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Abstract: Deep neural networks are successful learning tools for building nonlinear models. However,
a robust deep learning-based classification model needs a large dataset. Indeed, these models are
often unstable when they use small datasets. To solve this issue, which is particularly critical in
light of the possible clinical applications of these predictive models, researchers have developed
approaches such as virtual sample generation. Virtual sample generation significantly improves
learning and classification performance when working with small samples. The main objective
of this study is to evaluate the ability of the proposed virtual sample generation to overcome the
small sample size problem, which is a feature of the automated detection of a neurodevelopmental
disorder, namely autism spectrum disorder. Results show that our method enhances diagnostic
accuracy from 84%-95% using virtual samples generated on the basis of five actual clinical samples.
The present findings show the feasibility of using the proposed technique to improve classification
performance even in cases of clinical samples of limited size. Accounting for concerns in relation to
small sample sizes, our technique represents a meaningful step forward in terms of pattern recognition
methodology, particularly when it is applied to diagnostic classifications of neurodevelopmental
disorders. Besides, the proposed technique has been tested with other available benchmark datasets.
The experimental outcomes showed that the accuracy of the classification that used virtual samples
was superior to the one that used original training data without virtual samples.

Keywords: small sample issue; deep learning; autism; virtual sample generation; small dataset;
large dataset; normal Gaussian distribution; mega trend diffusion; functional virtual population;
multivariate normal synthetic

1. Introduction

Deep learning computational models consist of many processing layers in order to learn
representations of data with many levels of abstraction [1]. Deep learning is a machine learning
mechanism that employs many layers of nonlinear information processing for the purposes of
supervised or unsupervised learning, feature extraction, and classification. Deep learning algorithms
depend heavily on the number of data and computing power [2-4]. Accordingly, they do not perform
to an optimal level with small datasets. Recent advances in terms of adequate amounts of collected
data and increased levels of computing power [2] have led to a resurgence in neural network research,
and this has in turn sparked a new era of (deep) machine learning research.

Limited dataset sizes are considered to be one of the most critical concerns in terms of early
prediction [5]. Unfortunately, this issue is particularly common in the case of diseases such as rare

Algorithms 2019, 12, 160; doi:10.3390/a12080160 www.mdpi.com/journal/algorithms


http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-6731-7246
https://orcid.org/0000-0003-0297-2463
http://dx.doi.org/10.3390/a12080160
http://www.mdpi.com/journal/algorithms
http://www.mdpi.com/1999-4893/12/8/160?type=check_update&version=2

Algorithms 2019, 12, 160 2 of 25

hereditary diseases (e.g., Maple syrup urine disease [6]), unique study populations (e.g., Kashin Beck
Disease (KBD) [7]), individually-tailored treatments (e.g., tumour treatment [8]), isolated environments
(e.g., Ebola [9]), emergency situations (e.g., autoimmune systemic diseases and vasculitides [10,11]),
and neurological or psychiatric disorders [12-14].

The size of available clinical samples is ordinarily small in the field of medical research due to the
intrinsic prevalence of disorders and other factors such as elevated costs for patient recruitment and
the limited time available for evaluations. Small sample sizes significantly limit the ability of pattern
recognition methods to predict or classify individuals of different groups correctly, and this leads
to inaccurate classification performance. Indeed, supervised classification methods require a training
dataset in order to learn the classification algorithm that best differentiates the two groups and a testing
dataset in order to verify the classification performance on previously unseen data. In medical research,
samples and datasets are usually not large enough to perform the training phase and the testing
phase of the computerized algorithm on a totally independent dataset. This renders this methodology
prone to over fitting. Nevertheless, different methods have been proposed to overcome this critical
issue. The main three methods are Mega Trend Diffusion (MTD), Functional Virtual Population (FVP),
and Multivariate Normal synthetic sample generation (MVN).

¢  Mega Trend Diffusion (MTD):

MTD was proposed in [15] based on the information diffusion method that uses fuzzy theories
to fill missing data [16,17]. The main difference between MTD and the information diffusion
method is that MTD employs a general diffusion function to scatter a collection of data across
the whole dataset, while the information diffusion method diffuses each sample separately [17].
MTD merges mega diffusion with data trend estimation to control the symmetrical expansion
issue and to increase the learning accuracy in flexible manufacturing system scheduling. Both
the diffusion-neural-network and megatrend-diffusion require membership function values such
as extra information, and that means the appearance possibility for each input attribute and the
number of input attributes needed for artificial neural network training. This process makes the
calculation more complicated and lengthy in duration. In addition, the membership function
values basically do not hold any managerial meaning [15,18]. Lastly, the MTD technique is
applied to simulated systems. Therefore, it is not clear what this technique achieves in real system
situations [19].

*  Functional Virtual Population (FVP):

The functional virtual population was developed in [20]. FVP is based on data domain expansion
methods (i.e., left, right, and both sides) for small datasets [17]. The FVP method operates by
adding virtual samples for training assistance and acquiring scheduling knowledge in dynamic
industrializing systems. The strategy includes data decreasing, data increasing, and mixed data
to form a functional virtual population. The generated virtual samples increase the learning
performance of neural networks [21]. The FVP technique was the first method that was proposed
for small dataset managing, and it was developed to extend the domain of attributes and produce
virtual samples for the purposes of constructing early scheduling knowledge. It is based on a trial
and error procedure and requires many steps to complete the process [22]. This method has
significant limitations when applied to systems including nominal variables or high variance
between stages [23].

¢ Multivariate Normal synthetic sample generation (MVN):

MVN has two parameters, and each parameter contains more than one piece of information.
One parameter sets the centre of the distribution, and the other parameter determines the
dispersion and the width of the spread from side to side of the distribution centre [24]. The MTD
and FVP methods extend the dataset by enlarging the domains of the feature dataset while
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the MVN method synthetically produces input specifying single dimensional multivariate
normal data sample generation [19,25]. MVN synthetic sample generation uses multivariate
covariance dependencies among basic samples. In addition, it maintains the ingrained noise
of samples [19]. MVN utilizes the covariance matrix that summarizes the interaction between
different components of data [26].

2. Virtual Sample Generation technique

As mentioned above, the main goal of MTD, FVP, and MVN is generating virtual samples.
Virtual Sample Generation (VSG) is a data preprocessing technique proposed to increase the prediction
accuracy for the small-dataset issue [27]. This idea was first proposed in 1998 by [28] to improve the
recognition (object and speech recognition) performance for image and sound datasets.

