γa. While the number of triangles and customization times are correlated, the top configurations
for these measures are not the same interestingly. The variations in search space sizes, customization
time (27 ms), and query time (3 µs) are marginal. At the bottom part of Table 8, we try different
values of α with the best choices for the other parameters. As expected, larger values for α accelerate
order computation and slightly slow down queries. In summary, InertialFlowCutter is relatively
robust to parameter choices other than for α, which means users do not need to invest much effort on
parameter tuning.

4. Discussion

We have presented InertialFlowCutter, an algorithm that exploits geographical information to
quickly compute high-quality bipartitions of road networks. Our experiments show that we are able to
compute nested dissection orders, as used for CCHs, six times faster than the previous state-of-the-art.
Using 16 cores, we can compute a nested dissection order of the Europe road network in four minutes.
This makes CCHs even more attractive to be applied in practice.

An open question is how to transfer the ideas of large initial terminal node sets and piercing
multiple nodes simultaneously to graphs without geographical information. As FlowCutter also
achieved quite good results on general graphs, albeit with slow running times [14], this might be an
interesting direction for future research.

Author Contributions: Conceptualization, L.G., M.H., and D.W.; software, L.G., M.H., and T.N.U.; validation,
L.G., M.H., and T.N.U.; formal analysis, L.G. and M.H.; investigation, L.G., M.H., and T.N.U.; resources, D.W.;
data curation, L.G. and T.N.U.; writing—original draft preparation, L.G. and M.H.; writing—review and editing,
L.G., M.H., T.N.U., and D.W.; visualization, L.G., M.H., and T.N.U.; supervision, D.W.; project administration, L.G.
and M.H.; funding acquisition, D.W.

Funding: This research was partially funded by the Deutsche Forschungsgemeinschaft (DFG) under grants
WA654/19-2 and WA654/22-2. The Article Processing Charges (APC) were funded by the KIT-Publication Fund
of the Karlsruhe Institute of Technology.

Acknowledgments: We thank Ben Strasser for helpful discussions and for providing us the setup and code of the
experiments conducted in [14].

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Buluç, A.; Meyerhenke, H.; Safro, I.; Sanders, P.; Schulz, C. Recent Advances in Graph Partitioning.
In Algorithm Engineering—Selected Results and Surveys; Kliemann, L., Sanders, P., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9220, pp. 117–158. [CrossRef]

2. Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271.
[CrossRef]

3. Bast, H.; Delling, D.; Goldberg, A.V.; Müller–Hannemann, M.; Pajor, T.; Sanders, P.; Wagner, D.; Werneck, R.F.
Route Planning in Transportation Networks. In Algorithm Engineering—Selected Results and Surveys;
Lecture Notes in Computer Science; Kliemann, L., Sanders, P., Eds.; Springer: Berlin/Heidelberg, Germany,
2016; Volume 9220, pp. 19–80.

4. Möhring, R.H.; Schilling, H.; Schütz, B.; Wagner, D.; Willhalm, T. Partitioning Graphs to Speedup
Dijkstra’s Algorithm. ACM J. Exp. Algorithm. 2006, 11, 1–29. [CrossRef]

5. Hilger, M.; Köhler, E.; Möhring, R.H.; Schilling, H. Fast Point-to-Point Shortest Path Computations
with Arc-Flags. In The Shortest Path Problem: Ninth DIMACS Implementation Challenge; Demetrescu, C.,
Goldberg, A.V., Johnson, D.S., Eds.; DIMACS Book; American Mathematical Society: Providence, RI, USA,
2009; Volume 74, pp. 41–72.

