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Abstract: Coloring is one of the most famous problems in graph theory. The coloring problem on
undirected graphs has been well studied, whereas there are very few results for coloring problems on
directed graphs. An oriented k-coloring of an oriented graph G = (V, A) is a partition of the vertex
set V into k independent sets such that all the arcs linking two of these subsets have the same direction.
The oriented chromatic number of an oriented graph G is the smallest k such that G allows an oriented
k-coloring. Deciding whether an acyclic digraph allows an oriented 4-coloring is NP-hard. It follows
that finding the chromatic number of an oriented graph is an NP-hard problem, too. This motivates
to consider the problem on oriented co-graphs. After giving several characterizations for this graph
class, we show a linear time algorithm which computes an optimal oriented coloring for an oriented
co-graph. We further prove how the oriented chromatic number can be computed for the disjoint
union and order composition from the oriented chromatic number of the involved oriented co-graphs.
It turns out that within oriented co-graphs the oriented chromatic number is equal to the length of
a longest oriented path plus one. We also show that the graph isomorphism problem on oriented
co-graphs can be solved in linear time.
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1. Introduction

Graph coloring is one of the basic problems in graph theory, which has already been considered in
the 19th century. A k-coloring for an undirected graph G is a k-labeling of the vertices of G such that no
two adjacent vertices have the same label. The smallest k such that a graph G has a k-coloring is named
the chromatic number of G. As even the problem whether a graph has a 3-coloring, is NP-complete,
finding the chromatic number of an undirected graph is an NP-hard problem. However, there are
many efficient solutions for the coloring problem on special graph classes, like chordal graphs [1],
comparability graphs [2], and co-graphs [3].

Oriented coloring has been introduced much later by Courcelle [4]. One could easily apply the
definition of graph coloring to directed graphs, but as this would not take the direction of the arcs into
account, this would not be very interesting. For such a definition, the coloring of a directed graph
would be the coloring of the underlying undirected graph.

Oriented coloring also considers the direction of the arcs. An oriented k-coloring of an oriented
graph G = (V, A) is a partition of the vertex set V into k independent sets, such that all the arcs linking
two of these subsets have the same direction. In the oriented chromatic number problem (OCN for
short) there is given some oriented graph G and some integer c and one has to decide whether there is
an oriented c-coloring for G. Even the restricted problem, when c is constant and does not belong to
the input (OCNc for short), is hard. OCN4 is NP-complete even for DAGs [5], whereas the undirected
problem is easy for trees.

Right now, the definition of oriented coloring is mostly considered for undirected graphs.
There the maximum value χo(G′) of all possible orientations G′ of an undirected graph G is considered.
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For several special undirected graph classes the oriented chromatic number has been bounded.
Among these are outerplanar graphs [6], planar graphs [7], and Halin graphs [8]. In [9], Ganian
has shown an FPT-algorithm for OCN w.r.t. the parameter tree-width (of the underlying undirected
graph). Further, he has shown that OCN is DET-hard (DET is the class of decision problems which
are reducible in logarithmic space to the problem of computing the determinant of an integer valued
n× n-matrix.) for classes of oriented graphs, such that the underlying undirected class has bounded
rank-width.

Oriented coloring of special digraph classes seems not to be investigated up to now. The main
reason is that the oriented chromatic number of the disjoint union of two oriented graphs can be larger
than the maximum oriented chromatic number of the involved graphs (cf. Figure 1 and Example 2).
In this paper, we consider the oriented coloring problem restricted to oriented co-graphs, which are
obtained from directed co-graphs [10] by omitting the series operation. Oriented co-graphs were
already analyzed by Lawler in [11] and [3] (Section 5) using the notation of transitive series parallel
(TSP) digraphs. We give several characterizations for oriented co-graphs and show that for oriented
co-graphs, the oriented chromatic number of the disjoint union of oriented graphs is equal to the
maximum oriented chromatic number of the involved graphs. Further, we show that for every oriented
graph the oriented chromatic number of the order composition of oriented graphs is equal to the sum
of the oriented chromatic numbers of the involved graphs. To show this, we introduce an algorithm
that computes an optimal oriented coloring and thus, the oriented chromatic number of oriented
co-graphs in linear time. We also consider the longest oriented path problem on oriented co-graphs.
It turns out that within oriented co-graphs the oriented chromatic number is equal to the length of a
longest oriented path plus one. Further, we give a linear time algorithm for the graph isomorphism
problem on oriented co-graphs. Since oriented co-graphs have a directed NLC-width of one [12],
our results provide a useful basis for exploring the complexity of OCN related to width parameters
(cf. Section 7).

