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Abstract

:

The widely known generators of Poisson random variables are associated with different modifications of the algorithm based on the convergence in probability of a sequence of uniform random variables to the created stochastic number. However, in some situations, this approach yields different discrete Poisson probability distributions and skipping in the generated numbers. This article offers a new approach for creating Poisson random variables based on the complete twister generator of uniform random variables, using cumulative frequency technology. The simulation results confirm that probabilistic and frequency distributions of the obtained stochastic numbers completely coincide with the theoretical Poisson distribution. Moreover, combining this new approach with the tuning algorithm of basic twister generation allows for a significant increase in length of the created sequences without using additional RAM of the computer.
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1. Introduction


Using generators of Poisson random variables realizes a stochastic process of creating integer random numbers η∈H having the following probability distribution with respect to the real parameter α [1,2]:


P(η,α)=αηη!e−α,



(1)




where η takes any integer values such as 0,1,2,…,∞.



The Poisson model usually describes a scheme of rare events: under certain assumptions about the nature of a process with random events, the number of elements observed over a fixed time interval or in a fixed region of space is often a subject of Poisson distribution. Examples include the number of particles of radioactive decay registered by a counter for some period of time, the number of calls received to a telephone switching exchange during the designated time, the number of defects in a piece of cloth or in a tape of fixed length, etc. Thus, Poisson distribution simulates a random variable that represents the number of events that occurred over a fixed time. These events happened with some fixed average intensity and independently of each other. At the same time, Poisson distribution is discrete, which is one of the important limiting cases of a binomial distribution. Therefore, it gives a good approximation of a binomial distribution for both small and large values. In this case, Poisson distribution is intensively used in quality control cards, queuing theory, telecommunications, etc.



Poisson distribution has the remarkable properties of initial probabilistic moments with respect to mathematical expectation m(η,α)=E1(η,α)=α and to dispersion D(η,α)=E2(η,α)=E1(η2,α)=α. These and other properties make it possible to use Poisson distribution in theoretical and statistical mathematics [3,4], in the study of physical phenomena [5,6], in radio engineering and nuclear physics [7,8], in informatics and information systems [9], in modeling of data transmission and networks [10,11], in economics and financial analysis [12], and in other areas up to biological studies [13,14,15,16] and research for medical physics and technics [17,18,19].



There are various methods for implementing the pseudorandom number generators based on Poisson distribution. The generator proposed by Knuth [20,21] is widely known and actively used by his followers. In Wikipedia [22] it is presented in the following form in an arbitrary pseudo-code language, where parameter α has the notation λ, and the random variable η is equal to k:



algorithm poisson random number (Knuth):



init:



Let L ← e−λ, k ← 0 and p ← 1.



do:



   k ← k + 1.



   Generate uniform random number u in [0,1] and let p ← p × u.



while p > L.



return k − 1.



Below is the program code in C# for Microsoft Visual Studio. According to Equation (1), instead of λ, the parameter α is assigned here, which can be designated by any arbitrary value, for example α = 2.0. The function KnuthPoisson() creates stochastic integer numbers k, which are analogous to the random variables η in (1). Their frequency distribution is stored in an array nuK. The function Random.Next() is used as a generator of uniform random variables. The function PoissonP() places the probabilities P(η,α) of stochastic events in an array pEta. To form the distribution, a total N=2w=216=65536 of uniform random variables are applied. Program names P060102 and cP060102 are chosen arbitrarily.


