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Abstract: Background subtraction plays a fundamental role for anomaly detection in video
surveillance, which is able to tell where moving objects are in the video scene. Regrettably, the regular
rotating pumping unit is treated as an abnormal object by the background-subtraction method in
pumping-unit surveillance. As an excellent classifier, a deep convolutional neural network is able
to tell what those objects are. Therefore, we combined background subtraction and a convolutional
neural network to perform anomaly detection for pumping-unit surveillance. In the proposed method,
background subtraction was applied to first extract moving objects. Then, a clustering method was
adopted for extracting different object types that had more movement-foreground objects but fewer
typical targets. Finally, nonpumping unit objects were identified as abnormal objects by the trained
classification network. The experimental results demonstrate that the proposed method can detect
abnormal objects in a pumping-unit scene with high accuracy.
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1. Introduction

Anomaly detection in video surveillance has become a public focus. It is an unsupervised learning
task that refers to the problem of identifying abnormal patterns or motions in video data [1–3]. One of the
most effective and frequently used methods of anomaly detection is to adopt background-subtraction
methods in video surveillance. Over the past couple of decades, diverse background-subtraction
methods have been presented by researchers to identify foreground objects in the videos [4–6]. The main
idea of the background-subtraction algorithm is to build a background model [7], compare the current
frame against the background model, and then detect moving objects according to their differences.
There are some representative methods. For instance, Stauffer and Grimson proposed a Gaussian
mixture model (GMM) for background modeling in cases of dynamic scenes, illumination changes,
shaking trees, and so on [8]. Makantasis et al. estimated the thermal responses of each pixel of
thermal imagery as a mixture of Gaussians by a Bayesian approach [9]. Barnich et al. applied random
aggregation to background extraction and proposed the ViBe (visual background extractor) method [10].
In building a samples-based estimation of the background and updating the background models,
ViBe uses a novel random selection strategy that indicates that information between neighboring pixels
can propagate [11,12]. Elgammal et al. presented a nonparametric method based on kernel-density
estimation (KDE) [13]. In this method, it is not necessary to estimate the parameter because it depends
on previously observed pixel values, and there is no need to store the complete data. KDE has
been commonly applied to vision processing, especially in cases where the underlying density
is unknown. Hofmann et al. proposed the pixel-based adaptive segmenter (PBAS) in 2012 [14].

Algorithms 2019, 12, 115; doi:10.3390/a12060115 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-2400-0323
https://orcid.org/0000-0002-5775-1222
http://www.mdpi.com/1999-4893/12/6/115?type=check_update&version=1
http://dx.doi.org/10.3390/a12060115
http://www.mdpi.com/journal/algorithms


Algorithms 2019, 12, 115 2 of 13

This algorithm, a nonparametric model based on pixels, combines the advantages of ViBe while making
some improvements. It has realized nonparameter moving-object detection, and it is robust to slow
illumination variation. St-Charles et al. proposed self-balanced sensitivity segmenter (SuBSENSE),
which uses the principle of sample consistency and a feedback mechanism, which means that this
background model can adapt to the diversity of complex backgrounds [15].

These existing background-subtraction methods are used to detect foreground objects in many
applications showing good performance. However, in pumping-unit surveillance, the rotating pumping
unit is judged as a foreground object when a traditional background-subtraction method is used
for anomaly detection. Because the traditional background-subtraction method cannot obviate the
interference of a rotating pumping unit, this results in losing the purpose of anomaly monitoring in
video surveillance. On the other hand, intelligent monitoring systems are capable to detect unknown
object types or unusual scenarios, whereas traditional background-subtraction methods can only
provide the regions of abnormal objects and not give their specific category. Thus, the regions
of interest, which are extracted from the image background by background-subtraction methods,
need further processing.

In recent years, deep learning has made remarkable achievements in the field of computer vision.
Deep learning is widely used in image recognition, object detection and classification [16,17]. This has
achieved state-of-the-art results in those fields. GoogLeNet [18] is a deep convolutional neural network
(CNN) [19]-based system that has been used in object recognition.

In this paper, we combined background subtraction and a CNN for anomaly detection in
pumping-unit surveillance. In the proposed method, the background-subtraction method is used to
extract motion objects in scenes, and a CNN identifies motion objects. A large quantity of samples is
needed to train a deep CNN, but in practical application, it is always hard to provide enough samples.
Therefore, a pretrained fine-tuned CNN was used in the proposed method.

