

 algorithms-12-00114

algorithms-12-00114

Algorithms 2019, 12(6), 114; doi:10.3390/a12060114

Article

Poisson Twister Generator by Cumulative Frequency Technology

Aleksei F. Deon 1[image: Orcid] and Yulian A. Menyaev 2,*[image: Orcid]

1

Department of Information Systems and Computer Science, Bauman Moscow State Technical University, 2nd Baumanskaya St., 5/1, 105005 Moscow, Russia

2

Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA

*

Correspondence: YAMenyaev@uams.edu

Received: 6 April 2019 / Accepted: 25 May 2019 / Published: 28 May 2019

Abstract

:

The widely known generators of Poisson random variables are associated with different modifications of the algorithm based on the convergence in probability of a sequence of uniform random variables to the created stochastic number. However, in some situations, this approach yields different discrete Poisson probability distributions and skipping in the generated numbers. This article offers a new approach for creating Poisson random variables based on the complete twister generator of uniform random variables, using cumulative frequency technology. The simulation results confirm that probabilistic and frequency distributions of the obtained stochastic numbers completely coincide with the theoretical Poisson distribution. Moreover, combining this new approach with the tuning algorithm of basic twister generation allows for a significant increase in length of the created sequences without using additional RAM of the computer.

Keywords:

pseudorandom number generator; stochastic sequences; Poisson distribution; twister generator

1. Introduction

Using generators of Poisson random variables realizes a stochastic process of creating integer random numbers η∈H having the following probability distribution with respect to the real parameter α [1,2]:

P(η,α)=αηη!e−α,

(1)

where η takes any integer values such as 0,1,2,…,∞.

The Poisson model usually describes a scheme of rare events: under certain assumptions about the nature of a process with random events, the number of elements observed over a fixed time interval or in a fixed region of space is often a subject of Poisson distribution. Examples include the number of particles of radioactive decay registered by a counter for some period of time, the number of calls received to a telephone switching exchange during the designated time, the number of defects in a piece of cloth or in a tape of fixed length, etc. Thus, Poisson distribution simulates a random variable that represents the number of events that occurred over a fixed time. These events happened with some fixed average intensity and independently of each other. At the same time, Poisson distribution is discrete, which is one of the important limiting cases of a binomial distribution. Therefore, it gives a good approximation of a binomial distribution for both small and large values. In this case, Poisson distribution is intensively used in quality control cards, queuing theory, telecommunications, etc.

Poisson distribution has the remarkable properties of initial probabilistic moments with respect to mathematical expectation m(η,α)=E1(η,α)=α and to dispersion D(η,α)=E2(η,α)=E1(η2,α)=α. These and other properties make it possible to use Poisson distribution in theoretical and statistical mathematics [3,4], in the study of physical phenomena [5,6], in radio engineering and nuclear physics [7,8], in informatics and information systems [9], in modeling of data transmission and networks [10,11], in economics and financial analysis [12], and in other areas up to biological studies [13,14,15,16] and research for medical physics and technics [17,18,19].

There are various methods for implementing the pseudorandom number generators based on Poisson distribution. The generator proposed by Knuth [20,21] is widely known and actively used by his followers. In Wikipedia [22] it is presented in the following form in an arbitrary pseudo-code language, where parameter α has the notation λ, and the random variable η is equal to k:

algorithm poisson random number (Knuth):

init:

Let L ← e−λ, k ← 0 and p ← 1.

do:

   k ← k + 1.

   Generate uniform random number u in [0,1] and let p ← p × u.

while p > L.

return k − 1.

Below is the program code in C# for Microsoft Visual Studio. According to Equation (1), instead of λ, the parameter α is assigned here, which can be designated by any arbitrary value, for example α = 2.0. The function KnuthPoisson() creates stochastic integer numbers k, which are analogous to the random variables η in (1). Their frequency distribution is stored in an array nuK. The function Random.Next() is used as a generator of uniform random variables. The function PoissonP() places the probabilities P(η,α) of stochastic events in an array pEta. To form the distribution, a total N=2w=216=65536 of uniform random variables are applied. Program names P060102 and cP060102 are chosen arbitrarily.