namespace P060102
{  class cP060102
   {  static uint gc = 0;     //quantity of uniform generation
      static void Main(string[] args)
      {  int w = 16;   //bit width of uniform integer variable
         long N = 1L << w;          //random variable quantity
         Console.WriteLine(“w = {0}  N = {1}”, w, N);
         double Alpha = 2.0;
         Console.WriteLine(“Alpha = {0:F2}”, Alpha);
         Random G = new Random();        //uniform generator p
         int wX = 200;
         int[] nuK = new int[wX];            //Knuth frequency
         for (int i = 0; i < wX; i++) nuK[i] = 0;
         int maxK = 0;                   //distribution length
         for (int i = 0; i < N; i++)
         {  int k = KnuthPoisson(Alpha, N, G);
            nuK[k]++;                        //Knuth frequency
            if (k > maxK) maxK = k;      //distribution length
         }
         Console.WriteLine(“maxK = {0}”, maxK);
         double[] pEta = new double[wX];         //probability
         long[] nuEta = new long[wX];      //Poisson frequency
         int cEta = PoissonP(Alpha, N, pEta, nuEta);
         VerifyProbability(N, cEta, pEta, nuEta);
         Console.WriteLine(“cEta = {0} ”, cEta);
         long snuEta = 0;           //sum of Poisson frequency
         double spEta = 0.0;      //sum of Poisson probability
         int snuK = 0;                //sum of Knuth frequency
         double spK = 0.0;          //sum of Knuth probability
         Console.Write(“Eta     pK              nuK”);
         Console.Write(“       pEta         nuEta”);
         Console.WriteLine(“     nuK − nuEta”);
         int nEta = cEta > maxK ? cEta : maxK;
         for (int i = 0; i <= nEta; i++)   //frequency tabling
         {  double pK = (double)nuK[i]/(double)N;
            int dnu = (int)(nuK[i] − nuEta[i]);
            Console.Write(“{0,2}  {2,12:F10}  {1,10}”,
                           i, nuK[i], pK);
            Console.Write(“  {0,12:F10} {1,10}”,
                           pEta[i], nuEta[i]);
            Console.WriteLine(“  {0,8}”, dnu);
            snuK += nuK[i];           //sum of Knuth frequency
            spK += pK;              //sum of Knuth probability
            snuEta += nuEta[i];     //sum of Poisson frequency
            spEta += pEta[i];     //sum of Poisson probability
         }
         Console.Write(“sum    spK             snuK”);
         Console.WriteLine(“      spEta        snuEta”);
         Console.Write(“    {0,12:F10}  {1,10}”,
                        spK, snuK);
         Console.WriteLine(“  {0,12:F10} {1,10}”,
                            spEta, snuEta);
         Console.WriteLine(“gc = {0}”, gc);
         Console.ReadKey();                   //result viewing
      }
//--------------------------------------------------------------
      static int KnuthPoisson(double Lam, long N, Random G)
      {  double L = Math.Exp(-Lam);
         double p = 1.0;
         double dN = (double)N;
         int k = 0;
         do
         {  k++;
            long z = (long)G.Next();        //uniform variable
            z = z & (N − 1);
            double u = (double)z/dN;
            p = p * u;
            gc++;        //global number of uniform generation
         } while (p > L);
         return k − 1;
      }
//--------------------------------------------------------------
      static int PoissonP(double alpha, long N,
                          double[] pEta, long[] nuEta)
      {  double emAlpha = Math.Exp(-alpha);
         double spEta = 0.0;                 //probability sum
         long snuEta = 0L;                     //frequency sum
         pEta [0] = 1.0 * emAlpha;   //Poisson probability p(0)
         spEta += pEta[0];                   //probability sum
         nuEta[0] = (long)Math.Round(pEta[0] * (double)N);
         snuEta += nuEta[0];                   //frequency sum
         double r = alpha;              //Tailor first summand
         pEta[1] = r * emAlpha;     //Poisson probability p(1)
         spEta += pEta[1];                   //probability sum
         nuEta[1] = (long)Math.Round(pEta[1] * (double)N);
         snuEta += nuEta[1];                   //frequency sum
         int Eta = 2;                  //random variable value
         do
         {  r *= alpha/(double)Eta; //regular summand of exp
            double p = r * emAlpha;       //probability p(Eta)
            long nu = (long)Math.Round(p * (double)N);
            long sd = snuEta + nu;
            if (nu == 0L  || sd > N) break;         //the tail
            pEta[Eta] = p;                //probability p(Eta)
            spEta += p;                      //probability sum
            nuEta[Eta] = nu;               //frequency nu(Eta)
            snuEta += nu;                      //frequency sum
            Eta++;                  //next random variable Eta
         } while (snuEta < N);
         long d = N − snuEta;            //tailing frequencies
         if (d == 0L) return Eta − 1;
         double d1N = (1.0 − spEta)/(double)d;
         do
         {  pEta[Eta] = d1N;      //the tail event probability
            nuEta[Eta] = 1;                   //one-part event
            snuEta++;                          //frequency sum
            Eta++;
         } while (snuEta < N);
         return Eta − 1;
      }
//--------------------------------------------------------------
      static void VerifyProbability(long N, int cEta,
                                    double[] pEta, long[] nuEta)
      {  double dN = (double)N;
         for (int i = 0; i <= cEta; i++)
            pEta[i] = (double)nuEta[i]/dN;
      }
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   }
}
 


After starting the program P060102, the following result may be seen on a monitor.


w = 16  N = 65536
Alpha = 2.00
maxK = 12
cEta = 10
Eta     pK           nuK        pEta        nuEta   nuK − nuEta
 0   0.1352539063    8864    0.1353302002     8869     −5
 1   0.2691345215   17638    0.2706756592    17739   −101
 2   0.2699890137   17694    0.2706756592    17739    −45
 3   0.1814422607   11891    0.1804504395    11826     65
 4   0.0910491943    5967    0.0902252197     5913     54
 5   0.0361175537    2367    0.0360870361     2365      2
 6   0.0125427246     822    0.0120239258      788     34
 7   0.0032806396     215    0.0034332275      225    −10
 8   0.0008850098      58    0.0008544922       56      2
 9   0.0002441406      16    0.0001983643       13      3
10   0.0000457764       3    0.0000457764        3      0
11   0.0000000000       0    0.0000000000        0      0
12   0.0000152588       1    0.0000000000        0      1
sum    spK          snuk       spEta       snuEta
     1.0000000000   65536    1.0000000000    65536
gc = 197025


In this listing, the columns pK and nuK show the values for frequency and probability obtained by Knuth algorithm. These values correspond well to the analogous ones in the columns pEta and nuEta, which are calculated by Poisson model (1). However, there are some peculiarities that should be addressed here.