Another work [22] used the bootstrap method to generate virtual samples in order to enhance the
accuracy of a computerized algorithm derived from a small clinical sample in predicting radiotherapy
outcomes. Results showed that when the amount of training data and learning accuracy were directly
correlated to the prediction, the outcome of radiotherapy increased stably from 55%—-85%.

The study published in [29] developed a novel technique, based on random variate generation,
that was used in the early phase of data gathering to handle a DNA microarray categorization issue.
This technique was employed to search for discrete collections in the DNA microarray and to consider
outliers as various sets in a nonlinear method. This technique generated virtual samples from the
original small datasets based on binary classification. Moreover, the UCI database [30] experiments
were used in this study. Finally, the results showed that this method largely enhanced the accuracy of
machine learning in the early stages of DNA microarray data, and it significantly helped in terms of
solving the problem of the extremely small training dataset with nonlinear data or outliers.

The work in [31] proposed a method based on a generative adversarial network put together
with a deep neural network. The generative adversarial network was trained with the training group
to generate virtual sample data, which increased the training group. Then, the deep neural network
classifier was trained with the virtual samples. After that, they tested the classifier with the original
test group, and the indicators validated the effectiveness of the method for multi-classification with
a small sample size. As an experimental case, the method was then used to recognize the stages of
cancers with a small classified sample size. The empirical results verified that the proposed method
achieved better accuracy than traditional methods.

The study [32] aimed to generate a synthetic sample that reflected the attributes of the people
listed in the “Health Survey for England”. They used data from the “Health Survey for England” to
define gender and the age-dependent distributions of continuous variable risk factors such as weight,
height, number of cigarettes/day, and units of alcohol/week and the prevalence of binary risk factors
such as diabetes and smoking status. Spearman rank correlations including gender and age were
defined for these risk variables. A table of normally-distributed random numbers was produced.
The sample was then generated utilizing a reverse lookup of the gamma distribution value using the
random percentiles for continuous variables or setting a binary variable to one when the random
percentile fell below the prevalence threshold. The new method produced big virtual samples with risk
factor distributions very closely matching those of the real “Health Survey for England” population.
This sample can be utilized to model the likely impact of new therapies or predict mortality.

The work published in another paper [5] developed a new method of VSG called genetic
algorithm-based virtual sample generation, which was based on the integrated effects and restrictions
of data attributes. The first procedure determined the appropriate range by utilizing MTD functions.
Then, a genetic algorithm was applied to accelerate the generation of the most appropriate virtual
samples. The last step was verification of the performance of the proposed method by comparing the
results with two different forecasting models. The experimental outcomes showed that the performance
of the method that used virtual samples was superior to the one that used original training data without
virtual samples.
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Consequently, the proposed technique can enhance learning performance significantly when
working with small samples. Many of these previous sample generation approaches have shown
a good ability to enhance prediction and classification performance. However, none of them are based
on the overlapping that exists in the features stage. Accordingly, this study presents a new virtual
sample technique that also considers avoiding overlaps among each of the features in the different
classes. Furthermore, this study is distinguished by its ability to generate and deal with a huge
amount of virtual samples that is hundreds of thousands of samples instead of tens or hundreds of
virtual samples.

3. The Proposed Method

This section presents detailed steps to illustrate the method we developed in the present work,
from data selection to the construction and generation of the virtual samples necessary to build the
models and the classification tool. A schematic description of the whole procedure is shown in Figure 1.
The procedure involved three steps: the first step was the selection of a small set of samples from
a whole dataset; the second was the application of the VSG method to generate new samples; and the
third step included data prediction and classification.

Original Dataset

Whole Data > Random Samples Selection [ (Small sample
(Small sample number) AR

[ Virtual Sample Generation
— process
Testing Data

J o~

Virtual Samples
(Huge sample number)

= )

Classification Model |« . |
| Original Dataset |

I + |

\ 4 I Virtual Samples I

Predicted Label V. y;

Learning Dataset

Figure 1. Flowchart of the whole procedure with three different steps: (1) selection of a small
sub-sample from the entire dataset and the remaining samples used as testing data; (2) application of the
VSG method depending on the selected samples from the first step; (3) data prediction and classification.

The algorithm automatically ranked the top discriminative features and excluded the
non-discriminative features. In the second step, a small set of samples was randomly selected, called
selected samples, from the entire dataset, and the remaining samples were used as testing data. In the
third step, we applied the proposed VSG method to generate new virtual samples, depending on the
selected samples from the second step. Then, virtual samples were added to the selected samples
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for the next learning step. In the fourth step, the combined dataset (i.e., the original dataset plus the
newly-generated virtual samples) was used to train the deep neural network, then we checked the
classifier performance by classifying the testing data.

The first step of the proposed technique was to select samples randomly. These numbers were
selected randomly from intervals of 3-10 as a small database for the first time; then, these numbers
were set for all experiments to achieve comparisons. The number of randomly selected samples were
3,5, 6,and 9. From each class, the Selected Samples (SS) were from the whole dataset (30 samples),
and the remaining 24, 20, 18, and 12 samples, respectively, were the testing data.

The features of small selected samples of two different classes are represented in two matrices A
and B with the same size as follows:

Let I = {1,...,m} denote the indices of the rows of matrices A and B.

Let ] = {1,...,n} denote the indices of the column of matrices A and B.

Let a;; denote the value of the element A[i, j].

Let b;; denote the value of the element B[j, j].