namespace P060102
{ class cP060102
 { static uint gc = 0; //quantity of uniform generation
 static void Main(string[] args)
 { int w = 16; //bit width of uniform integer variable
 long N = 1L << w; //random variable quantity
 Console.WriteLine(“w = {0} N = {1}”, w, N);
 double Alpha = 2.0;
 Console.WriteLine(“Alpha = {0:F2}”, Alpha);
 Random G = new Random(); //uniform generator p
 int wX = 200;
 int[] nuK = new int[wX]; //Knuth frequency
 for (int i = 0; i < wX; i++) nuK[i] = 0;
 int maxK = 0; //distribution length
 for (int i = 0; i < N; i++)
 { int k = KnuthPoisson(Alpha, N, G);
 nuK[k]++; //Knuth frequency
 if (k > maxK) maxK = k; //distribution length
 }
 Console.WriteLine(“maxK = {0}”, maxK);
 double[] pEta = new double[wX]; //probability
 long[] nuEta = new long[wX]; //Poisson frequency
 int cEta = PoissonP(Alpha, N, pEta, nuEta);
 VerifyProbability(N, cEta, pEta, nuEta);
 Console.WriteLine(“cEta = {0} ”, cEta);
 long snuEta = 0; //sum of Poisson frequency
 double spEta = 0.0; //sum of Poisson probability
 int snuK = 0; //sum of Knuth frequency
 double spK = 0.0; //sum of Knuth probability
 Console.Write(“Eta pK nuK”);
 Console.Write(“ pEta nuEta”);
 Console.WriteLine(“ nuK − nuEta”);
 int nEta = cEta > maxK ? cEta : maxK;
 for (int i = 0; i <= nEta; i++) //frequency tabling
 { double pK = (double)nuK[i]/(double)N;
 int dnu = (int)(nuK[i] − nuEta[i]);
 Console.Write(“{0,2} {2,12:F10} {1,10}”,
 i, nuK[i], pK);
 Console.Write(“ {0,12:F10} {1,10}”,
 pEta[i], nuEta[i]);
 Console.WriteLine(“ {0,8}”, dnu);
 snuK += nuK[i]; //sum of Knuth frequency
 spK += pK; //sum of Knuth probability
 snuEta += nuEta[i]; //sum of Poisson frequency
 spEta += pEta[i]; //sum of Poisson probability
 }
 Console.Write(“sum spK snuK”);
 Console.WriteLine(“ spEta snuEta”);
 Console.Write(“ {0,12:F10} {1,10}”,
 spK, snuK);
 Console.WriteLine(“ {0,12:F10} {1,10}”,
 spEta, snuEta);
 Console.WriteLine(“gc = {0}”, gc);
 Console.ReadKey(); //result viewing
 }
//--
 static int KnuthPoisson(double Lam, long N, Random G)
 { double L = Math.Exp(-Lam);
 double p = 1.0;
 double dN = (double)N;
 int k = 0;
 do
 { k++;
 long z = (long)G.Next(); //uniform variable
 z = z & (N − 1);
 double u = (double)z/dN;
 p = p * u;
 gc++; //global number of uniform generation
 } while (p > L);
 return k − 1;
 }
//--
 static int PoissonP(double alpha, long N,
 double[] pEta, long[] nuEta)
 { double emAlpha = Math.Exp(-alpha);
 double spEta = 0.0; //probability sum
 long snuEta = 0L; //frequency sum
 pEta [0] = 1.0 * emAlpha; //Poisson probability p(0)
 spEta += pEta[0]; //probability sum
 nuEta[0] = (long)Math.Round(pEta[0] * (double)N);
 snuEta += nuEta[0]; //frequency sum
 double r = alpha; //Tailor first summand
 pEta[1] = r * emAlpha; //Poisson probability p(1)
 spEta += pEta[1]; //probability sum
 nuEta[1] = (long)Math.Round(pEta[1] * (double)N);
 snuEta += nuEta[1]; //frequency sum
 int Eta = 2; //random variable value
 do
 { r *= alpha/(double)Eta; //regular summand of exp
 double p = r * emAlpha; //probability p(Eta)
 long nu = (long)Math.Round(p * (double)N);
 long sd = snuEta + nu;
 if (nu == 0L || sd > N) break; //the tail
 pEta[Eta] = p; //probability p(Eta)
 spEta += p; //probability sum
 nuEta[Eta] = nu; //frequency nu(Eta)
 snuEta += nu; //frequency sum
 Eta++; //next random variable Eta
 } while (snuEta < N);
 long d = N − snuEta; //tailing frequencies
 if (d == 0L) return Eta − 1;
 double d1N = (1.0 − spEta)/(double)d;
 do
 { pEta[Eta] = d1N; //the tail event probability
 nuEta[Eta] = 1; //one-part event
 snuEta++; //frequency sum
 Eta++;
 } while (snuEta < N);
 return Eta − 1;
 }
//--
 static void VerifyProbability(long N, int cEta,
 double[] pEta, long[] nuEta)
 { double dN = (double)N;
 for (int i = 0; i <= cEta; i++)
 pEta[i] = (double)nuEta[i]/dN;
 }
//~~
 }
}

After starting the program P060102, the following result may be seen on a monitor.

w = 16 N = 65536
Alpha = 2.00
maxK = 12
cEta = 10
Eta pK nuK pEta nuEta nuK − nuEta
 0 0.1352539063 8864 0.1353302002 8869 −5
 1 0.2691345215 17638 0.2706756592 17739 −101
 2 0.2699890137 17694 0.2706756592 17739 −45
 3 0.1814422607 11891 0.1804504395 11826 65
 4 0.0910491943 5967 0.0902252197 5913 54
 5 0.0361175537 2367 0.0360870361 2365 2
 6 0.0125427246 822 0.0120239258 788 34
 7 0.0032806396 215 0.0034332275 225 −10
 8 0.0008850098 58 0.0008544922 56 2
 9 0.0002441406 16 0.0001983643 13 3
10 0.0000457764 3 0.0000457764 3 0
11 0.0000000000 0 0.0000000000 0 0
12 0.0000152588 1 0.0000000000 0 1
sum spK snuk spEta snuEta
 1.0000000000 65536 1.0000000000 65536
gc = 197025

In this listing, the columns pK and nuK show the values for frequency and probability obtained by Knuth algorithm. These values correspond well to the analogous ones in the columns pEta and nuEta, which are calculated by Poisson model (1). However, there are some peculiarities that should be addressed here.

The first drawback is due to the fact that string 11 shows 0 by Knuth algorithm. This means that the generator did not create the 11th random variable, although it did create 12th one. This case points out the skipping of the 11th variable. In the theoretical Poisson distribution, this situation is not allowed. For some applications that are not limited to strict constraints, this could be neglected. However, if the generator is used for the comprehensive modeling of real stochastic situations, it is better to avoid this.

The second disadvantage is apparent if Knuth generator is launched repeatedly. The monitoring of the values in columns pK and nuK registers their inconsistency. In probability theory by Kolmogorov axiomatics [2,23] a change in the probabilistic measure in a given space under any circumstances is categorically prohibited. The disturbance of the axioms of a space can make it difficult to interpret the results. This may be crucial when repeated tests are required, for example, in emergency situations, i.e. when it is necessary to reiterate the special cases.

The third limitation of Knuth algorithm is that counter gc, which summarizes the number of generated uniform random variables, turned out to be 197025. The cycle of Knuth generator is arbitrary; hence the value of gc should also be arbitrary. In the current case, value gc = 197025 is almost three times greater than the number N = 65536 of uniform random variables, from which Knuth algorithm generates Poisson stochastic variables. This entails uncontrolled repetitions and skipping of basic random variables together with a loss of their uniformity, which ultimately leads to an insufficient quality for the results obtained.