The first drawback is due to the fact that string 11 shows 0 by Knuth algorithm. This means that the generator did not create the 11th random variable, although it did create 12th one. This case points out the skipping of the 11th variable. In the theoretical Poisson distribution, this situation is not allowed. For some applications that are not limited to strict constraints, this could be neglected. However, if the generator is used for the comprehensive modeling of real stochastic situations, it is better to avoid this.



The second disadvantage is apparent if Knuth generator is launched repeatedly. The monitoring of the values in columns pK and nuK registers their inconsistency. In probability theory by Kolmogorov axiomatics [2,23] a change in the probabilistic measure in a given space under any circumstances is categorically prohibited. The disturbance of the axioms of a space can make it difficult to interpret the results. This may be crucial when repeated tests are required, for example, in emergency situations, i.e. when it is necessary to reiterate the special cases.



The third limitation of Knuth algorithm is that counter gc, which summarizes the number of generated uniform random variables, turned out to be 197025. The cycle of Knuth generator is arbitrary; hence the value of gc should also be arbitrary. In the current case, value gc = 197025 is almost three times greater than the number N = 65536 of uniform random variables, from which Knuth algorithm generates Poisson stochastic variables. This entails uncontrolled repetitions and skipping of basic random variables together with a loss of their uniformity, which ultimately leads to an insufficient quality for the results obtained.



So, summing up all the aforementioned points, the aim of this article is to propose a generator of stochastic variables in strict accordance with the theory of Poisson distribution by having no excessive and intermediate generations of uniform variables. This is the next step in searching for better algorithms for Poisson stochastic generation and their optimization.




2. Theory


Poisson stochastic process operates with random variables that linearly depend on a continuous parameter. Usually, such a parameter is the observation time of a stochastic event, but other interpretations are possible as well. In this particular case, an interest is represented both by the time moment t and by the time interval τ following it. The randomness of events in two successive continuous time intervals [0,t] and (t,t+τ] implies [23] that random events in the quantity η could occur during the total time duration [0, t+τ]. If events in the quantity k are observed in the interval [0,t], then a diminution η−k for these events should occur in the half-open interval (t,t+τ]. The first axiomatic restriction is due to the fact that both intervals are independent, and also that the events in them separately occur as the substantive cases. The consequence of this restriction is that the probability of observing the events η on the common interval [0,t+τ] is the joint probability of independent events:


Pη([0,t+τ])=Pk([0,t])·Pη−k((t,t+τ])).



(2)







In Poisson model the probability Pη−k((t,t+τ]) has a number of serious limitations, which can be formulated as follows:




	
The probability of events in the time interval (t,t+τ] does not depend on its origin t:


Pη−k((t,t+τ])=Pη−k((0,τ]).



(3)







	
The probability of one event in the time interval (0,τ] depends linearly on the length of the interval τ with given intensity λ; and the probability o(τ) of observing other events is negligible:


P1((0,τ])=P1(τ)=λ·τ+o(τ).



(4)












In Equation (4) the notation α=λt (1) is used, which in the theory of probabilities [2] and the theory of random processes is in common use. Equation (4) excludes an observation of two or more events simultaneously in the time interval τ. This makes it possible to simplify it without considering the events with an infinitesimal small probability of a higher order o(τ):


P1(τ)=λ·τ.



(5)







Equation (5) allows for reaching the determination of probability of the event absence in the time interval τ:


P0(τ)=1−P1(τ)=1−λ·τ.



(6)







Combining together Equations (2) and (6), the probability of the event absence at the time moment t in the general interval [0,t+τ] could be obtained as follows:


P0(t+τ)=P0(t)·P0(τ)=P0(t)(1−λτ).



(7)







This expression (7) leads to the definition of the derivative with respect to probability:


dP0(t)dτ=limτ→0P0(t+τ)−P0(t)τ=−λP0(t).



(8)







The solving of the differential Equation (8) determines the probability of the absence of events at the time moment t, in which the constant c=1 is derived from the initial condition P0(0)=1. The result is the following:


P0(t)=ce−λt=e−λt.



(9)







Equation (9) with allowance for Equation (2) and Constraints (5) and (6) admits calculating the probability of a single event P1([0,t+τ]) as follows:


P1([0,t+τ])=P0(t)P1(τ)+P1(t)P0(τ)=e−λtλτ+P1(t)(1−λτ).



(10)







By analogy with Transformations (7) and (8), Equation (10) leads to the following differential equation:


dP1(t)dτ=λe−λt−λP1(t).



(11)







The solving of Equation (11) determines P1(t) with the initial condition P1(0)=0:


P1(t)=λte−λt.



(12)







Performing successively the Transformations (10)–(12) for all variables η∈[0,∞], the distribution of Poisson probabilities Pη(λt) with respect to quantity η of random events with intensity λ at the time moment t could be obtained as follows:


Pη(α=λt)=(λt)ηη!e−λt=αηη!e−α.