6. Bauer, R.; Delling, D. SHARC: Fast and Robust Unidirectional Routing. In Proceedings of the 10th Workshop
on Algorithm Engineering and Experiments (ALENEX’08), San Francisco, CA, USA, 19 January 2008;
Munro, I., Wagner, D., Eds.; SIAM: Philadelphia, PA, USA, 2008; pp. 13–26.

http://dx.doi.org/10.1007/978-3-319-49487-6_4
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1145/1187436.1216585

Algorithms 2019, 12, 196 19 of 20

7. Sanders, P.; Schultes, D. Engineering Highway Hierarchies. ACM J. Exp. Algorithm. 2012, 17, 1–40. [CrossRef]
8. Bauer, R.; Delling, D.; Sanders, P.; Schieferdecker, D.; Schultes, D.; Wagner, D. Combining Hierarchical

and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM J. Exp. Algorithm. 2010, 15, 1–31.
[CrossRef]

9. Gutman, R.J. Reach-Based Routing: A New Approach to Shortest Path Algorithms Optimized for
Road Networks. In Proceedings of the 6th Workshop on Algorithm Engineering and Experiments
(ALENEX’04), New Orleans, LA, USA, 10 January 2004; SIAM: Philadelphia, PA, USA, 2004; pp. 100–111.

10. Geisberger, R.; Sanders, P.; Schultes, D.; Vetter, C. Exact Routing in Large Road Networks Using
Contraction Hierarchies. Transp. Sci. 2012, 46, 388–404. [CrossRef]

11. Delling, D.; Goldberg, A.V.; Pajor, T.; Werneck, R.F. Customizable Route Planning in Road Networks.
Transp. Sci. 2017, 51, 566–591. [CrossRef]

12. Dibbelt, J.; Strasser, B.; Wagner, D. Customizable Contraction Hierarchies. ACM J. Exp. Algorithm. 2016,
21, 1–5. [CrossRef]

13. George, A. Nested Dissection of a Regular Finite Element Mesh. SIAM J. Numer. Anal. 1973, 10, 345–363.
[CrossRef]

14. Hamann, M.; Strasser, B. Graph Bisection with Pareto Optimization. ACM J. Exp. Algorithm. 2018, 23, 1–2.
[CrossRef]

15. Schild, A.; Sommer, C. On Balanced Separators in Road Networks. In Proceedings of the 14th International
Symposium on Experimental Algorithms (SEA’15), Paris, France, 29 June–1 July 2015; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; pp. 286–297.

16. Sanders, P.; Schulz, C. Think Locally, Act Globally: Highly Balanced Graph Partitioning. In Proceedings
of the 12th International Symposium on Experimental Algorithms (SEA’13), Rome, Italy, 5–7 June 2013;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7933, pp. 164–175.

17. Karypis, G.; Kumar, V. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM J.
Sci. Comput. 1999, 20, 359–392. [CrossRef]

18. Delling, D.; Goldberg, A.V.; Razenshteyn, I.; Werneck, R.F. Graph Partitioning with Natural Cuts.
In Proceedings of the 25th International Parallel and Distributed Processing Symposium (IPDPS’11),
Anchorage, AK, USA, 16–20 May 2011; IEEE Computer Society: Washington, DC, USA, 2011; pp. 1135–1146.

19. Sanders, P.; Schulz, C. Distributed Evolutionary Graph Partitioning. In Proceedings of the 14th
Meeting on Algorithm Engineering and Experiments (ALENEX’12), Kyoto, Japan, 16 January 2012; SIAM:
Philadelphia, PA, USA, 2012; pp. 16–29.

20. Ford, L.R., Jr.; Fulkerson, D.R. Maximal flow through a network. Can. J. Math. 1956, 8, 399–404. [CrossRef]
21. Bauer, R.; Columbus, T.; Rutter, I.; Wagner, D. Search-space size in contraction hierarchies. Theor. Comput. Sci.

2016, 645, 112–127. [CrossRef]
22. Strasser, B. FlowCutter Implementation. Available online: https://github.com/kit-algo/flow-cutter/tree/

cch-tree-order (accessed on 22 May 2019).
23. Iyer, A.V.; Ratliff, H.D.; Vijayan, G. Optimal Node Ranking of Trees. Inf. Process. Lett. 1988, 28, 225–229.

[CrossRef]
24. Schæffer, A.A. Optimal node ranking of trees in linear time. Inf. Process. Lett. 1989, 33, 91–96. [CrossRef]
25. Ahuja, R.K.; Magnanti, T.L.; Orlin, J.B. Network Flows: Theory, Algorithms, and Applications; Prentice Hall:

Upper Saddle River, NJ, USA, 1993.
26. Hopcroft, J.E.; Tarjan, R.E. Efficient Algorithms for Graph Manipulation. Commun. ACM 1973, 16, 372–378.