So, summing up all the aforementioned points, the aim of this article is to propose a generator of stochastic variables in strict accordance with the theory of Poisson distribution by having no excessive and intermediate generations of uniform variables. This is the next step in searching for better algorithms for Poisson stochastic generation and their optimization.

2. Theory

Poisson stochastic process operates with random variables that linearly depend on a continuous parameter. Usually, such a parameter is the observation time of a stochastic event, but other interpretations are possible as well. In this particular case, an interest is represented both by the time moment t and by the time interval τ following it. The randomness of events in two successive continuous time intervals [0,t] and (t,t+τ] implies [23] that random events in the quantity η could occur during the total time duration [0, t+τ]. If events in the quantity k are observed in the interval [0,t], then a diminution η−k for these events should occur in the half-open interval (t,t+τ]. The first axiomatic restriction is due to the fact that both intervals are independent, and also that the events in them separately occur as the substantive cases. The consequence of this restriction is that the probability of observing the events η on the common interval [0,t+τ] is the joint probability of independent events:

Pη([0,t+τ])=Pk([0,t])·Pη−k((t,t+τ])).

(2)

In Poisson model the probability Pη−k((t,t+τ]) has a number of serious limitations, which can be formulated as follows:

	
The probability of events in the time interval (t,t+τ] does not depend on its origin t:

Pη−k((t,t+τ])=Pη−k((0,τ]).

(3)

	
The probability of one event in the time interval (0,τ] depends linearly on the length of the interval τ with given intensity λ; and the probability o(τ) of observing other events is negligible:

P1((0,τ])=P1(τ)=λ·τ+o(τ).

(4)

In Equation (4) the notation α=λt (1) is used, which in the theory of probabilities [2] and the theory of random processes is in common use. Equation (4) excludes an observation of two or more events simultaneously in the time interval τ. This makes it possible to simplify it without considering the events with an infinitesimal small probability of a higher order o(τ):

P1(τ)=λ·τ.

(5)

Equation (5) allows for reaching the determination of probability of the event absence in the time interval τ:

P0(τ)=1−P1(τ)=1−λ·τ.

(6)

Combining together Equations (2) and (6), the probability of the event absence at the time moment t in the general interval [0,t+τ] could be obtained as follows:

P0(t+τ)=P0(t)·P0(τ)=P0(t)(1−λτ).

(7)

This expression (7) leads to the definition of the derivative with respect to probability:

dP0(t)dτ=limτ→0P0(t+τ)−P0(t)τ=−λP0(t).

(8)

The solving of the differential Equation (8) determines the probability of the absence of events at the time moment t, in which the constant c=1 is derived from the initial condition P0(0)=1. The result is the following:

P0(t)=ce−λt=e−λt.

(9)

Equation (9) with allowance for Equation (2) and Constraints (5) and (6) admits calculating the probability of a single event P1([0,t+τ]) as follows:

P1([0,t+τ])=P0(t)P1(τ)+P1(t)P0(τ)=e−λtλτ+P1(t)(1−λτ).

(10)

By analogy with Transformations (7) and (8), Equation (10) leads to the following differential equation:

dP1(t)dτ=λe−λt−λP1(t).

(11)

The solving of Equation (11) determines P1(t) with the initial condition P1(0)=0:

P1(t)=λte−λt.

(12)

Performing successively the Transformations (10)–(12) for all variables η∈[0,∞], the distribution of Poisson probabilities Pη(λt) with respect to quantity η of random events with intensity λ at the time moment t could be obtained as follows:

Pη(α=λt)=(λt)ηη!e−λt=αηη!e−α.

(13)

Since the set of η∈H=[0,∞] of random events in Kolmogorov axiomatics contains σ-algebra, the probability measure Pη(α=λt) (13) uniquely determines the cumulative function FH(η,α=λt) of the distribution probabilities:

FH(η,α=λt)=∑k=0η(λt)kk!e−λt=∑k=0ηαkk!e−α.

(14)

Using a definition of number ex=∑k=0∞xk/k! for Equation (14), it follows that FH(η,λ)∈[0:1]. It should be noted here that a probability space guarantees uniqueness of the determination of the inverse probability distribution function. If any value h of the cumulative distribution function FH(ηh,α=λt)=h is given, then a value of the stochastic variable ηh can be obtained as the inverse transformation ηh=FH−1(h). Therefore, by specifying the complete uniform random values FH−1(η,α=λt)∈[0:1], it allows uniquely obtaining the stochastic values η of this distribution. This main mathematical model contains the bases for constructing the generators of random variables from given functions of their distribution. Let us use this statement for developing the generator of Poisson stochastic variables. For this it is necessary to get an absolutely complete and uniform generator, which has no repetitions and skipping of random variables. Let us use here the twister generator nsDeonYuliTwist32D [24,25,26,27], which is of such properties.

In discrete probability space, the number N of events is fixed. For each quantitative variable η, with the probability p(η,α=λt), it corresponds the frequency ν(η,α=λt) of observation of the random events:

ν(η,α=λt)=p(η,α=λt)·N=Pη(λt)·N.

(15)

According to Kolmogorov axiomatics, the determination of probability p(η,α=λt) takes precedence over the determination of frequency ν(η,α=λt). Therefore, in general for the values of frequency ν(η,α=λt) in (15), it is possible to use mathematical rounding in the fractional part for the multiplication p(η,α=λt)·N.