(13)







Since the set of η∈H=[0,∞] of random events in Kolmogorov axiomatics contains σ-algebra, the probability measure Pη(α=λt) (13) uniquely determines the cumulative function FH(η,α=λt) of the distribution probabilities:


FH(η,α=λt)=∑k=0η(λt)kk!e−λt=∑k=0ηαkk!e−α.



(14)







Using a definition of number ex=∑k=0∞xk/k! for Equation (14), it follows that FH(η,λ)∈[0:1]. It should be noted here that a probability space guarantees uniqueness of the determination of the inverse probability distribution function. If any value h of the cumulative distribution function FH(ηh,α=λt)=h is given, then a value of the stochastic variable ηh can be obtained as the inverse transformation ηh=FH−1(h). Therefore, by specifying the complete uniform random values FH−1(η,α=λt)∈[0:1], it allows uniquely obtaining the stochastic values η of this distribution. This main mathematical model contains the bases for constructing the generators of random variables from given functions of their distribution. Let us use this statement for developing the generator of Poisson stochastic variables. For this it is necessary to get an absolutely complete and uniform generator, which has no repetitions and skipping of random variables. Let us use here the twister generator nsDeonYuliTwist32D [24,25,26,27], which is of such properties.



In discrete probability space, the number N of events is fixed. For each quantitative variable η, with the probability p(η,α=λt), it corresponds the frequency ν(η,α=λt) of observation of the random events:


ν(η,α=λt)=p(η,α=λt)·N=Pη(λt)·N.



(15)







According to Kolmogorov axiomatics, the determination of probability p(η,α=λt) takes precedence over the determination of frequency ν(η,α=λt). Therefore, in general for the values of frequency ν(η,α=λt) in (15), it is possible to use mathematical rounding in the fractional part for the multiplication p(η,α=λt)·N.



Below is the program code, in which the twister generator nsDeonYuliTwist32D [26] creates complete set [0:2w−1¯] of uniform integer random variables z, having the length of w bits. Function PoissonD() creates an array pEta of Poisson probabilities (13) and an array of corresponding frequencies nuEta (15). The last trailing single frequencies complement an array of frequency distributions nuEta to the completeness 2w of basic uniform random variables. Therefore, the trailing probabilities pEta are complemented relying on the trailing single frequencies in nuEta. Such a negligible deviation in the rest of the distribution (13) allows for preserving the completeness of generation of Poisson stochastic variables based on initial generation of uniform random variables z∈[0:2w−1¯]. The values of the cumulative frequency function are located in an array of summarized frequencies snuEta. Inverse function FH−1(ηh,α=λt) is created by using function SearchEta() in accordance with a searching algorithm for the index of element in an array of the cumulative frequencies cnuEta. Program names P060202 and cP060202 are taken by chance.