The algorithm started by finding the following:

The minimum value for each feature in matrix A is NA. It appears as a single dimension matrix
as follows:

NA] :minaijiel,jzl,...,n

The maximum value for each feature in matrix A is MA. It appears as a single dimension matrix
as follows:

MA; = max aj,_,, j=1,...,n

The mean value for each feature in matrix A is MeA. It appears as a single dimension matrix
as follows:

1 .
MeAj = EZ?:l aj, j=1,...,n

The minimum value for each feature in matrix B is NB. It appears as a single dimension matrix
as follows:

NB; = min b»jiel,jzl,...,n

The maximum value for each feature in matrix B is MB. It appears as a single dimension matrix
as follows:

MB; = maxb 1,...,n

ijicrr ] =
The mean value for each feature in matrix B is MeB. It appears as a single dimension matrix
as follows:

1 )
MEB] = EZ?:l bij,]:1,...,n

Then, for each iteration, starting from the first elements in the matrices NA, MA, NB, and MB
to the last elements in these matrices, these four elements were the inputs of Equation (1) to check if
there was any overlapping occurring in between them. If there was no overlap, then we expanded the
intervals by Equations (5) and (6), otherwise, we tried to solve the overlaps by Equation (2).
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Forj=1,...,n

Equations (5) and (6) , if (NA; > MB;)V (NB; > MA;)

1
P(NAj,MAj, NB]-,MBj) , otherwise M)

f(NAj, MA;, NBj, MB;) = {

The second process was the random variant generation to create new Virtual Samples (VS) based
on the maximum, minimum, and mean calculated for every discriminative feature in each group
in SS. After this, the virtual samples were added to SS by Equations (3) and (4). The number of
generated samples could vary in terms of N (N = 10,000, 25,000, 50,000, 100,000, 200,000, and 300,000).
All generated feature j values were between the interval (Min jr Maxj), while with a normal Gaussian
distribution, the VS was generated by Equation (7).

The third step was the training phase of the system: SS and VS were employed as learning
data and the residual data in the first step as testing data. Lastly, the classification performance was
evaluated by using the Softmax classifier.

The proposed work can be summarized as follows: the new virtual samples were generated,
depending on the original small dataset; the original dataset plus the newly-generated virtual samples
both can be added to the training samples to expand the training dataset for machine learning
significantly. Thus, our method can produce virtual samples closely related to the original datasets by
applying a normal Gaussian distribution. The proposed work aims to make the classification model
more stable and overcome the common limitations of the classification performance.

The working condition of the proposed system was that there were no overlaps between intervals.
The system checked if the intervals had a direct ideal case, and the system started to generate a virtual
sample without any pre-processing. Otherwise, the system tried to get rid of overlaps if success
expanded the interval range, and it would start to generate virtual samples between the known
intervals. Otherwise, it would skip to the next features.

3.1. Virtual Sample Generation Method

In the third step, for each discriminative feature, we applied the VSG method described in
Algorithm 1 to generate virtual samples and then added them to the original dataset to produce
a combined dataset for learning. The proposed method consisted of two parts. The first was the
pre-processing technique, which searched for the rational interval (without overlaps) of each feature
with the corresponding feature in another class. The second part was the random variant generation
that increased the training dataset based on the original dataset for each rational feature. The code
structure of the VSG method was as follows.

3.1.1. The Pre-Processing Method

The purpose of the pre-processing step was to preface the discriminative feature within the
selected samples precisely. This step was mandatory in order to avoid overlapping of the sequence of
corresponding discriminative features before generating new virtual samples. As an example, one of
the datasets tested in this work included two groups: one Related Group (RG) including participants
with autism spectrum disorders and an Unrelated Group (URG), which means healthy participants.
It was clear that it was not reasonable to overlap the two different groups during the generation;
therefore, this event was precluded by the pre-processing method as the following equations:

For each feature, its values are ordered in descending sort for class A in matrix MlsA, as follows:

MIsA; = max Aij icr1r {j=1,...,n} , MiIsA; > MIsA; 4
For each feature, its values are ordered in ascending sort for class A in matrix mlsA, as follows:

mlsAp =mina;;, ., ., {j=1,...,n} , mlsA; <mlsA;
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For each feature, its values are ordered in descending sort for class B in matrix MlsB, as follows:
MlsB; = max bj ., ., {j=1,...,n}, MlsB; > MisB;
For each feature, its values are ordered in ascending sort for class B in matrix mlsB, as follows:
mlsBy = minbj; .., ,, {j=1,...,n} , mlsB; < mlsB; 4

Here, Equation (2) tries to handle overlaps, and after each execution of this equation, it checks the
ideal case.

p(NA]', MA]‘, NBj, MB]‘, C) =
Equations (5) and (6); if (NA; > MB;)V (NB; > MA;)
stop and delete current column, if (c =1)

p(mlsA., MA;,NBj, MB;, = ¢ + 1), if (NAj < NB]-)/\
(MB]' < MA]) A (ME‘A]' — NA]) < (MA] — MEA]')

p(NAj, MisAc, NB;, MBj,c +1); if (NA; < NBj)A
(MB;-MA;) A (MeA; — NA;) > (MA; — MeA))

p(stAC, MA]', NB]‘, MBj,C + 1),‘ Zf (NA] > NBj)/\
2)
p(NA], MIsA,, NB]', MB]',C + 1); lf (NA] > NB]')/\

p(NA], MA]‘, mlsBe, MB]',C+ 1),’ lf (NB] > NA])/\
(MA] > NB]) VAN (MA] < NB]) VAN (Mij — NB]) < (MA] — MeA])

p(NA]‘,MA]', NB]', MIsB.,c+ 1);if (NB] > NA]')/\
(MA] > NB]) A (MA] < NB]) A (MEB]‘ — NB]) > (MA] — MEA])

p(NA;, MA;,NB;, MIsB,,c +1); if (NB; < NAjA
(MAJ < NB]) A\ (Mij — NB]) < (MB] — MEB]‘)

P(NA]‘,MA]',NB]',MZSAC,C + 1),’ lf (NB] < NA]')/\
(MA]' < MB]) N (M(SB]' — NB]) > (MB] — MEB]‘)

If it succeeded to handle overlap (c < I), then Equations (5) and (6) were executed to expand the
intervals, which were follow by Equation (7), which would be executed to generate N virtual features.
Otherwise, the feature would be deleted and would not be taken into the consideration for generating
virtual samples. Furthermore, the columns (features) in matrices A and B that failed to generate virtual
numbers according to the previous Equation (2) would be deleted, and a new two matrices with new
column dimension (H) would be generated NA y and NB;y

H denotes the new number of the column of matrices NA and NB after deletion of unsuccessful
columns (features) from matrices A and B, where H < J.