Below is the program code, in which the twister generator nsDeonYuliTwist32D [26] creates complete set [0:2w−1¯] of uniform integer random variables z, having the length of w bits. Function PoissonD() creates an array pEta of Poisson probabilities (13) and an array of corresponding frequencies nuEta (15). The last trailing single frequencies complement an array of frequency distributions nuEta to the completeness 2w of basic uniform random variables. Therefore, the trailing probabilities pEta are complemented relying on the trailing single frequencies in nuEta. Such a negligible deviation in the rest of the distribution (13) allows for preserving the completeness of generation of Poisson stochastic variables based on initial generation of uniform random variables z∈[0:2w−1¯]. The values of the cumulative frequency function are located in an array of summarized frequencies snuEta. Inverse function FH−1(ηh,α=λt) is created by using function SearchEta() in accordance with a searching algorithm for the index of element in an array of the cumulative frequencies cnuEta. Program names P060202 and cP060202 are taken by chance.

using nsDeonYuliTwist32D; //complete twister generator
 //of integer uniform numbers
namespace P060202
{ class cP060202
 { static void Main(string[] args)
 { int w = 32; //bit width of uniform integer variable
 long N = 1L << w; //random variable quantity
 Console.WriteLine(“w = {0} N = {1}”, w, N);
 double Alpha = 2.0;
 Console.WriteLine(“Alpha = {0:F2}”, Alpha);
 int wX = 200;
 double[] pEta = new double[wX]; //Poisson probability
 long[] nuEta = new long[wX]; //Poisson frequency
 long[] cnuEta = new long[wX]; //cumulative frequency
 int cEta = PoissonDY(Alpha, pEta, nuEta, cnuEta, N);
 VerifyProbability(N, cEta, pEta, nuEta, cnuEta);
 Console.WriteLine(“cEta = {0}”, cEta);
 cDeonYuliTwist32D DYG = new cDeonYuliTwist32D();
 DYG.SetW(w); //set bit width of uniform variable
 DYG.Start(); //start uniform generator
 long[] nuDYG = new long[wX];//frequencies of generator
 for (int i = 0; i < wX; i++) nuDYG[i] = 0;
 for (long j = 0; j < N; j++)
 { long z = DYG.Next(); //uniform variable
 int Eta = SearchEta(z, cnuEta, cEta);
 nuDYG[Eta]++; //uniform variable counter
 }
 double spEta = 0.0; //sum of Poisson probability
 long snuEta = 0; //sum of Poisson frequency
 long snuDYG = 0; //sum of variables by generator
 Console.Write(“Eta pEta nuEta”);
 Console.WriteLine(“ cnuEta nuDYG”);
 for (int Eta = 0; Eta <= cEta; Eta++)
 { Console.WriteLine(
 “{0,2} {1,12:F10} {2,10} {3,10} {4,10}”,
 Eta, pEta[Eta], nuEta[Eta],
 cnuEta[Eta], nuDYG[Eta]);
 spEta += pEta[Eta];
 snuEta += nuEta[Eta];
 snuDYG += nuDYG[Eta];
 }
 Console.Write(“Sum spEta snuEta”);
 Console.WriteLine(“ snuDYG”);
 Console.Write(“ {0,12:F10} {1,10}”,
 spEta, snuEta);
 Console.WriteLine(“ {0,10}”, snuDYG);
 Console.ReadKey(); //result viewing
 }
//--
 static int PoissonDY (double alpha, double[] pEta,
 long[] nuEta, long[] cnuEta, long N)
 { double emAlpha = Math.Exp(−alpha);
 double spEta = 0.0; //sum of probability
 long snuEta = 0L; //sum of frequency
 pEta[0] = 1.0 * emAlpha; //Poisson probability p(0)
 spEta += pEta[0]; //sum of probability
 nuEta[0] = (long)Math.Round(pEta[0] * (double)N);
 snuEta += nuEta[0]; //sum of frequency
 cnuEta[0] = snuEta; //cumulative frequency cnu(0)
 double r = alpha; //Tailor first summand
 pEta[1] = r * emAlpha; //Poisson probability p(1)
 spEta += pEta[1]; //sum of probability
 nuEta[1] = (long)Math.Round(pEta[1] * (double)N);
 snuEta += nuEta[1]; //sum of frequency
 cnuEta[1] = snuEta; //cumulative frequency cnu(1)
 int Eta = 2; //random variable
 do
 { r *= alpha/(double)Eta; //regular summand of exp
 double p = r * emAlpha; //probability p(Eta)
 long nu = (long)Math.Round(p * (double)N);
 long sd = snuEta + nu;
 if (nu == 0L || sd > N) break; //the tail
 pEta[Eta] = p; //probability p(Eta)
 spEta += p; //sum of probability
 nuEta[Eta] = nu; //frequency nu(Eta)
 snuEta += nu; //sum of frequency
 cnuEta[Eta] = snuEta; //cumulative frequency
 Eta++; //next random variablecлeдyющaя Eta
 } while (snuEta < N);
 Eta--;
 long d = N − snuEta; //tailing frequencies
 if (d == 0L) return Eta;
 double d1N = (1.0 − spEta)/(double)d;
 do
 { Eta++;
 pEta[Eta] = d1N; //probability of a tail event
 nuEta[Eta] = 1; //one-frequency event
 snuEta++; //sum of frequency
 cnuEta[Eta] = snuEta; //cumulative frequency
 } while (snuEta < N);
 return Eta;
 }
//--
 static void VerifyProbability (long N, int cEta,
 double[] pEta, long[] nuEta, long[] cnuEta)
 { double dN = (double)N;
 for (int i = 0; i <= cEta; i++)
 pEta[i] = (double)nuEta[i]/dN;
 }
//--
 static int SearchEta (long z, long[] cnuEta, int cEta)
 { int Eta = 0;
 for (; Eta <= cEta; Eta++)
 if (z < cnuEta[Eta]) break;
 return Eta;
 }
//~~
 }
}

After launching the program P060202 the following listing appears on the monitor.