using nsDeonYuliTwist32D;         //complete twister generator
                                  //of integer uniform numbers
namespace P060202
{  class cP060202
   {  static void Main(string[] args)
      {  int w = 32;   //bit width of uniform integer variable
         long N = 1L << w;          //random variable quantity
         Console.WriteLine(“w = {0}  N = {1}”, w, N);
         double Alpha = 2.0;
         Console.WriteLine(“Alpha = {0:F2}”, Alpha);
         int wX = 200;
         double[] pEta = new double[wX]; //Poisson probability
         long[] nuEta = new long[wX];      //Poisson frequency
         long[] cnuEta = new long[wX];  //cumulative frequency
         int cEta = PoissonDY(Alpha, pEta, nuEta, cnuEta, N);
         VerifyProbability(N, cEta, pEta, nuEta, cnuEta);
         Console.WriteLine(“cEta = {0}”, cEta);
         cDeonYuliTwist32D DYG = new cDeonYuliTwist32D();
         DYG.SetW(w);      //set bit width of uniform variable
         DYG.Start();                //start uniform generator
         long[] nuDYG = new long[wX];//frequencies of generator
         for (int i = 0; i < wX; i++) nuDYG[i] = 0;
         for (long j = 0; j < N; j++)
         {  long z = DYG.Next();            //uniform variable
            int Eta = SearchEta(z, cnuEta, cEta);
            nuDYG[Eta]++;           //uniform variable counter
         }
         double spEta = 0.0;      //sum of Poisson probability
         long snuEta = 0;           //sum of Poisson frequency
         long snuDYG = 0;      //sum of variables by generator
         Console.Write(“Eta      pEta          nuEta”);
         Console.WriteLine(“      cnuEta       nuDYG”);
         for (int Eta = 0; Eta <= cEta; Eta++)
         {  Console.WriteLine(
                “{0,2}   {1,12:F10}  {2,10}  {3,10}  {4,10}”,
                 Eta, pEta[Eta], nuEta[Eta],
                 cnuEta[Eta], nuDYG[Eta]);
            spEta += pEta[Eta];
            snuEta += nuEta[Eta];
            snuDYG += nuDYG[Eta];
         }
         Console.Write(“Sum     spEta         snuEta”);
         Console.WriteLine(“                  snuDYG”);
         Console.Write(“     {0,12:F10}  {1,10}”,
                        spEta, snuEta);
         Console.WriteLine(“              {0,10}”, snuDYG);
         Console.ReadKey();                   //result viewing
      }
//--------------------------------------------------------------
      static int PoissonDY (double alpha, double[] pEta,
                            long[] nuEta, long[] cnuEta, long N)
      {  double emAlpha = Math.Exp(−alpha);
         double spEta = 0.0;              //sum of probability
         long snuEta = 0L;                  //sum of frequency
         pEta[0] = 1.0 * emAlpha;   //Poisson probability p(0)
         spEta += pEta[0];                //sum of probability
         nuEta[0] = (long)Math.Round(pEta[0] * (double)N);
         snuEta += nuEta[0];                //sum of frequency
         cnuEta[0] = snuEta;     //cumulative frequency cnu(0)
         double r = alpha;              //Tailor first summand
         pEta[1] = r * emAlpha;     //Poisson probability p(1)
         spEta += pEta[1];                //sum of probability
         nuEta[1] = (long)Math.Round(pEta[1] * (double)N);
         snuEta += nuEta[1];                //sum of frequency
         cnuEta[1] = snuEta;     //cumulative frequency cnu(1)
         int Eta = 2;                        //random variable
         do
         {  r *= alpha/(double)Eta; //regular summand of exp
            double p = r * emAlpha;       //probability p(Eta)
            long nu = (long)Math.Round(p * (double)N);
            long sd = snuEta + nu;
            if (nu == 0L || sd > N) break;          //the tail
            pEta[Eta] = p;                //probability p(Eta)
            spEta += p;                   //sum of probability
            nuEta[Eta] = nu;               //frequency nu(Eta)
            snuEta += nu;                   //sum of frequency
            cnuEta[Eta] = snuEta;       //cumulative frequency
            Eta++;         //next random variablecлeдyющaя Eta
         } while (snuEta < N);
         Eta--;
         long d = N − snuEta;            //tailing frequencies
         if (d == 0L) return Eta;
         double d1N = (1.0 − spEta)/(double)d;
         do
         {  Eta++;
            pEta[Eta] = d1N;     //probability of a tail event
            nuEta[Eta] = 1;              //one-frequency event
            snuEta++;                       //sum of frequency
            cnuEta[Eta] = snuEta;       //cumulative frequency
         } while (snuEta < N);
         return Eta;
      }
//--------------------------------------------------------------
      static void VerifyProbability (long N, int cEta,
            double[] pEta, long[] nuEta, long[] cnuEta)
      {  double dN = (double)N;
         for (int i = 0; i <= cEta; i++)
            pEta[i] = (double)nuEta[i]/dN;
      }
//--------------------------------------------------------------
      static int SearchEta (long z, long[] cnuEta, int cEta)
      {  int Eta = 0;
         for (; Eta <= cEta; Eta++)
            if (z < cnuEta[Eta]) break;
         return Eta;
      }
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   }
}


After launching the program P060202 the following listing appears on the monitor.


w = 32  N = 4294967296
Alpha = 2.00
cEta = 16
Eta      pEta           nuEta      cnuEta       nuDYG
 0    0.1353352831   581260615   581260615   581260615
 1    0.2706705665  1162521231  1743781846  1162521231
 2    0.2706705665  1162521231  2906303077  1162521231
 3    0.1804470443   775014154  3681317231   775014154
 4    0.0902235222   387507077  4068824308   387507077
 5    0.0360894089   155002831  4223827139   155002831
 6    0.0120298029    51667610  4275494749    51667610
 7    0.0034370865    14762174  4290256923    14762174
 8    0.0008592717     3690544  4293947467     3690544
 9    0.0001909493      820121  4294767588      820121
10    0.0000381898      164024  4294931612      164024
11    0.0000069437       29823  4294961435       29823
12    0.0000011572        4970  4294966405        4970
13    0.0000001781         765  4294967170         765
14    0.0000000254         109  4294967279         109
15    0.0000000035          15  4294967294          15
16    0.0000000005           2  4294967296           2
Sum      spEta         snuEta                  snuDYG
      1.000000000   4294967296              4294967296


In this listing, the pEta column contains Poisson probabilities distribution (13). In the next column nuEta, there is a corresponding frequency distribution. The sum of all frequencies snuEta=4294967296 has to be coincided with generation of the basic uniform random variables having w=32 bits in the total quantity of N=2w=232=4294967296. The counters nuDYG of the last column confirm the complete coincidence of distribution of the generated random variables with the theoretical frequency distribution nuEta.



At this step, the theoretical issues are solved. With the currently reached result, the technology of the cumulative analysis provides an impeccable generation of the random variables with a frequency distribution according to Poisson probabilities. Testing of P060202 with w∈[3:32] and α∈[0.1:10] confirms an impeccability of received results.