Figure 1. Special oriented graphs: oriented cycle
−→
C3 and transitive tournament

−→
T3 .

2. Preliminaries

2.1. Graphs and Digraphs

We use the notations of Bang-Jensen and Gutin [13] for graphs and digraphs.
For some given digraph G = (V, A), we define its underlying undirected graph by ignoring

the directions of the edges, i.e., und(G) = (V, {{u, v} | (u, v) ∈ A, u, v ∈ V}) and for some class of
digraphs X, let und(X) = {und(G) | G ∈ X}. For some (di)graph class F we define Free(F) as the set
of all (di)graphs G, such that no induced sub(di)graph of G is isomorphic to a member of F.

An oriented graph is a digraph with no loops and no opposite arcs. We recall some special oriented
graphs. By −→

Pn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn)}),

n ≥ 2, we denote the oriented path on n vertices, by

−→
Cn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn), (vn, v1)}),

n ≥ 3, we denote the oriented cycle on n vertices and by
−→
Tn we denote the transitive tournament on

n vertices.

2.2. Undirected Co-Graphs

Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be k vertex-disjoint graphs.
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• The disjoint union of G1, . . . , Gk, denoted by G1 ∪ . . .∪Gk, is the graph with vertex set V1 ∪ . . .∪Vk
and edge set E1 ∪ . . . ∪ Ek.

• The join composition of G1, . . . , Gk, denoted by G1 × . . .×Gk, is defined by their disjoint union plus
all possible edges between vertices of Gi and Gj for all 1 ≤ i, j ≤ k, i 6= j.

The set of all graphs, which can be defined from a single vertex graph by applying the disjoint
union and join composition, is characterized as the set of all co-graphs. It is well known that co-graphs
are precisely the P4-free graphs [3].

2.3. Undirected Graph Coloring

Definition 1 (Graph Coloring). A k-coloring of a graph G = (V, E) is a mapping c : V → {1, . . . , k}
such that:

• c(u) 6= c(v) for every {u, v} ∈ E

The chromatic number of G, denoted by χ(G), is the smallest k such that G has a k-coloring.

On undirected co-graphs, the graph coloring problem is easy to solve by the following result
proven by Corneil et al.:

Lemma 1 ([3]). Let G1, . . . , Gk be k vertex-disjoint graphs.

1. χ(G1 ∪ . . . ∪ Gk) = max(χ(G1), . . . , χ(Gk))

2. χ(G1 × . . .× Gk) = χ(G1) + . . . + χ(Gk)

Proposition 1. Let G be a co-graph. Then, χ(G) can be computed in linear time.

The undirected coloring problem, i.e., computing χ(G), can be solved by an FPT-algorithm w.r.t.
the tree-width of the input graph [14]. In contrast, this is not true for clique-width, since it has
been shown in [15], that the undirected coloring problem is W[1]-hard w.r.t. the clique-width of the
input graph. That is, under reasonable assumptions an XP-algorithm is the best one can hope for.
Such algorithms are known, see [16].

2.4. Directed Co-Graphs

The following operations for digraphs have already been considered by Bechet et al. in [10].
Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be k vertex-disjoint digraphs.

• The disjoint union of G1, . . . , Gk, denoted by G1 ⊕ . . .⊕ Gk, is the digraph with vertex set V1 ∪ . . . ∪
Vk and arc set E1 ∪ . . . ∪ Ek.

• The series composition of G1, . . . , Gk, denoted by G1 ⊗ . . .⊗ Gk, is defined by their disjoint union
plus all possible arcs between vertices of Gi and Gj for all 1 ≤ i, j ≤ k, i 6= j.

• The order composition of G1, . . . , Gk, denoted by G1 � . . .� Gk, is defined by their disjoint union
plus all possible arcs from vertices of Gi to vertices of Gj for all 1 ≤ i < j ≤ k.

The set of all digraphs which can be defined by the disjoint union, series composition, and order
composition is characterized as the set of all directed co-graphs [10]. Obviously, for every directed
co-graph we can define a tree structure, denoted as the di-co-tree. The leaves of the di-co-tree represent
the vertices of the graph and the inner nodes of the di-co-tree correspond to the operations applied on
the subexpressions defined by the subtrees. For every directed co-graph one can construct a di-co-tree
in linear time, see [17].

In [18] it is shown that the weak k-linkage problem can be solved in polynomial time for directed
co-graphs. By the recursive structure there exist dynamic programming algorithms to compute the
size of a largest edgeless subdigraph, the size of a largest subdigraph which is a tournament, the
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size of a largest semicomplete subdigraph, and the size of a largest complete subdigraph for every
directed co-graph in linear time. Also the Hamiltonian path, Hamiltonian cycle, regular subdigraph,
and directed cut problem are polynomial on directed co-graphs [19]. Calculs of directed co-graphs
were also considered in connection with pomset logic in [20]. Further, the directed path-width and
directed tree-width can be computed in linear time for directed co-graphs [21].