In addition, the generated single dimension matrices GAhy1, h = 1,...,H and GBhyq, h =
1,..., H were combined horizontally into a single matrix NGAyy and NGBy y respectively, as shown
in Equation (3).
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NGAny = [GAlN ...... GAhni], h=H
NGBy = [GBlyy...... GBhai], h=H
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®)

Finally, in Equation (4) combined vertically the NA;y with NGA Ny matrices, and NBjy with
NGBy into a single matrices AA (1, n)y and BBy, y)y respectively. These matrices (data) will be

used as learning data for the classifier.

NAg
NGAnH

AA( N)H

NBiy

(4)

Algorithm 1 The algorithm for virtual sample generation.

Input: Small number of samples as classes A and B.

Output: Hundreds of thousands or millions of samples (N).

1: loop I = 1: number_ of_ features/ /number of columns in the matrix

: {Find the Max, Min, and mean for each feature in classes A and B}
{Initialize MaxA = the maximum value in feature I in matrix A}
{Initialize MinA = the minimum value in feature I in matrix A}
{Initialize MeanA = the mean value for all values in feature I in matrix A}
{Initialize MaxB = the maximum value in feature I in matrix B}
{Initialize MinB = the minimum value in the feature I in matrix B}

: {Initialize MeanB = the mean value for all values in feature I in matrix B}
9: If (MinA >= MaxB) or (MinB >= MaxA) //Ideal cases: see Figure 2

10: {If (MaxA > MaxB) //Expand the intervals before generating N virtual samples
11: MaxA = MaxA + MeanA

12: else

13: MaxB = MaxB + MeanB

14: if (MinA < MinB) //Expand the intervals

15: MinA = MinA — MeanA

16: else

17: MinB = MinB — MeanB}

/ /Generate N virtual sample with a normal distribution as follows

18: VGA = MinA + (MaxA — MinA)*sum(rand(N, constant), 2)/constant;
19: VGB = MinB + (MaxB — MinB)*sum(rand(N, constant), 2)/constant;
20: else //Not ideal case: see Figure 3

21: call Algorithm 2 // The preprocessing

22: end loop

23: {New samples = small number of samples + N samples}

2

3:
4:
5:
6:
7
8

The pre-processing technique primarily grouped samples based on their spatial relationship.

The pre-processing algorithm can be summarized as follows:

Step 1: Find the maximum value, minimum value, and computed arithmetic mean for each
feature for each class. Following this, check for any possible overlaps between the maximum values
and minimum values for each feature in the first class with the corresponding feature in the second
class. It is necessary to exclude possible overlaps (ideal cases, as can be noticed in Figure 2) before

generating meaningful virtual samples.

Step 2: After having verified the absence of overlaps, expand the sides using the mean for
each feature and generating meaningful virtual samples based on a Gaussian distribution, as shown

in Figure 4.
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»

A < . H

MIN URG MAX URG MINRG MAX RG
B <A —A@ o —
MIN RG MAXRG MIN URG MAX URG
¢ <—@ 3 A—
MIN URG MAX URG MAX RG
MIN RG
b <« & o o —
MIN RG MAX RG MAX URG
MIN URG

MIN URG: Minimum value for each feature in Unrelated Group (Class A).
MAX URG: Maximum value for each feature in Unrelated Group (Class A).
MIN RG: Minimum value for each feature in Related Group (Class B).
MAX RG: Maximum value for each feature in Related Group (Class B).

Figure 2. Ideal cases where there is no overlapping between the feature and the same feature in the
corresponding class.

: < @A —A- *—
MIN URG MIN RG MAX RG MAX URG
Fo—Mk —@— @ A—
MIN RG MIN URG MAX URG MAX RG
¢ «— A —@— A o
MIN RG MIN URG MAX RG MAX URG
H «—@ A o A
MIN URG MIN RG MAX URG MAX RG

MIN URG: Minimum value for each feature in Unrelated Group (Class A).
MAX URG: Maximum value for each feature in Unrelated Group (Class A).
MIN RG: Minimum value for each feature in Related Group (Class B).
MAX RG: Maximum value for each feature in Related Group (Class B).

Figure 3. Overlapping cases between the feature and the same feature in the corresponding class.

Now, expand the intervals, both right and left sides, by Equations (5) and (6), respectively.

MA]‘ = MA]‘ + MeAj , MA]' > MB]'

()
MB; = MB; + MeB]- , otherwise

EMAX(MA), MB)) = {
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(6)
NB]' = NB]‘ - Mij , otherwise

EMIN(NA;, NB)) = {

Step 3: In the case of overlaps, as in the case depicted in Figure 3 of the process, start removing
overlaps by moving the points that are far from the mean.

&
N
MIN URG MAXURG MINRG MAX RG
<
N
MIN RG MAXRG MIN URG MAX URG

Figure 4. Generating meaningful virtual samples based on a Gaussian distribution.

Step 4: Repeat Steps 1-3 until removing all overlaps based on “Algorithm 2”. After this, the process
generated virtual samples based on a Gaussian distribution, Equation (7).

During this step, after the collections were formed using the pre-processing method for each
discriminative feature, the mean and standard deviation for each group for all discriminative features
were recalculated before moving to the next process. The distribution example of the virtual sample
distribution after the pre-processing method is illustrated in Figure 5.

(0] 500 1000 1500 2000 2500 3000

Figure 5. Data distribution after preprocessing method.
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Algorithm 2 is the algorithm for solving overlapping.

Input: Feature with overlapping} // A and B are two different classes//
Output: Feature without overlapping

1 :{Find the MaxA, MaxB, MinA, MinB, MeanA, and MeanB}

2 :{Initialize MIsA = the features in descending order for class A}

3 :{Initialize mlsA = the features in ascending order for class A}

4 :{Initialize MlsB = the features in descending order for class B}

5 :{Initialize mlsB = the features in ascending order for class B}

6 :{Initialize C = 1}// counter

7 : Loop until (MinA >= MaxB) or (MinB >= MaxA))/ /Ideal case: Figure 2.
8§:{C=C+1

9 : if (MinA < MinB and MaxB < MaxA)/ /Case E: Figure 3.

10 : if (MeanA — MinA <= MaxA-MeanA)

11 : MinA = mIsA[C]

12 : else

13 : MaxA = MIsA[C]

14 : if (MinA > MinB and MaxB > MinA and MaxB < MaxA)//Case G: Figure 3.
15 :if (MeanA — MinA <= MaxB-MeanB)

16: MinA = miIsA[C]

17: else

18: MaxA = MIsA[C]

19:if (MinB > MinA and MaxA > MinB and MaxA < MaxB)//Case H: Figure 3.
20:if (MeanB — MinB <= MaxA-MeanA)

21: MinB = mlIsB[C]

22: else

23: MaxB = MIsB|[C]

24: if (MinB < MinA and MaxA < MaxB)//Case F: Figure 3.