The rest of this paper is organized as follows. Section 2 gives a brief introduction of pumping-unit
surveillance. Section 3 presents the details of the proposed method. Section 4 shows the experiments
on surveillance videos of the pumping unit to verify the validity and feasibility of the proposed method.
Finally, conclusions are given in Section 5.

2. Problem of Pumping-Unit Surveillance

When a background-subtraction method is used for abnormal detection in a pumping-unit scene,
the rotating pumping unit is extracted as a foreground object. As shown in Figure 1, the pumping
unit is also detected as a foreground object as the vehicle. It is worth noting that several parts of
the pumping unit are detected as the foreground rather than the whole pumping unit. In a normal
situation, the rotating pumping unit should not be regarded as an abnormal object. To detect
abnormal scenarios, a scene with a moving pumping unit that should be regarded as part of the
background. Therefore, simply using background subtraction is not suitable for abnormal detection in
a pumping-unit scene. The problem of pumping-unit surveillance is to detect real abnormal objects,
and recognize and classify the objects. Figure 2 shows the outline of pumping-unit surveillance.
Pumping units, vehicles, and pedestrians in pumping-unit scenes should be correctly identified
and classified.
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Figure 1. Anomaly detection of pumping unit by a background-subtraction method: (a) pumping-unit
scene; (b) foreground objects.
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3. Proposed Method

In this section, an intelligent method of pumping-unit surveillance is presented in detail.
The system of pumping-unit surveillance is the centralized distributed architecture. Figure 3 shows the
framework of the proposed method, including training and detection phases. In front-end processors,
the input frame of each pumping-unit monitoring scene is processed by a background-subtraction
method; so far, moving foreground objects are extracted. In a back-end processor, these objects are
classified by clustering technology and then fed into the pretrained GoogLeNet [18]. Transfer learning
method is used to retrain GoogLeNet. In this way, the classification network is completed, which is
used for the classification and recognition of foreground objects.
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3.1. Moving-Object Extraction

Background subtraction is the basis of subsequent abnormal detection. In the training phase,
the segmentation result obtained by background subtraction is used as a label mask. In the detecting
phase, the foreground object obtained by background subtraction is used as the input of subsequent
recognition and classification. In this way, it is only needed to judge and classify the foreground
object rather than to recognize the whole image with a sliding window. Therefore, computation
can be reduced and processing speed can be improved. The advantage of this method is that it
is unsupervised; hence, the performance of background subtraction directly affects classification
accuracy. In this paper, SuBSENSE [20], a state-of-the-art unsupervised background-subtraction
method, was adopted for extracting the foreground object in the video. SuBSENSE is a pixel-level
background-subtraction algorithm, and its basic idea is to use color and texture features to first detect
moving objects, then introduce the idea of feedback control to adaptively update the parameters in the
background model with the obtained rough segmentation results, so as to achieve better detection
results. Foreground F can be obtained after video frame I is processed by SuBSENS:

F(i, j) =
{

1, i f SuBSENSE(I(i, j)) is f oreground
0, i f SuBSENSE(I(i, j)) is background

(1)

where i and j are the position coordinates of the pixels. After obtaining the foreground pixels,
the connected component-labeling method is used to locate and mark each connected region in the
image, so as to obtain foreground target O [21]:

O = blob(F) > n (2)

where n is the least number of pixels in a connected region; in this paper, we set n = 150, namely,
only the connected regions with more than 150 pixels were regarded as foreground objects.
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3.2. Clustering and Labeling

In the training phase, a large number of moving objects O are extracted by the
background-subtraction method. According to prior knowledge, these objects have two characteristics:
(1) numerous objects; (2) fewer categories.

Several parts of the pumping unit are detected as foreground targets, which are classified into
the same category. The moving objects that need to be recognized in the pumping-unit monitoring
site are divided into three categories: pumping unit, vehicle, and pedestrian. There are many kinds
of clustering algorithms that are used to deal with data-structure partition [22–24]. In this paper,
foreground objects are subdivided into several subcategories by a hierarchical clustering algorithm,
and then these subcategories are divided into pumping unit, vehicle, and pedestrian through human
intervention, which are used as the training data of GoogLeNet.

Strategies for hierarchical clustering generally fall into two types, agglomerative and divisive [25].
This clustering method uses data linkage criteria to repeatedly merge or split the data to build
a hierarchy of clusters through a hierarchical architecture. The clustering process is as follows:

(1) Assuming that foreground moving object O = {o1, o2, · · · ok} has k samples, the resolution of
foreground moving object O is resized to 224 × 224.