In [17], it has been shown that directed co-graphs can be characterized by the eight forbidden
induced subdigraphs shown in Figure 2.

D1 D2 D3 D4

D5 D6 D7 D8

Figure 2. The eight forbidden induced subdigraphs for directed co-graphs.

3. Oriented Co-Graphs

Oriented colorings are defined on oriented graphs, which are digraphs with no bidirected edges.
Therefore we introduce oriented co-graphs by omitting the series operation from the definition of
directed co-graphs, as given in [10].

Definition 2 (Oriented Co-Graphs). The class of oriented co-graphs is recursively defined as follows.

1. Every digraph on a single vertex ({v}, ∅), denoted by •, is an oriented co-graph.
2. If G1, . . . , Gk are k vertex-disjoint oriented co-graphs, then

(a) G1 ⊕ . . .⊕ Gk and
(b) G1 � . . .� Gk are oriented co-graphs.

The class of oriented co-graphs was already analyzed by Lawler in [11] and [3] (Section 5) using
the notation of transitive series parallel (TSP) digraphs. A digraph G = (V, A) is called transitive, if for
every pair (u, v) ∈ A and (v, w) ∈ A of arcs with u 6= w the arc (u, w) also belongs to A.

Theorem 1 ([3]). A graph G is a co-graph if and only if there exists an orientation G′ of G, such that G′ is an
oriented co-graph.

A di-co-tree T is canonical if on every path from the root to the leaves of T, the labels disjoint
union and order operation strictly alternate. Since the disjoint union ⊕ and the order composition �
are associative, we always can assume canonical di-co-trees.

Lemma 2. Let G be an oriented co-graph and T be a di-co-tree for G. Then, T can be transformed in linear time
into a canonical di-co-tree for G.

The recursive definitions of oriented and undirected co-graphs lead to the following observation.

Observation 1. For every oriented co-graph G the underlying undirected graph und(G) is a co-graph.
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The reverse direction of this observation only holds under certain conditions, see Theorem 2.
By
←→
P2 = ({v1, v2}, {(v1, v2), (v2, v1)}) we denote the complete biorientation of a path on two vertices.

Lemma 3. Let G be a digraph, such that G ∈ Free({←→P2 , D1, D5}). Then, it holds that G is transitive.

Proof. Let (u, v), (v, w) ∈ A be two arcs of G = (V, A). Since G ∈ Free({←→P2 }), we know that
(v, u), (w, v) 6∈ A. Further, since G ∈ Free({D1, D5}), we know that u and w are connected either only
by (u, w) ∈ A or by (u, w) ∈ A and (w, u) ∈ A, which implies that G is transitive.

Oriented co-graphs can be characterized by forbidden subdigraphs as follows.

Theorem 2. Let G be a digraph. The following properties are equivalent:

1. G is an oriented co-graph.
2. G ∈ Free({D1, D5, D8,

←→
P2 }).

3. G ∈ Free({D1, D5,
←→
P2 }) and und(G) ∈ Free({P4}).

4. G ∈ Free({D1, D5,
←→
P2 }) and und(G) is a co-graph.

5. G has directed NLC-width 1 and G ∈ Free({←→P2 }).
6. G has directed clique-width at most 2 and G ∈ Free({←→P2 }).
7. G is transitive and G ∈ Free({←→P2 , D8}).

Proof. (1)⇒ (2) If G is an oriented co-graph, then G is a directed co-graph and by [17] it holds that
G ∈ Free({D1, . . . , D8}). Furthermore, G ∈ Free({←→P2 }) because of the missing series composition.
This leads to G ∈ Free({D1, D5, D8,

←→
P2 }). (2) ⇒ (1) If G ∈ Free({D1, D5, D8,

←→
P2 }), then G ∈

Free({D1, . . . , D8}) and is G a directed co-graph. Since G ∈ Free({←→P2 }), there is no series operation
in any construction of G which implies that G is an oriented co-graph. (3) ⇔ (4) Since co-graphs
are precisely the P4-free graphs [3]. (2) ⇒ (7) By Lemma 3. (7) ⇒ (2) If G is transitive, then
G ∈ Free({D1, D5}). (1)⇔ (5) and (1)⇔ (6) By [12]. (1)&(2)⇒ (4) By Observation 1. (3)⇒ (2) If
und(G) does not contain a P4, then G can not contain any orientation of P4.