25 : if (MeanB — MinB <= MaxB — MeanB)

26 : MinB = mlsB[C]

27 : else

28: MaxB = MlsB[C]

29: end loop

30:{Back to Algorithm 1}

3.1.2. Random Virtual Generation Technique

In the second process, Equation (7) generated new virtual samples depending on the maximum,
minimum, mean, and standard deviation computed for every collection of all discriminative features
and added them to the corresponding group of the original dataset Equations (3) and (4). A MATLAB
function [33] was used to generate a virtual sample in a normal distribution. The distribution of the
virtual sample is illustrated in Figure 6.

The Gaussian distribution is very widely used for distributions in probability, statistics, and many
natural phenomena [34]. For example, heights, weight, blood pressure, the temperature during a year,
and IQ scores follow a normal distribution. The Gaussian normal distribution is helpful because of the
central limit theorem, which is a very important theorem in statistics. In addition, this was to avoid
accumulation of all values in a few points only.

G(X) = iﬂxw)z/z«rz where G(X) € [MIN, MAX @)

where:

X is a normal random variable.
M is a mean.

0 is a standard deviation.
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Feature values

Feature

Figure 6. Normal distribution for one feature after generating the virtual sample.

4. Experiment

4.1. Datasets

The above-described method was developed using a dataset provided by Scientific Institute
IRCCSEugenio Medea. In addition, the proposed technique was tested with other available
benchmark datasets.

The first dataset was collected at Scientific Institute IRCCS Eugenio Medea in Italy (Bosisio Parini,
Italy). The dataset included data from 30 participants divided into two groups: 15 children with
a clinical diagnosis of Autism Spectrum Disorder (ASD) (“ASD is a neurodevelopmental disorder
characterised by persistent social impairment, communication abnormalities, and restricted and
repetitive behaviours (DSM-5) (1, 2). ASD is a complex condition with an average prevalence of about
1% worldwide.”) and 15 participants with typical development. For each participant, 17 kinematic
parameters (numerical features) related to an upper-limb movement were registered [35]. In the original
work, a feature selection algorithm was used to identify the seven features that best differentiated
participants with ASD from healthy controls. In the present work, our algorithm randomly selected
six participants (from now on, samples) as an original small dataset, with three samples for each
group (ASD and healthy children), and the remaining 24 samples were used as the testing dataset.
For comparison, we generated 10,000 virtual samples using the proposed method for every collection
in the first trial, and then, this rose by the following numbers each time: 25,000, 50,000, 100,000, 200,000,
and 300,000. The identical learning procedure was repeated for five rounds.

The second dataset was the Escherichia coli dataset [30,36], and this included values of the
measurements of E. coli bacteria (commonly found in the human gut). This dataset included 336
samples. Each sample belonged to one of eight classes, where each class referred to a type of E. coli
bacteria. Each sample consisted of eight attributes; see the dataset description listed in Table 1.
The training and testing set for this dataset were chosen as follows. We selected 77 samples for
each of the first two classes (CPand IM) to ensure that we had binary classes with an equal sample
number. Then, three samples were selected randomly from each of the selected class. These three
samples represented the original small dataset. Starting from these three samples, the proposed
method generated 10,000 virtual samples for every class for the first time. Then, the number of virtual
samples were increased as follows: 25,000, 50,000, 100,000, 200,000, and 300,000 from each class. To give
an example of this, the total number of training samples for the first round was 20,006 (six actual
samples plus 20,000 virtual samples). The remaining 148 samples were used as testing data. After that,
we repeated the experiment, randomly selecting five samples as an original small dataset, from each
class of the E. coli dataset. Doing so, the total number of training samples was 10 plus the virtual
samples. The remaining 144 samples were used as testing samples, and these steps were repeated
five times.

The third dataset was the Breast Tissue dataset [36,37], and this included values of the
measurements relative to the electrical impedance of freshly-excised tissue from the breast. This dataset
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included 106 samples where each sample belonged to one of six classes. Six classes of freshly-excised
tissue were studied using electrical impedance measurements: carcinoma, fibroadenoma, mastopathy,
glandular, connective, and adipose. The training and the testing set for this dataset were chosen as
follows. We selected 15 samples for each of the first two classes (carcinoma and fibroadenoma) to
ensure that we had binary classes with an equal samples number. Then, three samples were selected
randomly from each of the selected classes. These three samples represented the original small dataset.
Starting from these three samples, the proposed method generated 10,000 virtual samples for every
class for the first time. Then, the number of virtual samples were increased as follows: 25,000, 50,000,
100,000, 200,000, and 300,000 from each class. To give an example of this, the total number of training
samples for the first round was 20,006 (six actual samples plus 20,000 virtual samples). The remaining
24 samples were used as testing data. After that, we repeated the experiment, randomly selecting five
samples as an original small dataset, from each class of the breast tissue dataset. Doing so, the total
number of training samples was 20 plus the virtual samples. The remaining 20 samples were used as
testing samples. These steps were repeated five times.

Table 1. Description of the three datasets.

Datasets Number of Samples Number of Attributes Number Of Classes
IRCCSMedea 30 17 2
E. coli 336 8 8
Breast Tissue 106 9 6

4.2. Classification Techniques

In this study, a deep neural network was implemented with a stacked auto-encoder, using the
MATLAB Neural Network Toolbox™ auto-encoder functionality [38] for training a deep neural
network and to classify an ASD. In more detail, a stacked auto-encoder is a neural network composed
of various layers of sparse auto-encoders where the outputs of each layer are connected to the inputs
of the sequential layers.

For classification, we used Softmax, which is a layer located in the top layer of the fully-connected
layer network. Its non-linearity predicts the probability distribution over classes that have been given
the input sentence [38,39]. Details of the Softmax method were described in [40]. In the present work,
we applied Softmax to validate and evaluate the performance of our newly-proposed method.