w = 32 N = 4294967296
Alpha = 2.00
cEta = 16
Eta pEta nuEta cnuEta nuDYG
 0 0.1353352831 581260615 581260615 581260615
 1 0.2706705665 1162521231 1743781846 1162521231
 2 0.2706705665 1162521231 2906303077 1162521231
 3 0.1804470443 775014154 3681317231 775014154
 4 0.0902235222 387507077 4068824308 387507077
 5 0.0360894089 155002831 4223827139 155002831
 6 0.0120298029 51667610 4275494749 51667610
 7 0.0034370865 14762174 4290256923 14762174
 8 0.0008592717 3690544 4293947467 3690544
 9 0.0001909493 820121 4294767588 820121
10 0.0000381898 164024 4294931612 164024
11 0.0000069437 29823 4294961435 29823
12 0.0000011572 4970 4294966405 4970
13 0.0000001781 765 4294967170 765
14 0.0000000254 109 4294967279 109
15 0.0000000035 15 4294967294 15
16 0.0000000005 2 4294967296 2
Sum spEta snuEta snuDYG
 1.000000000 4294967296 4294967296

In this listing, the pEta column contains Poisson probabilities distribution (13). In the next column nuEta, there is a corresponding frequency distribution. The sum of all frequencies snuEta=4294967296 has to be coincided with generation of the basic uniform random variables having w=32 bits in the total quantity of N=2w=232=4294967296. The counters nuDYG of the last column confirm the complete coincidence of distribution of the generated random variables with the theoretical frequency distribution nuEta.

At this step, the theoretical issues are solved. With the currently reached result, the technology of the cumulative analysis provides an impeccable generation of the random variables with a frequency distribution according to Poisson probabilities. Testing of P060202 with w∈[3:32] and α∈[0.1:10] confirms an impeccability of received results.

3. Construction and Results

Below is class nsDeonYuliCPoissonTwist32D, in which the random variables are created in accordance with Poisson distribution (13). This class is derived over the base one nsDeonYuliTwist32D of the twister generator of uniform random variables [24,25,26,27], which in DieHard Tests [28,29,30,31,32] shows an absolute uniform distribution. An example of generation of Poisson stochastic variables is given here later in program P060302.

 using nsDeonYuliTwist32D; //complete twister generator
 //of integer uniform numbers
namespace nsDeonYuliCPoissonTwist32D
{ class cDeonYuliCPoissonTwist32D : cDeonYuliTwist32D
 { public long N; //quantity of uniform events
 public double dN; //quantity of uniform events
 public double Alpha = 2.0; //Alpha parameter
 double emAlpha; //exp(−Alpha)
 public int cEta; //maximal Eta
 public double[] pC; //probability distribution
 public long[] nuC; //frequency distribution
 public long[] cnuC; //cumulative frequencies
//--
 public cDeonYuliCPoissonTwist32D () {}
//--
 public void CStart(double alpha)
 { Alpha = alpha; //Alpha parameter
 base.Start(); //uniform twister generator
 CStartInside();
 }
//--
 public void CTimeStart(double alpha)
 { Alpha = alpha; //Alpha parameter
 base.TimeStart(); //uniform twister generator
 CStartInside();
 }
//--
 void CStartInside()
 { int wX = 200;
 pC = new double[wX]; //probability distribution
 nuC = new long[wX]; //frequency distribution
 cnuC = new long[wX]; //cumulative frequencies
 emAlpha = Math.Exp(−Alpha); //exp(−Alpha)
 N = (long)N1 + 1L; //quantity of uniform events
 dN = (double)N; //quantity of uniform events
 cEta = CPoissonDY(); //probability and frequency
 CVerifyProbability(); //probability verification
 }
//--
 public int CNext()
 { uint z =base.Next(); //uniform random variable
 return CSearchEta(z); //Poisson random variable
 }
//--
 int CPoissonDY()
 { double spC = 0.0; //probability sum
 long snuC = 0L; //frequency sum
 pC[0] = 1.0 * emAlpha; //Poisson probability p(0)
 spC += pC[0]; //probability sum
 nuC[0] = (long)Math.Round(pC[0] * dN);//frequency nu(0)
 snuC += nuC[0]; //frequency sum
 cnuC[0] = snuC; //cumulative frequency cnu(0)
 double r = Alpha; //Tailor first summand
 pC[1] = r * emAlpha; //Poisson probability p(1)
 spC += pC[1]; //probability sum
 nuC[1] = (long)Math.Round(pC[1] * dN);//frequency nu(1)
 snuC += nuC[1]; //frequency sum
 cnuC[1] = snuC; //cumulative frequency cnu(1)
 int Eta = 2; //random variable
 do
 { r *= Alpha/(double)Eta; //regular summand of exp
 double p = r * emAlpha; //probability p(Eta)
 long nu = (long)Math.Round(p * dN);
 if (nu == 0L) break; //a tail zero frequencies
 long sd = snuC + nu;
 if (nu == 0L || sd > N) break; //the tail
 pC[Eta] = p; //probability p(Eta)
 spC += p; //probability sum
 nuC[Eta] = nu; //frquency nu(Eta)
 snuC += nu; //frequency sum
 cnuC[Eta] = snuC; //cumulative frequency
 Eta++; //the next random variable Eta
 } while (snuC < N);
 Eta--;
 long d = N − snuC; //a tail frequencies
 if (d == 0L) return Eta;
 double d1N = (1.0 − spC)/(double)d;
 do
 { Eta++;
 pC[Eta] = d1N; //a tail event probability
 nuC[Eta] = 1; //one-frequency event
 snuC++; //frequency sum
 cnuC[Eta] = snuC; //cumulative frequency
 } while (snuC < N);
 return Eta;
 }
//--
 void CVerifyProbability()
 { for (int i = 0; i <= cEta; i++)
 pC[i] = (double)nuC[i]/dN;
 }
//--
 int CSearchEta(uint z)
 { int Eta = 0;
 for (; Eta <= cEta; Eta++)
 if (z < cnuC[Eta]) break;
 return Eta;
 }
//~~
 }
}