3. Construction and Results


Below is class nsDeonYuliCPoissonTwist32D, in which the random variables are created in accordance with Poisson distribution (13). This class is derived over the base one nsDeonYuliTwist32D of the twister generator of uniform random variables [24,25,26,27], which in DieHard Tests [28,29,30,31,32] shows an absolute uniform distribution. An example of generation of Poisson stochastic variables is given here later in program P060302.


 using nsDeonYuliTwist32D;         //complete twister generator
                                  //of integer uniform numbers
namespace nsDeonYuliCPoissonTwist32D
{  class cDeonYuliCPoissonTwist32D : cDeonYuliTwist32D
   {  public long N;              //quantity of uniform events
      public double dN;           //quantity of uniform events
      public double Alpha = 2.0;             //Alpha parameter
      double emAlpha;                            //exp(−Alpha)
      public int cEta;                           //maximal Eta
      public double[] pC;           //probability distribution
      public long[] nuC;              //frequency distribution
      public long[] cnuC;             //cumulative frequencies
//--------------------------------------------------------------
      public cDeonYuliCPoissonTwist32D () {}
//--------------------------------------------------------------
      public void CStart(double alpha)
      {  Alpha = alpha;                      //Alpha parameter
         base.Start();             //uniform twister generator
         CStartInside();
      }
//--------------------------------------------------------------
      public void CTimeStart(double alpha)
      {  Alpha = alpha;                      //Alpha parameter
         base.TimeStart();         //uniform twister generator
         CStartInside();
      }
//--------------------------------------------------------------
      void CStartInside()
      {  int wX = 200;
         pC = new double[wX];       //probability distribution
         nuC = new long[wX];          //frequency distribution
         cnuC = new long[wX];         //cumulative frequencies
         emAlpha = Math.Exp(−Alpha);             //exp(−Alpha)
         N = (long)N1 + 1L;       //quantity of uniform events
         dN = (double)N;          //quantity of uniform events
         cEta = CPoissonDY();      //probability and frequency
         CVerifyProbability();      //probability verification
      }
//--------------------------------------------------------------
      public int CNext()
      {  uint z =base.Next();        //uniform random variable
         return CSearchEta(z);       //Poisson random variable
      }
//--------------------------------------------------------------
      int CPoissonDY()
      {  double spC = 0.0;                   //probability sum
         long snuC = 0L;                       //frequency sum
         pC[0] = 1.0 * emAlpha;     //Poisson probability p(0)
         spC += pC[0];                       //probability sum
         nuC[0] = (long)Math.Round(pC[0] * dN);//frequency nu(0)
         snuC += nuC[0];                       //frequency sum
         cnuC[0] = snuC;         //cumulative frequency cnu(0)
         double r = Alpha;              //Tailor first summand
         pC[1] = r * emAlpha;       //Poisson probability p(1)
         spC += pC[1];                       //probability sum
         nuC[1] = (long)Math.Round(pC[1] * dN);//frequency nu(1)
         snuC += nuC[1];                       //frequency sum
         cnuC[1] = snuC;         //cumulative frequency cnu(1)
         int Eta = 2;                        //random variable
         do
         {  r *= Alpha/(double)Eta; //regular summand of exp
            double p = r * emAlpha;       //probability p(Eta)
            long nu = (long)Math.Round(p * dN);
            if (nu == 0L) break;     //a tail zero frequencies
            long sd = snuC + nu;
            if (nu == 0L || sd > N) break;          //the tail
            pC[Eta] = p;                  //probability p(Eta)
            spC += p;                        //probability sum
            nuC[Eta] = nu;                  //frquency nu(Eta)
            snuC += nu;                        //frequency sum
            cnuC[Eta] = snuC;           //cumulative frequency
            Eta++;              //the next random variable Eta
         } while (snuC < N);
         Eta--;
         long d = N − snuC;               //a tail frequencies
         if (d == 0L) return Eta;
         double d1N = (1.0 − spC)/(double)d;
         do
         {  Eta++;
            pC[Eta] = d1N;          //a tail event probability
            nuC[Eta] = 1;                //one-frequency event
            snuC++;                            //frequency sum
            cnuC[Eta] = snuC;           //cumulative frequency
         } while (snuC < N);
         return Eta;
      }
//--------------------------------------------------------------
      void CVerifyProbability()
      {  for (int i = 0; i <= cEta; i++)
            pC[i] = (double)nuC[i]/dN;
      }
//--------------------------------------------------------------
      int CSearchEta(uint z)
      {  int Eta = 0;
         for (; Eta <= cEta; Eta++)
            if (z < cnuC[Eta]) break;
         return Eta;
      }
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   }
}


As an example, let us use the following program code showing the complete generation of Poisson stochastic variables on a base space of uniform values having the bit length w=7 (for arbitrary w≤32 the listing of N=2w=32=4294967296 random numbers is too long to present here). This allows demonstrating in a visual form the work of the twister generator nsDeonYuliCPoissonTwist32D with observance of Poisson distribution. Program names P060302 and cP060302 are assigned arbitrarily.