In a neural network, it is not feasible to determine the goodness of the network topology only
on the basis of the number of inputs and outputs [40]. Usually, a neural network must be empirically
specified, selecting a model and determining the hidden layer quantity with the minimum validation
error among multiple variants of the models [40]. Our first experiment was implemented by using
a deep learning network with 100 hidden nodes in each layer. In the second experiment, we reduced
the number of hidden nodes to 50, whereas in the third experiment, the first layer included 100 hidden
nodes and the second layer 50 hidden nodes. This procedure was carried out for investigating the
effect of hidden node size in the deep learning network. We continued until we obtained satisfactory
results. The best performance was 100 hidden nodes in the first layer and 50 hidden nodes in the
second layer.

5. Experimental Results

This section presents the results of the experiments on the three datasets (IRCCS Medea, E. coli,
and Breast Tissue) in detail, for each dataset.

For the IRCCS Medea dataset, the averages accuracies are shown in Figures 7-9 and listed
in Table 2.

For the E. coli dataset, the average accuracies are shown in Figures 10 and 11 and are listed
in Table 3.
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The third dataset was the Breast Tissue dataset. The average accuracies after performing these
steps are shown in Figures 12 and 13 and listed in Table 4.

IRCCS Medea dataset

100%
z
§ o o
«
= 60%
S
‘3:5 40%
2
= 20%
)
<
2 0% T T T \
s 3 5 6 9
< Number of original samples for each class

Figure 7. The curve of the average accuracies of the simulated datasets.

The graph in Figure 7 depicts the relationship between the number of original samples for each
class that was used to generate the virtual sample and the average of classification accuracy. The graph
showed a growth in the relationship between six samples, followed by a levelling out. Overall,
from this graph, it is possible to conclude that the number of original samples was not critical for
generating the virtual sample. Moreover, this demonstrated that the proposed method was efficient
with only a small number of original samples.

IRCCS Medea dataset

100.00%
90.00%

80.00% */.f//;____'.ﬁ—
70.00% -
60.00%
50.00%
40.00%
30.00% =i Deep learning with VSG
20.00%
10.00%
0.00% T T T \
3 5 6 9

Number of original samples for each class

v

~i—Linear SVM without
VSG

Average Classification accurac

Figure 8. The trend of average accuracy using the IRCCS dataset. The line graph in Figure 8 shows the
comparison between the performance of linear SVM without Virtual Sample Generation (VSG) and
deep learning with the VSG number in the IRCCS Medea dataset. The x-axis of this graph shows the
original samples for each class that were used to generate the virtual sample in deep learning and the
training sample for linear SVM, while the average of the classification accuracy is the y-axis.
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Table 2. The results of the average accuracy using the IRCCS Medea dataset.

Number of Number of the Total Number Number of Number of Deep Linear SVM Accuracy with
Original Samples  Virtual Samples of Virtual Samples for Samples for  Learning Accuracy VSG and Deep Improvement
for Each Class for Each Class Samples Training Testing without VSG = without VSG  Learning
3 10,000 20,000 20,006 24 66.7% 70.83% 79.2% 8.37%
3 25,000 50,000 50,006 24 66.7% 70.83% 79.2% 8.37%
3 50,000 100,000 100,006 24 66.7% 70.83% 75% 4.17%
3 100,000 200,000 200,006 24 66.7% 70.83% 75% 4.17%
3 200,000 400,000 400,006 24 66.7% 70.83% 75% 4.17%
3 300,000 600,000 600,006 24 66.7% 70.83% 75% 4.17%
5 10,000 20,000 20,010 20 65.0% 75% 90% 15%
5 25,000 50,000 50,010 20 65.0% 75% 95% 20%
5 50,000 100,000 100,010 20 65.0% 75% 85% 10%
5 100,000 200,000 200,010 20 65.0% 75% 90% 15%
5 200,000 400,000 400,010 20 65.0% 75% 90% 15%
5 300,000 600,000 600,010 20 65.0% 75% 85% 10%
6 10,000 20,000 20,012 18 72.2% 77.78% 94.4% 16.62%
6 25,000 50,000 50,012 18 72.2% 77.78% 88.9% 11.12%
6 50,000 100,000 100,012 18 72.2% 77.78% 88.9% 11.12%
6 100,000 200,000 200,012 18 72.2% 77.78% 83.3% 5.52%
6 200,000 400,000 400,012 18 72.2% 77.78% 88.9% 11.12%
6 300,000 600,000 600,012 18 72.2% 77.78% 83.3% 5.52%
9 10,000 20,000 20,018 12 75.0 83.33% 83.3% 0%
9 25,000 50,000 50,018 12 75.0 83.33% 83.3% 0%
9 50,000 100,000 100,018 12 75.0 83.33% 91.8% 8.33%
9 100,000 200,000 200,018 12 75.0 83.33% 91.8% 8.33%
9 200,000 400,000 400,018 12 75.0 83.33% 83.3% 0%
9 300,000 600,000 600,018 12 75.0 83.33% 83.3% 0%
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Table 3. The results of the average accuracy using the E. coli dataset.

Number of Number of the Total Number Number of Number of Deep Linear SVM Accuracy with
Original Samples  Virtual Samples of Virtual Samples for the Sample Learning Accuracy VSG and Deep Improvement
for Each Class for Each Class Samples Training for Testing without VSG = without VSG  Learning
3 10,000 20,000 20,006 148 50% 83.8% 92.8% 9.0%
3 25,000 50,000 50,006 148 50% 83.8% 93.9% 10.1%
3 50,000 100,000 100.006 148 50% 83.8% 93.9% 10.1%
3 100,000 200,000 200,006 148 50% 83.8% 91.9% 8.1%
3 200,000 400,000 400,006 148 50% 83.8% 93.2% 10.1%
3 300,000 600,000 600,006 148 50% 83.8% 91.2% 8.1%
5 10,000 20,000 20,010 144 50% 85.4% 93.8% 8.4%
5 25,000 50,000 50,010 144 50% 85.4% 91.0% 5.6%
5 50,000 100,000 100,010 144 50% 85.4% 94.4% 9.0%
5 100,000 200,000 200,010 144 50% 85.4% 91.0% 5.6%
5 200,000 400,000 400,010 144 50% 85.4% 94.4% 9.0%
5 300,000 600,000 600,010 144 50% 85.4% 90.3% 4.9%
6 10,000 20,000 20,012 142 50% 85.2% 92.3 7.1%
6 25,000 50,000 50,012 142 50% 85.2% 93.0% 7.8%
6 50,000 100,000 100,012 142 50% 85.2% 92.3% 7.1%
6 100,000 200,000 200,012 142 50% 85.2% 91.5% 6.30%
6 200,000 400,000 400,012 142 50% 85.2% 929 7.7%
6 300,000 600,000 600,012 142 50% 85.2% 91.5% 6.30%
9 10,000 20,000 20,018 136 50% 91.9% 93.4% 1.5%
9 25,000 50,000 50,018 136 50% 91.9% 92.6% 0.07%
9 50,000 100,000 100,018 136 50% 91.9% 94.9% 3.0%
9 100,000 200,000 200,018 136 50% 91.9% 94.9% 3.0%
9 200,000 400,000 400,018 136 50% 91.9% 95.6% 3.74%
9 300,000 600,000 600,018 136 50% 91.9% 94.9% 3.0%
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Table 4. The results of the average accuracy using the Breast Tissue dataset.