Among others are two subclasses of oriented co-graphs, which will be of interest within our
results. By restricting within Definition 2 (2) to k = 2 and graph G1 or G2 to an edgeless graph or to a
single vertex, we obtain the class of all oriented simple co-graphs or oriented threshold graphs, respectively.
The class of oriented threshold graphs has been introduced by Boeckner in [22].

4. Graph Coloring on Recursively Defined Digraphs

4.1. Oriented Graph Coloring Problem

Oriented graph coloring has been introduced by Courcelle [4] in 1994. Most results on this
problem consider orientations of undirected graphs. Now, we consider oriented graph coloring on
recursively defined oriented graph classes.

Definition 3 (Oriented Graph Coloring [4]). An oriented k-coloring of an oriented graph G = (V, A) is a
mapping c : V → {1, . . . , k}, such that:

• c(u) 6= c(v) for every (u, v) ∈ A
• c(u) 6= c(y) for every two arcs (u, v) ∈ A and (x, y) ∈ A with c(v) = c(x)

The oriented chromatic number of G, denoted by χo(G), is the smallest k, such that G has an oriented k-coloring.
The vertex sets Vi = {v ∈ V | c(v) = i}, 1 ≤ i ≤ k, divide a partition of V into so called color classes.

For two oriented graphs G1 = (V1, A1) and G2 = (V2, A2) a homomorphism from G1 to G2, G1 → G2

for short, is a mapping h : V1 → V2, such that (u, v) ∈ A1 implies that (h(u), h(v)) ∈ A2. The oriented
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graphs G1 and G2 are homomorphically equivalent, if there is a homomorphism from G1 to G2 and one
from G2 to G1. A homomorphism from G1 to G2 can be regarded as an oriented coloring of G1 that
uses the vertices of G2 as colors classes. This leads to equivalent definitions for oriented coloring
and oriented chromatic number. There is an oriented k-coloring of an oriented graph G1 if and only
if there is a homomorphism from G1 to some oriented graph G2 on k vertices. That is, the oriented
chromatic number of G is the minimum number of vertices in an oriented graph G2, such that there is
a homomorphism from G1 to G2. Obviously, G2 can be chosen as a tournament.

Observation 2. There is an oriented k-coloring of an oriented graph G1 if and only if there is a homomorphism
from G1 to some tournament G2 on k vertices. Further, the oriented chromatic number of G is the minimum
number of vertices in a tournament G2, such that there is a homomorphism from G1 to G2.

Lemma 4. Let G be an oriented graph and H be a subdigraph of G, then χo(H) ≤ χo(G).

Example 1. For oriented paths and oriented cycles we know: χo(
−→
P2 ) = 2, χo(

−→
P3 ) = 3, χo(

−→
C4) = 4,

χo(
−→
C5) = 5.

An oriented graph G = (V, A) is an oriented clique (o-clique) if χo(G) = |V|. Thus all graphs given
in Example 1 are oriented cliques.

Name Oriented Chromatic Number (OCN)
Instance An oriented graph G = (V, A) and a positive integer c ≤ |V|.
Question Is there an oriented c-coloring for G?

If c is constant and not part of the input, the corresponding problem is denoted by OCNc. Even for
DAGs OCN4 is NP-complete [5].

The definition of oriented coloring is also used for undirected graphs. For an undirected graph G
the maximum value χo(G′) of all possible orientations G′ of G is considered. In this sense, every tree
has oriented chromatic number at most 3. For several further graph classes there exist bounds on the
oriented number. Among these are outerplanar graphs [6], planar graphs [7], and Halin graphs [8].

4.2. Oriented Graph Coloring for Oriented Graphs

Oriented graph coloring has not yet been considered for recursively defined graphs, though it has
been analyzed for some graph operations. In this section we show results of oriented graph coloring
on some graph operations and provide algorithms for recursively defined oriented graph classes. This
will also be useful for the following section.

First, we give some results on the oriented graph coloring for general recursively defined oriented
graphs. These results will be very useful to prove our results for oriented co-graphs in the next section.

Lemma 5. Let G1, . . . , Gk be k vertex-disjoint oriented graphs. Then the following equations holds:

1. χo(G1 ⊕ •) = χo(G1)

2. χo(G1 ⊕ . . .⊕ Gk) ≥ max(χo(G1), . . . , χo(Gk))

3. χo(G1 � . . .� Gk) = χo(G1) + . . . + χo(Gk)

Proof.

1. χo(G1 ⊕ •) ≤ χo(G1)

Since no new arcs are inserted G1 can keep its colors. The added isolated vertex gets a color of G1

in order to obtain a valid coloring for G1 ⊕ •.