As an example, let us use the following program code showing the complete generation of Poisson stochastic variables on a base space of uniform values having the bit length w=7 (for arbitrary w≤32 the listing of N=2w=32=4294967296 random numbers is too long to present here). This allows demonstrating in a visual form the work of the twister generator nsDeonYuliCPoissonTwist32D with observance of Poisson distribution. Program names P060302 and cP060302 are assigned arbitrarily.

using nsDeonYuliCPoissonTwist32D; //Poisson twister generator
 //by technology of cumulative frequencies
namespace P060302
{ class cP060302
 { static void Main(string[] args)
 { cDeonYuliCPoissonTwist32D PT =
 new cDeonYuliCPoissonTwist32D();
 int w = 7; //bit width of uniform random variable
 PT.SetW(w); //set bit width of uniform variable
 double Alpha = 2.0; //Alpha parameter
 PT.CStart(Alpha); //start generator
// PT.CTimeStart(Alpha);//start generator using time value
 Console.WriteLine(“w = {0} N = {1}”, PT.w, PT.N);
 Console.WriteLine(“Alpha = {0:F2}”, Alpha);
 Console.WriteLine(“cEta = {0}”, PT.cEta);
 int wX = 200;
 int[] nuG = new int[wX]; //frequencies of generator
 for (int i = 0; i< wX; i++) nuG[i] = 0;
 for (int i = 0, j = 1; i< PT.N; i++, j++)
 { int Eta = PT.CNext(); //Poisson variable
 Console.Write(“{0,5}”, Eta);
 if (j % 8 == 0) Console.WriteLine();
 nuG[Eta]++; //counter of random variable
 }
 Console.WriteLine();
 double spEta = 0.0; //Poisson probability sum
 long snuEta = 0; //Poisson frequency sum
 int snuG = 0; //frequency sum by generator
 Console.Write(“Eta pC nuC”);
 Console.WriteLine(“ cnuC nuDYG”);
 for (int Eta = 0; Eta<= PT.cEta; Eta++)
 { Console.WriteLine(
 “{0,2} {1,12:F10} {2,8} {3,8} {4,8}”,
 Eta, PT.pC[Eta], PT.nuC[Eta],
 PT.cnuC[Eta], nuG[Eta]);
 spEta += PT.pC[Eta];
 snuEta += PT.nuC[Eta];
 snuG += nuG[Eta];
 }
 Console.Write(“Sum spC snuC”);
 Console.WriteLine(“ snuDYG”);
 Console.WriteLine(
 “ {0,12:F10} {1,8} {2,8}”,
 spEta, snuEta, snuG);
 Console.ReadKey(); //result viewing
 }
 }
}

After executing the program P060302 the following result appears on monitor.

w = 7 N = 128
Alpha = 2.00
cEta = 6
 1 6 3 1 3 1 1 2
 2 1 0 2 0 2 3 3
 3 2 1 4 2 3 0 0
 0 4 2 1 3 0 1 2
 1 1 5 2 0 1 2 3
 3 2 1 4 1 3 4 0
 0 4 2 1 2 0 1 1
 1 1 4 2 5 1 2 2
 2 2 1 3 1 2 4 5
 5 3 2 1 2 5 1 1
 1 0 3 2 4 1 2 2
 2 2 1 3 1 2 3 4
 4 3 2 0 2 4 0 1
 1 0 3 1 4 1 2 2
 2 1 0 3 1 2 3 3
 3 3 2 0 2 3 0 1
Eta pC nuC cnuC nuDYG
 0 0.1328125000 17 17 17
 1 0.2734375000 35 52 35
 2 0.2734375000 35 87 35
 3 0.1796875000 23 110 23
 4 0.0937500000 12 122 12
 5 0.0390625000 5 127 5
 6 0.0078125000 1 128 1
sum spC snuC snuDYG
 1.0000000000 128 128

This result shows a stochastic sequence of random variables generated by twister generator nsDeonYuliCPoissonTwist32D. The direct calculation by this listing confirms that all the elements including the random variables, their probabilities and frequencies do indeed satisfy Poisson distribution. Similar results could be obtained for other quantities as well, for example with a length of w≤32 bits.

4. Discussion

As mentioned at the beginning of this article, Poisson distribution has basic properties of initial probabilistic moments in terms of mathematical expectation and dispersion. The mathematical expectation for this type of a distribution characterizes the average number of successful results at any interval. Usually, it is determined on a basis of the experimentally obtained data for a certain situation. Next, if the mathematical expectation is determined, then the dispersion is known also because of the distribution properties of Poisson probabilities. If it turns out that the values of the mathematical expectation and the dispersion are sufficiently close, then the hypothesis of the distribution of certain random variables in accordance with Poisson law is correct. However, if there is a meaningful difference in the obtained values of these characteristics, this would testify against the hypothesis of Poisson distribution of the given random variables.

Therefore, first of all, it is necessary to confirm two basic aforementioned properties of Poisson distribution on equality of parameter α to mathematical expectation and dispersion. Below is the program code that validates this. The generator in it creates the random variables in quantity N=2w=232=4294967296. Program names P060402 and cP060402 are chosen by chance.

using nsDeonYuliCPoissonTwist32D; //Poisson twister generator
 //by technology of cumulative frequencies
namespace P060402
{ class cP060402
 { static void Main(string[] args)
 { cDeonYuliCPoissonTwist32D PT =
 new cDeonYuliCPoissonTwist32D();
 PT.SetW(32); //bit width of random variable
 double Alpha = 2.0; //Alpha parameter
 PT.CStart(Alpha); //start generator
 Console.WriteLine(“w = {0} N = {1}”, PT.w, PT.N);
 Console.WriteLine(“Alpha = {0:F2}”, Alpha);
 double p1 = 1.0/(double)PT.N; //event probability
 double m = 0.0; //mathematical expectation
 double D = 0.0; //dispersion
 for (long i = 0; i< PT.N; i++)
 { int Eta = PT.CNext(); //random variable
 m += Eta * p1; //mathematical expectation
 D += Eta * Eta * p1; //dispersion
 }
 D = D − m * m;
 Console.WriteLine(“m = {0:F10}”, m);
 Console.WriteLine(“D = {0:F10}”, D);
 Console.ReadKey(); //result viewing
 }
 }
}