(2) Samples are aggregated by a bottom–up approach, and Euclidean distance is chosen as the
similarity measurement between categories:

d(oi, o j) =
∣∣∣∣∣∣oi − o j

∣∣∣∣∣∣
2 (3)

where i, j = 1, 2 · · · k. Linkage criteria use the average distance between all pairs of objects in any
two clusters:

D(r, s) =
1

nrns

nr∑
i=1

ns∑
j=1

d
(
ori, osj

)
, (4)

where r and s are clusters and nr and ns are the number of objects in cluster r and s, respectively.
Similarly, ori and osj are the ith and jth object in cluster r and s, respectively.

(3) The pedestrian and vehicle categories in hierarchical clustering are selected separately, and the
other categories are classified as part of the pumping-unit category.

Figure 4 shows the clustering process of foreground objects.
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3.3. Transfer Learning

In traditional machine learning, a training set and test set are required to be in the same feature
space and have the same data distribution. However, this demand is not satisfied in many cases,
unless plenty of time and effort are spent to label the mass as of date. Transfer learning is a branch of
machine learning. It can apply trained data to new problems, which can help avoid many data-labeling
efforts. As deep learning develops quickly, transfer learning is increasingly combined with neural
networks. In this paper, we used parameter-based transfer learning to address the problem of lacking
abundant image samples of the labeled pumping unit.

In the classification application of pumping-unit monitoring, it is very time consuming to retrain
a new neural network. Training data are not rich enough to train a deep neural network with strong
generalization ability. To address this problem, transfer learning is desirable. For the past few years,
transfer learning has been widely applied in various fields [26,27]. Pretrained models are usually based
on large datasets, which can expand our training data, make the model more robust, improve the
generalization ability, and save the time cost of training. The weight of the pretrained network is
initialized and then fine-tuned on the new data. Compared with retraining the weight of network,
this method can achieve better accuracy.

GoogLeNet is a pretrained convolutional neural network; it was trained on ImageNet [28],
which has a million images. In this paper, GoogLeNet was retrained in pumping-unit data to classify
objects that were extracted in the pumping-unit scene. Figure 5 shows the architecture of the fine-tuned
GoogLeNet. Replacing the last three layers of GoogLeNet are a fully connected layer, a softmax layer,
and a classification output layer. These three layers combine the general features of the objects extracted
by the network, and convert the objects into the probability of different category labels. The size of
the final full connection layer was set to 3, which is the same as the number of object categories in
the pumping data. Then, the earlier layers in the network were frozen, that is, in subsequent training,
the learning rate of these layers was set to 0, and the weight parameters of these layers were kept
unchanged. Freezing earlier layers not only speeds up training, but also prevents overfitting of the
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pumping data. In this paper, the layers before inception 5a were frozen, and the layers behind it
were retrained. The loss function is cross-entropy loss, and the L2 regularization term of the weights
was added to the loss function to alleviate the effect of overfitting. Thus, the objective function was
as follows:

w∗ = arg min
w

1
m

m∑
i=1

n∑
j=1

ti j log yi j +
1
2
λwTw (5)

where m is the number of samples, n is the number of classes, tij is the indicator that the ith sample
belongs to the jth class, w is the weight vector, and λ is the regularization factor. yij is the value from
the softmax function, which is the output of sample i for class j:

yi j = so f tmax
(
zi j

)
=

ezi j∑
j ezi j

(6)
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4. Experiments

In this section, four surveillance videos of pumping units were used to test the performance of the
proposed method. Table 1 shows the details of these video datasets.

Table 1. Details of video datasets.

Data Frame Dimension FPS Number of Frames Objects

video 1 320 × 240 24 1677 Pumping unit, person
video 2 352 × 288 24 1708 Pumping unit, person, vehicle
video 3 640 × 480 24 1643 Pumping unit, person
video 4 640 × 480 24 4031 Pumping unit, person, vehicle

There are several performance indicators used to quantificationally evaluate the performance of
the classification model [29]:

Accuracy = TP+TN
TP+TN+FP+FN ,

Recall = TP
TP+FN ,

Precision = TP
TP+FP ,

Speci f icity = TN
TN+FP ,

F1 = 2× Precision × Recall
Precision + Recall ,

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. The higher
the value of these indicators, the better the performance of the classification model.