χo(G1 ⊕ •) ≥ χo(G1)
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This relation holds by Lemma 4, since G1 is an induced subdigraph of G1 ⊕ •.
2. χo(G1 ⊕ . . .⊕ Gk) ≥ max(χo(G1), . . . , χo(Gk))

Since the digraphs G1, . . . , Gk are induced subdigraphs of digraph G1 ⊕ . . . ⊕ Gk, all values
χo(G1), . . . , χo(Gk) lead to a lower bound for the number of necessary colors of the combined
graph by Lemma 4.

3. χo(G1 � . . .� Gk) ≤ χo(G1) + . . . + χo(Gk)

For 1 ≤ i ≤ k let Gi = (Vi, Ai) and ci : Vi → {1, . . . , χo(Gi)} a coloring for Gi. For G1� . . .�Gk =

(V, A) we define a mapping c : V → {1, . . . , ∑k
j=1 χo(Gi)} as follows.

c(v) =

{
c1(v) if v ∈ VG1

ci(v) + ∑i−1
j=1 χo(Gi) if v ∈ VGi , 2 ≤ i ≤ k.

The mapping c satisfies the definition of an oriented coloring, because no two adjacent vertices
from Gi, 1 ≤ i ≤ k, have the same color by assumption and by definition of c. For 1 ≤ i 6= j ≤ k a
vertex of Gi and a vertex of Gj are always adjacent, but never colored equally by definition of c.

Further, the arcs between two color classes of every Gi, 1 ≤ i ≤ k, have the same direction by
definition of c. For 1 ≤ i 6= j ≤ k the arcs between a color class of Gi and a color class of Gj have
the same direction by definition of the order operation.

χo(G1 � . . .� Gk) ≥ χo(G1) + . . . + χo(Gk)

Since every Gi, 1 ≤ i ≤ k, is an induced subdigraph of the combined graph, all values
χo(G1), . . . , χo(Gk) lead to a lower bound for the number of necessary colors of the combined
graph by Lemma 4. Further, the order operations implies that for every 1 ≤ i 6= j ≤ k no vertex
in Gi can be colored in the same way as a vertex in Gj. Thus, χo(G1) + . . . + χo(Gk) leads to a
lower bound for the number of necessary colors of the combined graph.

This shows the statements of the lemma.

By Lemma 5, we can solve oriented coloring for oriented simple co-graphs and thus, also for
subclasses, such as oriented threshold graphs and transitive tournaments, in linear time.

Proposition 2. Let G be an oriented simple co-graph. Then, it holds that χo(G) = χ(und(G)) = ω(und(G))

and all values can be computed in linear time.

It is not easy to generalize these results to oriented co-graphs. To do so, we would need to
compute the oriented chromatic number of the disjoint union of two oriented co-graphs with at least
two vertices. But it is not possible to compute this oriented chromatic number of the disjoint union of
general oriented graphs from the oriented chromatic numbers of the involved graphs. In Lemma 5 (2)
we only show a lower bound. The following example proves that in general this can not be strengthened
to equality.

Example 2. The two graphs
−→
C3 and

−→
T3 in Figure 1 have the same oriented chromatic number χo(

−→
C3) =

χo(
−→
T3 ) = 3, but their disjoint union needs more colors.

On the other hand, there are several examples for which the disjoint union does not need more
than max(χo(G1), χo(G2)) colors, such as the union of two isomorphic oriented graphs. By Theorem 2,
we know that

−→
T3 , shown in Figure 1, is an oriented co-graph, but

−→
C3, shown in Figure 1, is not an

oriented co-graph. Consequently, the question arises whether oriented coloring could be closed under
disjoint union, when restricted to oriented co-graphs.
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4.3. Oriented Graph Coloring for Oriented Co-Graphs

In order to solve OCN restricted to oriented co-graphs G we created a procedure, which is shown
in Algorithm 1. The method traverses a canonical di-co-tree T for G using a depth-first search, such
that for every inner vertex the children are visited from left to right. For every inner vertex u of T,
we store two values in[u] and out[u]. These values ensure that the vertices of G, corresponding to
the leaves of the subtree, rooted at u will we labeled by labels `, such that in[u] ≤ ` ≤ out[u]. For
every leaf vertex u of T, we additionally store the label of the corresponding vertex of G in color[u].
These values lead to an optimal oriented coloring of G by the next theorem.

Algorithm 1: Computing an oriented coloring for an oriented co-graph.

procedure LABEL(G, u, i)

if (u is a leaf of T) {
color[u] = i; in[u] = i; out[u] = i;

}
else {

in[u] = i; out[u] = 0;
for all children v of u from left to right do {

j =LABEL(G, v, i);
if (out[u] < j)

out[u] = j;
if (u corresponds to a disjoint union)

i = in[u];
else I u corresponds to an order operation

i = out[v] + 1;
}

}
return out[u];

Theorem 3. Let G be an oriented co-graph. Then, an optimal oriented coloring for G and χo(G) can be
computed in linear time.