Number of Number of the Total Number Number of Number of Deep Linear SVM Accuracy with
Original Samples  Virtual Samples of Virtual Samples for the Sample Learning Accuracy VSG and Deep Improvement
for Each Class for Each Class Samples Training for Testing without VSG = without VSG  Learning
3 10,000 20,000 20,006 24 79.17% 87.5% 95.8% 8.3%
3 25,000 50,000 50,006 24 79.17% 87.5% 95.8% 8.3%
3 50,000 100,000 100,006 24 79.17% 87.5% 95.8% 8.3%
3 100,000 200,000 200,006 24 79.17% 87.5% 95.8% 8.3%
3 200,000 400,000 400,006 24 79.17% 87.5% 91.7% 4.2%
3 300,000 600,000 600,006 24 79.17% 87.5% 91.7% 4.2%
5 10,000 20,000 20,010 20 85.0% 85.0% 90.0% 5.0%
5 25,000 50,000 50,010 20 85.0% 85.0% 95.0% 10.0%
5 50,000 100,000 100,010 20 85.0% 85.0% 90.0% 5.0%
5 100,000 200,000 200,010 20 85.0% 85.0% 90.0% 5.0%
5 200,000 400,000 400,010 20 85.0% 85.0% 90.0% 5.0%
5 300,000 600,000 600,010 20 85.0% 85.0% 90.0% 5.0%
6 10,000 20,000 20,012 18 88.89% 88.89% 88.9% 0.0%
6 25,000 50,000 50,012 18 88.89% 88.89% 88.9% 0.0%
6 50,000 100,000 100,012 18 88.89% 88.89% 88.9% 0.0%
6 100,000 200,000 200,012 18 88.89% 88.89% 88.9% 0.0%
6 200,000 400,000 400,012 18 88.89% 88.89% 94.4% 5.51%
6 300,000 600,000 600,012 18 88.89% 88.89% 94.4% 5.51%
9 10,000 20,000 20,018 12 91.70% 91.70% 91.7 0.0%
9 25,000 50,000 50,018 12 91.70% 91.70% 100% 8.3%
9 50,000 100,000 100,018 12 91.70% 91.70% 100% 8.3%
9 100,000 200,000 200,018 12 91.70% 91.70% 95.8% 4.19%
9 200,000 400,000 400,018 12 91.70% 91.70% 91.7% 0.00%
9 300,000 600,000 600,018 12 91.70% 91.70% 91.70% 0.00%
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The plot depicted in Figure 8 shows distinctly that the present deep learning method with the
proposed method exceeded in the first three intervals the linear Support Vector Machine method
(SVM) used in [35]. In the 3, 5, and 6 samples, the “proposed method showed better results in terms of
classification performance when using limited sample size compared to traditional linear SVM.”

The box plot in Figure 9 shows distinctly that the present deep learning method with the proposed
method exceeded in overall comparisons the linear SVM method using the IRCCS Medea dataset.

IRCCS Medea dataset

100.00%
95.00%
90.00%
85.00%

80.00%

75.00%

Average Test Accuracy

70.00%

B Linear SVM without VSG M Deep Learning with the VSG

Figure 9. Overall comparisons of the experimental results using the IRCCS Medea dataset.
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Figure 10. The trend of average accuracy using the E. coli dataset. The x-axis of this graph shows the
original samples for each class that were used to generate the virtual sample in deep learning and the
training sample for linear SVM, while the average of classification accuracy is the y-axis.

The line graph in Figure 10 shows the comparison between the performance of linear SVM
without VSG and deep learning with VSG number in the E. coli dataset. The experiment of our method
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performed on the E. coli dataset replicated the trend of findings for the IRCCS Medea dataset. Indeed,
it was clear that deep learning with the proposed method outperformed the linear SVM method
without VSG for the first of all intervals considered.

The box plot in Figure 11 shows distinctly that the present deep learning method with the
proposed method exceeded in overall comparisons the linear SVM method using the E. coli dataset.

The line graph in Figure 12 shows the comparison between the performance of linear SVM

without VSG and deep learning with VSG in the Breast Tissue dataset. The experiment of our method
performed on the Breast Tissue dataset replicated the trend of the findings for the IRCCS Medea dataset
and the E. coli dataset. Indeed, it is clear that deep learning with the proposed method outperformed
the linear SVM method without VSG for the first three intervals considered.

E-coli dataset
100.00%

98.00%
96.00%

94.00%

92.00% °
90.00%
88.00%
84.00%
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B Linear SVM without VSG B Deep Learning with the VSG

Figure 11. Overall comparisons of experimental results using the E. coli dataset.
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Figure 12. The trend of the average accuracy using the Breast Tissue dataset. The x-axis of this graph
shows the original samples for each class that were used to generate the virtual sample in deep learning
and the training sample for linear SVM, while the average of classification accuracy is the y-axis.
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The box plot in Figure 13 shows distinctly that the present deep learning method with the proposed
method exceeded in overall comparisons the linear SVM method using the Breast Tissue dataset.

Breast Tissue dataset
105.00%
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97.00%
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91.00%
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Average Test Accuracy
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B Linear SVM without VSG M Deep Learning with the VSG

Figure 13. Overall comparisons of the experimental results using the Breast Tissue dataset.