4.1. Foreground Detection

The input video frame was segmented into foreground and background by the SuBSENSE
algorithm, and multiple foreground objects were extracted. SuBSENSE [15,20] combines the color
and local binary-similarity pattern features to detect moving objects. This method outperformed
all previously tested state-of-the-art unsupervised methods on the CDnet [30] dataset. As a famous
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benchmark dataset, CDnet provides ground truths for all video frames that range over diverse
detection challenges such as dynamic background and various lighting conditions. Based on its
excellent performance, SuBSENSE was used to extract the moving objects. Figure 6 presents the
results of background subtraction. As can intuitively be seen, the segmentation results of SuBSENSE
outperformed other methods. In foreground detection, several parts of the pumping unit were normally
detected as the foreground rather than the whole pumping unit. The reason is that pumping units
have a large scale along with periodic rotation in surveillance scenes. Some parts of the pumping unit
are judged as background by background-subtraction methods.
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Pumping unit surveillance is a long time supervision; therefore, the background subtraction
method has to address the light condition changes. In order to further verify the foreground extraction
ability of the background subtraction method in light condition changes, a long term video was tested.
Figure 7 shows the background subtraction results in the variant light conditions. As can intuitively be
seen, the region of foreground detection of the pumping unit is less sensitive to the changing light.
The experimental results show that SuBSENSE is able to eliminate the interference caused by light
condition gradual changes.
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Figure 7. Foreground detection in light condition changes cases. Screenshots and corresponding
foreground detection results are illustrated from the first to the second rows, respectively. Numbers in
the third row are time.

4.2. Object Classifiction

Through the clustering method mentioned in Section 3.2, these foreground objects were classified
into three categories: pumping unit, person, and vehicle. In total, 1200 images were randomly selected
as the image dataset to train and verify the performance of the classification network, which included
500 images of the pumping unit, 500 person images, and 200 vehicle images. In the monitoring video,
there were a large number of foreground objects and a small number of typical targets, which means
that each category of targets appeared repeatedly. 30 percent of images in the image dataset were
randomly selected as the training set, and the remaining 70% as the testing set. The training process of
the classification network is shown in Figure 8. The model tends to be convergent after 50 training
iterations. The trained model can achieve high accuracy and low loss.
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The classification network obtained by retraining GoogLeNet through the fine-tuned method
was used for moving-object detection in the pumping-unit monitoring scene. Figure 9 shows the
classifications of moving objects in the scene identified by the classification network. After moving
objects are recognized and classified, the pumping unit is not regarded as an abnormal object,
while persons and vehicles were output as abnormal objects. If there is no moving pumping unit in the
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detected foreground objects, it means that the pumping unit has stopped working, and an abnormal
alarm should be given.
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To evaluate the proposed method, a histogram of oriented gradient (HOG) features and a multiclass
support vector machine (SVM) classifier were used for comparative experiments. SVM is a classical
classification method, while HOG features are a feature descriptor that is used for object detection
in computer vision and image processing. It forms the features by calculation and statistics of the
HOG in local areas of the image. HOG features combined with SVM classifiers have been widely
used in image recognition [31]. The confusion matrices of the retrained net and SVM are presented in
Figures 10 and 11, respectively. The experiment classification results of the three classes are listed in
Table 2. To assure confidence in the experimental results, the experiment process was repeated 10 times.
The average values of each metric are reported. The overall accuracy of the proposed method was
0.9988, while of the SVM was 0.9500. In the application of pumping-unit monitoring, the performance
of the proposed method was obviously better than that ofa the classical SVM with HOG features.
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Table 2. Experimental results.

Classes Methods Accuracy Recall Precision Specificity F1

person proposed 0.9988 1.0000 0.9972 0.9980 0.9986
SVM 0.9607 0.9486 0.9568 0.9694 0.9527

pumping unit proposed 1.0000 1.0000 1.0000 1.0000 1.0000
SVM 0.9548 0.9686 0.9262 0.9449 0.9469

vehicle
proposed 0.9988 0.9929 1.0000 1.0000 0.9964

SVM 0.9845 0.9071 1.0000 1.0000 0.9513

5. Conclusions

On-site monitoring of pumping units is a typical monitoring scene, that is, there is interference of
periodic moving objects in the scene. The traditional background-subtraction method cannot satisfy the
requirements of anomaly monitoring in this scenario. In the proposed method, background subtraction
can extract possible abnormal targets. The pretrained CNN has a strong generalization and
transplantation ability, which only needs a small number of samples and computing resources
for retraining. After being trained by transfer learning, the network can be used to detect abnormal
targets in a pumping-unit scene. The experimental results show that the proposed method can identify
real foreground objects with high accuracy.
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