Proof. Let G = (V, A) be an oriented co-graph. Using the method of [17] we can build a di-co-tree T
with root r for G in linear time. Further by Lemma 2, we can assume that T is a canonical di-co-tree.
For some node u of T we define by Tu the subtree of T which is rooted at u and by Gu the subgraph of
G which is defined by Tu. Obviously, for every vertex u of T the tree Tu is a di-co-tree for the digraph
Gu which is also an oriented co-graph.

Next, we verify that procedure LABEL(G, r, 1), shown in Algorithm 1, returns the value χo(G)

and computes an oriented coloring for G within array color[u]. Therefore, we recursively show for
every vertex u of T that after performing LABEL(G, u, i) for all leaves u of Tu the value color[u] leads
to an oriented coloring of Gu using the colors {i = in[u], . . . , out[u]} (Please note that using colors
starting at values greater than 1 is not a contradiction to Definition 3.) and the value out[u]− in[u] + 1
leads to the oriented chromatic number of Gu.

We distinguish the following three cases depending on the type of operation corresponding to the
vertices u of T.

• If u is a leaf of T, then color[u] = out[u] = in[u] by the algorithm leads to an oriented coloring
of Gu.

Further, out[u]− in[u] + 1 = 1, which obviously corresponds to the oriented chromatic number
of Gu.

• Let u be an inner vertex of T which corresponds to an order operation and u1, . . . , u` are the
children of u in T.
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We already know that the oriented colorings of Gui , 1 ≤ i ≤ `, are feasible. Further, for 1 ≤ i 6=
j ≤ `, the algorithm’s way of working ensures that a vertex from Gui and a vertex from Guj are
never colored equally in Gu. For 1 ≤ i 6= j ≤ `, the arcs between a color class of Gui and a color
class of Guj have the same direction by the definition of the order operation.

By the algorithm, value out[u]− in[u] + 1 is equal to ∑`
i=1 χo(Gui ). By Lemma 5, we conclude that

out[u]− in[u] + 1 is equal to χo(Gi1 � . . .� Gi`) = χo(Gu).
• Let u be an inner vertex of T which corresponds to a disjoint union operation and u1, . . . , u` are

the children of u in T.

We already know that the oriented colorings of Gui , 1 ≤ i ≤ `, are feasible. Since a disjoint union
operation does not create any arcs, no two adjacent vertices have the same color in Gu. Further,
our method ensures that for every arc (u, v) in G it holds that color[u] < color[v]. Thus, all arcs
between two color classes in Gu have the same direction.

By the algorithm, value out[u]− in[u] + 1 is equal to max(χo(G1), . . . , χo(G`)). By Lemma 5, we
conclude that out[u]− in[u] + 1 ≤ χo(G1 ⊕ . . .⊕ G`) = χo(Gu). The relation out[u]− in[u] + 1 ≥
χo(G1 ⊕ . . .⊕ G`) = χo(Gu) holds by the feasibility of our oriented coloring.

By applying the invariant for u = r, the statements of the theorem follow.

Example 3. We illustrate the method given in Algorithm 1 by computing an oriented coloring for the oriented
co-graph G, which is given by the canonical di-co-tree T of Figure 3. On the left of each vertex u of T, the values
in[u] and out[u] are given. An optimal oriented coloring for G is given in blue letters below the leaves of T.
The root r of T leads to χo(G) = out[r] = 5.
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Figure 3. Canonical di-co-tree T for oriented co-graph G.

Next, we can improve the result of Lemma 5 (2) for oriented co-graphs.

Corollary 1. Let G1, . . . , Gk be k vertex-disjoint oriented co-graphs. Then, it holds that

χo(G1 ⊕ . . .⊕ Gk) = max(χo(G1), . . . , χo(Gk)).

Proof. Let G = G1 ⊕ . . . ⊕ Gk be an oriented co-graph and T be a di-co-tree with root r for G.
The method given in Algorithm 1 computes an oriented coloring using χo(G) = χo(G1 ⊕ . . .⊕ Gk)

colors. Further, the proof of Theorem 3 shows that χo(G1 ⊕ . . .⊕ Gk) = max(χo(G1), . . . , χo(Gk)).



Algorithms 2019, 12, 87 10 of 15

Corollary 2. Let G be an oriented co-graph. The following properties are equivalent:

1. G is an oriented clique.
2. G has a di-co-tree, which does not use any disjoint union operation.
3. G is a transitive tournament.