After running the program P060402, the following listing appears on the monitor.

w = 32 N = 4294967296
Alpha = 2.00
m = 2.0000000014
D = 2.0000000116

This listing shows the obtained values of mathematical expectation m and dispersion D. Their negligible difference from the value of parameter α=2.0 is related to the discreteness of Poisson model in probabilities and frequencies of the events.

Further, a general discussion should also supplement the estimates of possible generation of the random variables with respect to Poisson distribution. To do this, let us refer to the capabilities of the basic twister generator nsDeonYuliTwist32D, which is used here for uniform random variables creation. For a given length of w bits it realizes several complete twisting sequences. Initial sequence contains N=2w non-repeating numbers distributed uniformly and randomly in interval [0:2w−1]. For utilization, the constants a and c of the twister generation of the random variable xi=(axi−1+c)mod 2w obtained from the value of the previous variable xi−1 are used. When the generator completes the creation of one series consisting of N=2w random variables, it automatically proceeds to the creation of the next twisting series, in which N=2w elements are obtained as well. So, for each pair of twister constants a and c, the twisting uniform sequences in quantity NT could be created:

NT=w·2w.

(16)

Consequently, one complete twisting cycle (16) with unchanged a and c realizes the following quantity Ns for uniform random variables that allows the creation of the same number of Poisson stochastic variables:

Ns=N·NT=2w·w·2w=w·22w.

(17)

To obtain a complete cycle of all Poisson stochastic series with quantity Ns=w·22w of the random variables in each complete twister (17), it is necessary to take into account the varieties of coefficients a and c in the twister transformation xi=(axi−1+c)mod 2w. The values of these coefficients must not exceed the interval limit a,c∈[0:2w−1] of all uniform variables in the single series. Quantity Na of the coefficient a is defined as:

Na=N4=2w22=2w−2.

(18)

During the generation of uniform random variables, the values of the coefficients c have to be odd, i.e., c mod 2 ≠0. Their quantity Nc is defined as the following:

Nc=N2=2w21=2w−1.

(19)

Collecting Equations (16)–(19) together, the estimate for the total number Nsac of the random variables is defined in the following manner:

Nsac=Ns·Na·Nc=w22w2w−2ww−1=w·24w−3.

(20)

Finally, the information concerning non-repeatable cycle NI has the following estimation:

NI=2wNsac=2w224w−3.

(21)

As an example, let us get the real values of these estimations for the bit length w=32. In this case, each series contains N=232=4294967296 Poisson stochastic variables, and in each of these series Poisson distribution is observed absolutely. In this case, the total number of generated Poisson stochastic variables is Nsac(w=32)=32·24·32−3=25·2125=2130, and the value of the non-repeatable cycle (21) is defined as NI(w=32)=2252130=22135.

Therefore, the complete discrete simulation of the random variables with Poisson distribution using the aforementioned basic twister generator confirms the important properties in terms of mathematical expectation and dispersion. Moreover, an automatic extension of the series of initial uniform random variables extends significantly the periods of non-repeatability (Equations (20) and (21)) for the series of Poisson stochastic variables. This notably exceeds the features of the known generators, which bases the probabilistic convergence algorithm.

5. Conclusions

An analysis of the source material shows that algorithms for generation of Poisson stochastic variables according to the probabilistic convergence technology lead to different realizations of distributions. Moreover, the skipping of elements in such distributions may also occur, which is inappropriate in the theory of Poisson stochastic processes. Since the quality of the generators depends on the basic generations used for uniform random variables, it has been proposed here to use the twister generator nsDeonYuliCPoissonTwist32D to ensure the completeness of technology of the cumulative array of frequencies in Poisson space. This approach allows for reducing the time of operations and improving the quality of generation. In the discrete probabilistic Poisson space, the test results confirmed the complete coincidence of the distributions of the obtained stochastic variables with the ones received in theoretical modeling. Moreover, an automatic tuning of the parameters of the basic twister uniform generator nsDeonYuliTwist32D allows obtaining a significant increase in the overall period of non-repeatable generation of Poisson stochastic variables.

Author Contributions

Paper writing, conceptualization and methodology, programming and analysis, investigation and data curation, algorithm improvement were done by A.F.D. Paper writing, conceptualization, validation, original draft preparation, reviewing and editing, project administration and supervision were done by Y.A.M. All authors have read and approved the final manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors are thankful to Matthew Vandenberg, J. Alex Watts, Jacqueline Nolan and Walter Harrington (University of Arkansas for Medical Sciences, Little Rock, AR, USA) for the proofreading.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Feller, W. An Introduction to Probability Theory and Its Applications, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]

	

Gnedenko, B. Theory of Probability, 6th ed.; CRC Press: Boca Raton, FL, USA, 1998; p. 520. [Google Scholar]

	

Zhang, H.; Li, B. Characterizations of discrete compound poisson distribution. Commun. Stat.-Theory Method. 2016, 45, 6789–6802. [Google Scholar] [CrossRef]

	

Guerriero, V. Power low distribution: method of multi-scale inferential statistics. J. Mod. Math. Front. 2012, 1, 21–28. [Google Scholar]

	

Arkani, M.; Khalafi, H.; Vosoughi, N. A flexible multichannel digital random pulse generator based on FPGA. J. Nucl. Sci. Tech. 2013, 3, 109–116. [Google Scholar] [CrossRef]