using nsDeonYuliCPoissonTwist32D;  //Poisson twister generator
                     //by technology of cumulative frequencies
namespace P060302
{  class cP060302
   {  static void Main(string[] args)
      {  cDeonYuliCPoissonTwist32D PT =
                        new cDeonYuliCPoissonTwist32D();
         int w = 7;     //bit width of uniform random variable
         PT.SetW(w);       //set bit width of uniform variable
         double Alpha = 2.0;                 //Alpha parameter
         PT.CStart(Alpha);                   //start generator
//      PT.CTimeStart(Alpha);//start generator using time value
         Console.WriteLine(“w = {0}  N = {1}”, PT.w, PT.N);
         Console.WriteLine(“Alpha = {0:F2}”, Alpha);
         Console.WriteLine(“cEta = {0}”, PT.cEta);
         int wX = 200;
         int[] nuG = new int[wX];   //frequencies of generator
         for (int i = 0; i< wX; i++) nuG[i] = 0;
         for (int i = 0, j = 1; i< PT.N; i++, j++)
         {  int Eta = PT.CNext();           //Poisson variable
            Console.Write(“{0,5}”, Eta);
            if (j % 8 == 0) Console.WriteLine();
            nuG[Eta]++;           //counter of random variable
         }
         Console.WriteLine();
         double spEta = 0.0;         //Poisson probability sum
         long snuEta = 0;              //Poisson frequency sum
         int snuG = 0;            //frequency sum by generator
         Console.Write(“Eta      pC            nuC”);
         Console.WriteLine(“      cnuC     nuDYG”);
         for (int Eta = 0; Eta<= PT.cEta; Eta++)
         {  Console.WriteLine(
                 “{0,2}   {1,12:F10}  {2,8}  {3,8}  {4,8}”,
                  Eta, PT.pC[Eta], PT.nuC[Eta],
                  PT.cnuC[Eta], nuG[Eta]);
            spEta += PT.pC[Eta];
            snuEta += PT.nuC[Eta];
            snuG += nuG[Eta];
         }
         Console.Write(“Sum    spC            snuC”);
         Console.WriteLine(“              snuDYG”);
         Console.WriteLine(
                “     {0,12:F10}  {1,8}            {2,8}”,
                 spEta, snuEta, snuG);
         Console.ReadKey();                   //result viewing
      }
   }
}


After executing the program P060302 the following result appears on monitor.


w = 7  N = 128
Alpha = 2.00
cEta = 6
    1    6    3    1    3    1    1    2
    2    1    0    2    0    2    3    3
    3    2    1    4    2    3    0    0
    0    4    2    1    3    0    1    2
    1    1    5    2    0    1    2    3
    3    2    1    4    1    3    4    0
    0    4    2    1    2    0    1    1
    1    1    4    2    5    1    2    2
    2    2    1    3    1    2    4    5
    5    3    2    1    2    5    1    1
    1    0    3    2    4    1    2    2
    2    2    1    3    1    2    3    4
    4    3    2    0    2    4    0    1
    1    0    3    1    4    1    2    2
    2    1    0    3    1    2    3    3
    3    3    2    0    2    3    0    1
Eta      pC            nuC      cnuC    nuDYG
 0    0.1328125000       17        17       17
 1    0.2734375000       35        52       35
 2    0.2734375000       35        87       35
 3    0.1796875000       23       110       23
 4    0.0937500000       12       122       12
 5    0.0390625000        5       127        5
 6    0.0078125000        1       128        1
sum     spC           snuC             snuDYG
      1.0000000000      128                128


This result shows a stochastic sequence of random variables generated by twister generator nsDeonYuliCPoissonTwist32D. The direct calculation by this listing confirms that all the elements including the random variables, their probabilities and frequencies do indeed satisfy Poisson distribution. Similar results could be obtained for other quantities as well, for example with a length of w≤32 bits.




4. Discussion


As mentioned at the beginning of this article, Poisson distribution has basic properties of initial probabilistic moments in terms of mathematical expectation and dispersion. The mathematical expectation for this type of a distribution characterizes the average number of successful results at any interval. Usually, it is determined on a basis of the experimentally obtained data for a certain situation. Next, if the mathematical expectation is determined, then the dispersion is known also because of the distribution properties of Poisson probabilities. If it turns out that the values of the mathematical expectation and the dispersion are sufficiently close, then the hypothesis of the distribution of certain random variables in accordance with Poisson law is correct. However, if there is a meaningful difference in the obtained values of these characteristics, this would testify against the hypothesis of Poisson distribution of the given random variables.