Further characterizations for transitive tournaments and oriented co-graphs, which are oriented
cliques, can be found in [23] (Chapter 9).

As mentioned in Observation 2, oriented coloring of an oriented graph G can be characterized by
the existence of homomorphisms to tournaments. These tournaments are not necessarily transitive
and G is not necessarily homomorphically equivalent to some tournament. For oriented co-graphs we
can show a deeper result.

Corollary 3. There is an oriented k-coloring of an oriented co-graph G if and only if there is a homomorphism
from G to some transitive tournament

−→
Tk on k vertices. Further, the oriented chromatic number of an

oriented co-graph G is the minimum number k, such that G is homomorphically equivalent with the transitive
tournament

−→
Tk .

Proof. Within an oriented co-graph G = (V, A) the color classes V1, . . . , Vk of an oriented k-coloring
define a transitive tournament

−→
Tk = ({V1, . . . , Vk}, {(Vi, Vj) | vi ∈ Vi, vj ∈ Vj, (vi, vj) ∈ A}). If k =

χo(G), then there is a homomorphism from
−→
Tk to G.

5. Longest Oriented Path for Oriented Graphs

Name Oriented Path (OP)
Instance An oriented graph G = (V, A) and a positive integer k ≤ |V|.
Question Is there an oriented path of length at least k in G?

We can bound the path length through the oriented chromatic number, when considering oriented
co-graphs. Please note that in the subsequent results the oriented path

−−→
Pk+1 does not necessarily refer

to an induced path (though, its definition implies no chord on the path).

Proposition 3 ([24]). A directed graph G has a homomorphism to the transitive tournament
−→
Tk if and only if

there is no homomorphism of the oriented path
−−→
Pk+1 to G.

By Corollary 3 this leads to the next result.

Corollary 4. The oriented chromatic number of an oriented co-graph G is the minimum number k such that
there is no homomorphism of the oriented path

−−→
Pk+1 to G.

In order to compute the length of a longest oriented path `(G) for an oriented graph G, we give
the next result.

Lemma 6. Let G1, . . . , Gk be k vertex-disjoint oriented graphs.

1. `(G1 ⊕ . . .⊕ Gk) = max(`(G1), . . . , `(Gk))

2. `(G1 � . . .� Gk) = `(G1) + . . . + `(Gk) + k− 1

Theorem 4. Let G be an oriented co-graph. Then, the length of a longest oriented path `(G) can be computed
in linear time.

Proposition 4. Let G be an oriented co-graph. Then, it holds that `(G) = χo(G)− 1.

Proof. The statement can be shown recursively on the structure of an oriented co-graph G.
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• If G = •, then it obviously holds `(G) = 0 = χo(G)− 1.
• If G = G1 ⊕ . . .⊕ Gk

`(G) = `(G1 ⊕ . . .⊕ Gk)

= max(`(G1), . . . , `(Gk)) by Lemma 6
= max(χo(G1)− 1, . . . , χo(Gk)− 1) by induction hypothesis
= max(χo(G1), . . . , χo(Gk))− 1
= χo(G1 ⊕ . . .⊕ Gk)− 1 by Lemma 1
= χo(G)− 1

• If G = G1 � . . .� Gk

`(G) = `(G1 � . . .� Gk)

= `(G1) + . . . + `(Gk) + k− 1 by Lemma 6
= χo(G1)− 1 + . . . + χo(Gk)− 1 + k− 1 by induction hypothesis
= χo(G1) + . . . + χo(Gk)− 1
= χo(G1 � . . .� Gk)− 1 by Lemma 1
= χo(G)− 1

This shows the statements of the lemma.

The previous lemma implies that for every oriented co-graph the upper bound of Corollary 4
is strict.

In order to state the next result, let ω(G) be the number of vertices in a largest clique in graph G.

Corollary 5. Let G be an oriented co-graph, then χo(G) = `(G) + 1 = χ(und(G)) = ω(und(G)) and all
values can be computed in linear time.

Proof. The first equality holds by Proposition 4 and remaining equality follows by Lemma 1.

6. Graph Isomorphism for Oriented Co-Graphs

The isomorphism problem for undirected co-graphs has been shown to be solvable in polynomial
time in [3]. This result can be improved as follows. Two undirected co-graphs G1 and G1 are isomorphic
if and only if their canonical co-trees T1 and T2 are isomorphic. A canonical co-tree for a co-graph can
be determined in linear time. Thus, by applying a linear time isomorphism test for rooted labeled trees
(cf. [25], Section 3.2) on canonical co-trees for G1 and G2, one can decide in linear time whether G1 and
G2 are isomorphic.