	

Rasoanaivo, A.N.; Horowitz, W.A. Medium-induced radiation beyond the Poisson approximation. J. Phys. Conf. 2017, 878. [Google Scholar] [CrossRef]

	

Veiga, A.; Spinelli, E. A pulse generator with Poisson-exponential distribution for emulation of radioactive decay events. In Proceedings of the IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS), Florianopolis, Brazil, 28 February–2 March 2016; pp. 31–34. [Google Scholar] [CrossRef]

	

Kirkpatrick, J.M.; Young, B.M. Poisson statistical methods for the analysis of low-count gamma spectra. IEEE Trans. Nucl. Sci. 2009, 56, 1278–1282. [Google Scholar] [CrossRef]

	

Marsaglia, G.; Tsang, W.W.; Wang, J. Fast generation of discrete random variables. J. Stat. Software 2004, 11, 1–11. [Google Scholar] [CrossRef]

	

Kumari, S.; Valarmathi, M.; Prince, S. Generation of pseudorandom binary sequence using shot noise for optical encryption. In Proceedings of the International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2016; pp. 0119–0122. [Google Scholar] [CrossRef]

	

Hosamo, M. A Study of the Source Traffic Generator Using Poisson Distribution for ABR Service. Model. Simul. Eng. 2012, 2012, 1–6. [Google Scholar] [CrossRef]

	

Zhang, H.; Liu, Y.; Li, B. Notes on discrete compound poisson model with applications to risk theory. Insur. Math. Econ. 2014, 59, 325–336. [Google Scholar] [CrossRef]

	

Shanmugam, R. Informatics about fear to report rapes using bumped-up poisson model. Am. J. Biostat. 2013, 3, 17–29. [Google Scholar] [CrossRef]

	

Menyaev, Y.A.; Nedosekin, D.A.; Sarimollaoglu, M.; Juratli, M.A.; Galanzha, E.I.; Tuchin, V.V.; Zharov, V.P. Optical clearing in photoacoustic flow cytometry. Biomed. Optic. Express 2013, 4, 3030–3041. [Google Scholar] [CrossRef] [PubMed]

	

Menyaev, Y.A.; Carey, K.A.; Nedosekin, D.A.; Sarimollaoglu, M.; Galanzha, E.I.; Stumhofer, J.S.; Zharov, V.P. Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery. Biomed. Optic. Express 2016, 7, 3643–3658. [Google Scholar] [CrossRef] [PubMed]

	

Juratli, M.A.; Menyaev, Y.A.; Sarimollaoglu, M.; Melerzanov, A.V.; Nedosekin, D.A.; Culp, W.C.; Suen, J.Y.; Galanzha, E.I.; Zharov, V.P. Noninvasive label-free detection of circulating white and red blood clots in deep vessels with a focused photoacoustic prob. Biomed. Opt. Express 2018, 9, 5667–5677. [Google Scholar] [CrossRef] [PubMed]

	

Sitek, A.; Celler, A.M. Limitations of Poisson statistics in describing radioactive decay. Phys. Med. 2015, 31, 1105–1107. [Google Scholar] [CrossRef] [PubMed]

	

Menyaev, Y.A.; Zharov, V.P. Experience in development of therapeutic photomatrix equipment. Biomed. Eng. 2006, 40, 57–63. [Google Scholar] [CrossRef]

	

Menyaev, Y.A.; Zharov, V.P. Experience in the use of therapeutic photomatrix equipment. Biomed. Eng. 2006, 40, 144–147. [Google Scholar] [CrossRef]

	

Knuth, D.E. Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.; Addison-Wesle: Boston, MA, USA, 2014; p. 784. [Google Scholar]

	

Knuth, D.E. Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1, 1st ed.; Addison-Wesley: Boston, MA, USA, 2011; p. 912. [Google Scholar]

	

Wikipedia. Poisson Distribution. Available online: https://en.wikipedia.org/wiki/Poisson_distribution (accessed on 26 May 2019).

	

Kolmogorov, A.N.; Fomin, S.V. Elements of the Theory of Functions and Functional Analysis; Dover Publication: Mineola, NY, USA, 1974; p. 128. [Google Scholar]

	

Deon, A.F.; Menyaev, Y.A. The Complete Set Simulation of Stochastic Sequences without Repeated and Skipped Elements. J. Univers. Comput. Sci. 2016, 22, 1023–1047. [Google Scholar] [CrossRef]

	

Deon, A.F.; Menyaev, Y.A. Parametrical tuning of twisting generators. J. Comput. Sci. 2016, 12, 363–378. [Google Scholar] [CrossRef]

	

Deon, A.F.; Menyaev, Y.A. Twister generator of arbitrary uniform sequences. J. Univers. Comput. Sci. 2017, 23, 353–384. [Google Scholar] [CrossRef]

	

Deon, A.F.; Menyaev, Y.A. Uniform twister plane generator. J. Comput. Sci. 2018, 14, 260–272. [Google Scholar] [CrossRef]

	

Wikipedia. Diehard Tests. Available online: https://en.wikipedia.org/wiki/Diehard_tests (accessed on 26 May 2019).

	

The Marsaglia Random Number CDROM Including the Diehard Battery of Tests of Randomness. Available online: https://stat.fsu.edu/pub/diehard/ (accessed on 26 May 2019).

	

Runs Test for Detecting Non-randomness. Available online: https://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm (accessed on 26 May 2019).

	

Sample 33092: Wald-Wolfowitz (or Runs) Test for Randomness. Available online: https://support.sas.com/kb/33/092.html (accessed on 26 May 2019).

	

Alhakim, A.; Hooper, W. A non-parametric test for several independent samples. J. Nonparametric Stat. 2008, 20, 253–261. [Google Scholar] [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 algorithms-12-00114

 		
 algorithms-12-00114

media/file0.png