Therefore, first of all, it is necessary to confirm two basic aforementioned properties of Poisson distribution on equality of parameter α to mathematical expectation and dispersion. Below is the program code that validates this. The generator in it creates the random variables in quantity N=2w=232=4294967296. Program names P060402 and cP060402 are chosen by chance.


using nsDeonYuliCPoissonTwist32D;  //Poisson twister generator
                     //by technology of cumulative frequencies
namespace P060402
{  class cP060402
   {  static void Main(string[] args)
      {  cDeonYuliCPoissonTwist32D PT =
                          new cDeonYuliCPoissonTwist32D();
         PT.SetW(32);           //bit width of random variable
         double Alpha = 2.0;                 //Alpha parameter
         PT.CStart(Alpha);                  //start generator
         Console.WriteLine(“w = {0}  N = {1}”, PT.w, PT.N);
         Console.WriteLine(“Alpha = {0:F2}”, Alpha);
         double p1 = 1.0/(double)PT.N;   //event probability
         double m = 0.0;            //mathematical expectation
         double D = 0.0;                          //dispersion
         for (long i = 0; i< PT.N; i++)
         {  int Eta = PT.CNext();            //random variable
            m += Eta * p1;          //mathematical expectation
            D += Eta * Eta * p1;                  //dispersion
         }
         D = D − m * m;
         Console.WriteLine(“m = {0:F10}”, m);
         Console.WriteLine(“D = {0:F10}”, D);
         Console.ReadKey();                   //result viewing
      }
   }
}


After running the program P060402, the following listing appears on the monitor.


w = 32  N = 4294967296
Alpha = 2.00
m = 2.0000000014
D = 2.0000000116


This listing shows the obtained values of mathematical expectation m and dispersion D. Their negligible difference from the value of parameter α=2.0 is related to the discreteness of Poisson model in probabilities and frequencies of the events.



Further, a general discussion should also supplement the estimates of possible generation of the random variables with respect to Poisson distribution. To do this, let us refer to the capabilities of the basic twister generator nsDeonYuliTwist32D, which is used here for uniform random variables creation. For a given length of w bits it realizes several complete twisting sequences. Initial sequence contains N=2w non-repeating numbers distributed uniformly and randomly in interval [0:2w−1]. For utilization, the constants a and c of the twister generation of the random variable xi=(axi−1+c)mod 2w obtained from the value of the previous variable xi−1 are used. When the generator completes the creation of one series consisting of N=2w random variables, it automatically proceeds to the creation of the next twisting series, in which N=2w elements are obtained as well. So, for each pair of twister constants a and c, the twisting uniform sequences in quantity NT could be created:


NT=w·2w.



(16)







Consequently, one complete twisting cycle (16) with unchanged a and c realizes the following quantity Ns for uniform random variables that allows the creation of the same number of Poisson stochastic variables:


Ns=N·NT=2w·w·2w=w·22w.



(17)







To obtain a complete cycle of all Poisson stochastic series with quantity Ns=w·22w of the random variables in each complete twister (17), it is necessary to take into account the varieties of coefficients a and c in the twister transformation xi=(axi−1+c)mod 2w. The values of these coefficients must not exceed the interval limit a,c∈[0:2w−1] of all uniform variables in the single series. Quantity Na of the coefficient a is defined as:


Na=N4=2w22=2w−2.



(18)







During the generation of uniform random variables, the values of the coefficients c have to be odd, i.e., c mod 2 ≠0. Their quantity Nc is defined as the following:


Nc=N2=2w21=2w−1.



(19)







Collecting Equations (16)–(19) together, the estimate for the total number Nsac of the random variables is defined in the following manner:


Nsac=Ns·Na·Nc=w22w2w−2ww−1=w·24w−3.



(20)







Finally, the information concerning non-repeatable cycle NI has the following estimation:


NI=2wNsac=2w224w−3.



(21)







As an example, let us get the real values of these estimations for the bit length w=32. In this case, each series contains N=232=4294967296 Poisson stochastic variables, and in each of these series Poisson distribution is observed absolutely. In this case, the total number of generated Poisson stochastic variables is Nsac(w=32)=32·24·32−3=25·2125=2130, and the value of the non-repeatable cycle (21) is defined as NI(w=32)=2252130=22135.



Therefore, the complete discrete simulation of the random variables with Poisson distribution using the aforementioned basic twister generator confirms the important properties in terms of mathematical expectation and dispersion. Moreover, an automatic extension of the series of initial uniform random variables extends significantly the periods of non-repeatability (Equations (20) and (21)) for the series of Poisson stochastic variables. This notably exceeds the features of the known generators, which bases the probabilistic convergence algorithm.




5. Conclusions


An analysis of the source material shows that algorithms for generation of Poisson stochastic variables according to the probabilistic convergence technology lead to different realizations of distributions. Moreover, the skipping of elements in such distributions may also occur, which is inappropriate in the theory of Poisson stochastic processes. Since the quality of the generators depends on the basic generations used for uniform random variables, it has been proposed here to use the twister generator nsDeonYuliCPoissonTwist32D to ensure the completeness of technology of the cumulative array of frequencies in Poisson space. This approach allows for reducing the time of operations and improving the quality of generation. In the discrete probabilistic Poisson space, the test results confirmed the complete coincidence of the distributions of the obtained stochastic variables with the ones received in theoretical modeling. Moreover, an automatic tuning of the parameters of the basic twister uniform generator nsDeonYuliTwist32D allows obtaining a significant increase in the overall period of non-repeatable generation of Poisson stochastic variables.
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