The graph in Figure 14 shows the relationship between the number of virtual samples (five original
samples were used to generate these samples) and the average of classification accuracy. It may be seen
clearly that average accuracy reached a peak with 25,000 samples. The accuracy performance remained
adequately stable until 200,000 samples; then, a loss of accuracy was observed for 300,000 samples.
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Figure 14. The accuracy using only the original five small training IRCCS Medea datasets. The x-axis
of this graph shows the number of virtual samples, while average accuracy appears on the y-axis.
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6. The Numerical Example

In this section, we provide a numerical example to explain the proposed method,
i.e., “the proposed method simulation.” Five samples from both classes A and B are shown
in Tables 5 and 6, respectively. Then, the maximum and minimum values were extracted, and the mean
values were calculated from the first five features in both classes shown in Tables 7-9, respectively.

Table 5. Five samples from the first class (A).

Feature1 Feature2 Feature3 Feature4

5.1000 3.5000 1.4000 0.2000
4.9000 3.0000 1.4000 0.2000
4.7000 3.2000 1.3000 0.2000
4.6000 3.1000 1.5000 0.2000
5.0000 3.6000 1.4000 0.2000

Table 6. Five samples from the first class (B).

Feature1 Feature2 Feature3 Feature 4

7.000 3.2000 4.7000 1.4000
6.4000 3.2000 4.5000 1.5000
6.9000 3.1000 4.9000 1.5000
5.5000 2.3000 4.0000 1.3000
6.5000 2.8000 4.6000 1.5000

Table 7. The maximum values extracted from the first five features.

Feature1 Feature2 Feature3 Feature 4

MAXA 5.1000 3.6000 1.5000 0.2000
MAXB 7 3.2000 4.9000 1.5000

Table 8. The minimum values extracted from the first five features.

Feature1 Feature2 Feature3 Feature 4

MINA 4.600 3.0000 1.3000 0.2000
MINB  5.50000 2.30000 4.00 1.3000

Table 9. The mean values calculated from the first five features.

Feature1l Feature2 Feature3 Feature4

Mean A 4.8600 3.2800 1.4000 0.2000
Mean B 6.4600 2.9200 4.5400 1.4400

Features 1, 3, and 4 represented ideal cases, where we expanded the intervals and started to
generate virtual random numbers based on a Gaussian distribution without any pre-processing,
but Feature 2 was case H, so we performed a preprocessing before generating random numbers.
In case H, to convert it to the ideal case, the MaxB or MinA would be changed depending on this
simple comparison.

If (MeanA — MinA > MaxB — MeanB)

MinA = next position in the list, which is sorted in ascending order;

Else

MaxB = next position in the list, which is sorted in descending order;

End

The condition is false (3.28 - 3 > 3.2 - 2.92), so MaxB = 3.1;

Check that the case is still not the ideal case; it is a case H;
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Check the same condition;

It is true now, so MinA = 3.1;

Check that the case is an ideal condition to expand the interval and start to generate virtual
random numbers based on a Gaussian distribution as shown in Tables 10 and 11.

Table 10. Ten virtual samples (A).

Feature1l Feature2 Feature3 Feature4

4.8856 3.7828 1.3874 0.2000
4.9425 3.0040 1.4145 0.2000
5.0047 3.4980 1.4130 0.2000
5.0954 3.4012 1.4648 0.2000
4.6168 3.0401 1.4256 0.2000
4.3748 3.3998 1.3600 0.2000
4.5446 3.5024 1.3004 0.2000
5.2189 3.5120 1.4902 0.2000
4.0010 3.5980 1.4533 0.2000
4.3178 3.5890 1.4503 0.2000

Table 11. Ten virtual samples (B).

Feature1 Feature2 Feature3 Feature4

5.7083 2.8643 4.4777 1.3378
6.0240 2.4625 4.2046 1.4321
5.7270 2.8160 4.6385 1.4882
6.2451 2.4472 4.1338 1.4951
6.7130 3.1154 4.5923 1.3216
6.4493 2.3696 4.5706 1.3358
6.5326 2.6047 4.2064 1.4493
6.4594 2.8226 4.1640 1.3099
6.5940 2.7277 4.1497 1.3143
6.7898 3.0248 4.1346 1.3978

7. Conclusions and Future Extensions

Deep neural networks are successful learning tools for building nonlinear models; however,
they display unstable performance when using small datasets. In order to solve this issue, the present
work proposed a new technique to generate virtual samples, starting from the original small dataset,
which can be added to the original samples to expand the training dataset significantly for machine
learning. Thus, our method can produce meaningful virtual samples closely related to the original
datasets in order to make the learning phase more stable and overcome the common limitations of the
classification performance, such as the limited size of clinical sample data.

The newly-developed technique focused on binary classification. However, this technique can
also be used for multi-class data to generate virtual samples. In the case of multi-class data, the only
condition needed would be that intervals must not overlap. Apart from this, the remaining procedure
would be the same as for binary classification.

As just mentioned, our method required not having overlaps between intervals. The system
checked if the intervals had a direct ideal case (Figure 2), then the system started generating
a virtual sample without any pre-processing. Otherwise, the system tried to get rid of overlaps
if success expanded the interval range, and it would start to generate virtual samples between the
known intervals. Otherwise, it would skip to the next features. Therefore, the novel technique
was easy to apply and could help to make the learning stage more stable and enhance the
classification performance.

The application of our method to the IRCCS Medea and UCI datasets showed that the present
technique could significantly improve the classification accuracy in cases where the dataset had
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a limited size. More specifically, when applied to the IRCCS Medea dataset, our method augmented
the classification accuracy from 84.9 [35] to 95%, 83.8%-93.9% for only three samples in each class for
the E. coli dataset, and from 91.7%-100% for the Breast Tissue dataset.

These findings demonstrated that our technique not only offered high classification accuracy,
but was also reliable and easy to apply (refer to Algorithms 1 and 2). The experiments reported
in this study also showed that, given an appropriate number of the generated virtual samples,
the generalization efficiency of the classification on the new training set may be better than that
of the original training set, and this agrees with many studies such as [34].

Future studies might delineate more specific matters in determining the best number for the
original sample and the virtual sample in order to get maximum accuracy in terms of the results.
In addition, the technique could be applied to a wide dataset to determine the strengths and
limitations. These suggested directions could help to ensure that this important methodology is
further and enhanced.
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