[CrossRef]
27. Demetrescu, C.; Goldberg, A.V.; Johnson, D.S.; (Eds.) The Shortest Path Problem: Ninth DIMACS

Implementation Challenge; DIMACS Book; American Mathematical Society: Providence, RI, USA, 2009;
Volume 74.

28. Gottesbüren, L.; Hamann, M.; Uhl, T. InertialFlowCutter Implementation and Evaluation Scripts.
Available online: https://github.com/kit-algo/InertialFlowCutter (accessed on 28 June 2019).

29. Strasser, B. CCH Implementation in RoutingKit. Available online: https://github.com/RoutingKit/
RoutingKit (accessed on 3 June 2019).

30. Buchhold, V.; Sanders, P.; Wagner, D. Real-Time Traffic Assignment Using Fast Queries in Customizable
Contraction Hierarchies. In Proceedings of the 17th International Symposium on Experimental Algorithms
(SEA’18), L’Aquila, Italy, 27–29 June 2018; Leibniz International Proceedings in Informatics; pp. 27:1–27:15.

http://dx.doi.org/10.1145/2133803.2330080
http://dx.doi.org/10.1145/1671970.1671976
http://dx.doi.org/10.1287/trsc.1110.0401
http://dx.doi.org/10.1287/trsc.2014.0579
http://dx.doi.org/10.1145/2886843
http://dx.doi.org/10.1137/0710032
http://dx.doi.org/10.1145/3173045
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.4153/CJM-1956-045-5
http://dx.doi.org/10.1016/j.tcs.2016.07.003
https://github.com/kit-algo/flow-cutter/tree/cch-tree-order
https://github.com/kit-algo/flow-cutter/tree/cch-tree-order
http://dx.doi.org/10.1016/0020-0190(88)90194-9
http://dx.doi.org/10.1016/0020-0190(89)90161-0
http://dx.doi.org/10.1145/362248.362272
https://github.com/kit-algo/InertialFlowCutter
https://github.com/RoutingKit/RoutingKit
https://github.com/RoutingKit/RoutingKit

Algorithms 2019, 12, 196 20 of 20

31. Schulz, C. KaHiP Implementation. Available online: https://github.com/schulzchristian/KaHIP (accessed
on 10 June 2019).

32. Karypis, G.; Kumar, V. Metis Binary Distribution. Available online: http://glaros.dtc.umn.edu/gkhome/
metis/metis/download (accessed on 10 June 2019).

33. Dinitz, Y. Algorithm for Solution of a Problem of Maximum Flow in a Network with Power Estimation.
Sov. Math.-Dokl. 1970, 11, 1277–1280.

34. Sanders, P.; Schulz, C. Advanced Multilevel Node Separator Algorithms. In Proceedings of the 15th
International Symposium on Experimental Algorithms (SEA’16), St. Petersburg, Russia, 5–8 June 2016;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9685, pp. 294–309.

35. Strasser, B.; Wagner, D. Graph Fill-In, Elimination Ordering, Nested Dissection and Contraction
Hierarchies. In Gems of Combinatorial Optimization and Graph Algorithms; Schulz, A.S., Skutella, M., Stiller, S.,
Wagner, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 69–82. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/schulzchristian/KaHIP
http://glaros.dtc.umn.edu/gkhome/metis/metis/download
http://glaros.dtc.umn.edu/gkhome/metis/metis/download
http://dx.doi.org/10.1007/978-3-319-24971-1_7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Preliminaries
	Separators and Cuts
	Maximum Flows

	Flowcutter
	Inertial Flow
	Combining Inertial Flow and Flowcutter into InertialFlowCutter
	Running Multiple InertialFlowCutter Instances
	Customizable Contraction Hierarchies
	Nested Dissection Orders for Road Networks
	Recursive Bisection
	Separators
	Choosing Cuts from the Pareto Cutset
	Special Preprocessing

	Parallelization

	Results
	Experimental Setup
	CCH Implementation
	Partitioner Implementations and Nested Dissection Setup
	Order Experiments
	Quality
	Preprocessing Time

	Pareto Cut Experiments
	Parameter Configuration

	Discussion
	References