We consider the corresponding problem for oriented co-graphs.

Name Oriented Co-Graph Isomorphism (OCI)
Instance Two oriented co-graphs G1 = (V1, A1) and G2 = (V2, A2).
Question Are G1 and G2 isomorphic, i.e., is there a bijection b : V1 → V2 such that for all u, v ∈ V1 it

holds that (u, v) ∈ A1 if and only if (b(u), b(v)) ∈ A2?

For oriented co-graphs, the method using an isomorphism test for rooted labeled trees on the
co-trees does not work, since the order of the vertices, which are representing order operations in the
di-co-tree, must be preserved. The procedure in Algorithm 2 provides a solution for di-co-trees.

Theorem 5. Let G1 and G2 be two oriented co-graphs, then oriented co-graph isomorphism for G1 and G2 can
be solved in linear time.

Proof. Let G1 and G2 be two oriented cographs with the corresponding di-co-trees T1 and T2, which
can be found in linear time with the method of [17]. Moreover we can assume, that the di-co-trees are
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canonical by Lemma 2. If two graphs are isomorphic, the two canonical di-co-trees must be isomorphic,
too. W.l.o.g. assume that the height and the roots of T1 and T2 are equal. Then, if two trees are
isomorphic, there must be a bijection from the vertices of T1 of level ` to the vertices of T2 of level `.
We look at the procedure from Algorithm 2. Under the given conditions, the operation of the vertices
of level ` are either order compositions or disjoint unions for both trees. If the operation on level ` is a
directed union, the labels of the children of each node on level ` are sorted. Otherwise, it is an order
composition, where the order of the children cannot be changed, such that the labels of the children
will stay in the same order. After visiting every vertex on level `, the vectors with the labels of the
children are sorted in the sequences S1 and S2. With the method given in [25] (Section 3.2) the sorting
can be done in linear time with respect to the number of edges from each vertex to its children. If both
sequences are equal, the algorithm continues, since the isomorphism is satisfied for level `+ 1. If it
is not, the ordered sequences will be different, such that the algorithm terminates and returns false.
This is repeated for every level of both trees, except for level 0, which is the root, where the operations
are assumed to be equal, and level h, which is the first level the algorithm goes through. When the
leaves on this level are labeled, there is nothing more to do, since these vertices have no children.
The isomorphism of level h is checked on level h− 1. Let n be the number of vertices in T1 and T2 and
m the number of edges. Then, the algorithm needs 2n steps for looking at every vertex of both trees,
additional to 2m steps for looking at the children of each vertex. Thus, it runs in linear time.

Algorithm 2: Testing graph isomorphism for two oriented co-graphs given by canonical
di-co-trees.

procedure TEST(T1, T2)

let h be the height of T1 and T2

for ` = h downto 0 do
for all vertices v on level ` in T1 from left to right do

if (v is a leaf)
label[v] = 0

else
let v1, . . . , vr be the children of v
label[v] = (label[v1], . . . , label[vr ])

if (v corresponds to a union operation)
sort vector label[v] ascending

let S1 be the sequence of all label[v] for all v on level ` in T1

for all vertices v on level ` in T2 from left to right do
if (v is a leaf)

label[v] = 0
else

let v1, . . . , vr be the children of v
label[v] = (label[v1], . . . , label[vr ])

if (v corresponds to a union operation)
sort vector label[v] ascending

let S2 be the sequence of all label[v] for all v on level ` in T2

sort S1 to obtain S′1 and sort S2 to obtain S′2
if (S′1 6= S′2)

return f alse
let V` be the set of all vectors on level ` in T1

find a bijection b : V` → {1, . . . , |V`|}
for all vertices v on level ` in T1 do

label[v] = b(v);
for all vertices v on level ` in T2 do

label[v] = b(v);
}
return true;
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7. Conclusions and Outlook

In this paper, we have considered vertex coloring on oriented graphs. We were able to
introduce linear time solutions for the oriented coloring problem, longest oriented path problem
and isomorphism problem on oriented co-graphs. Our solutions are based on computations along
a (canonical) di-co-tree for the given input co-graphs. Furthermore, it turns out that within oriented
co-graphs, the oriented chromatic number is equal to the length of a longest oriented path plus one.
This is a quite interesting result, as within undirected co-graphs even for bipartite graphs the path
length can not be bounded by the chromatic number.

Further, on oriented co-graphs an independent set of largest size can be computed in the same
way as known for undirected co-graphs [3]. Additionally, a tournament subdigraph of largest size and
a partition of the vertex set into a minimum number of tournaments can be computed by applying the
method for independent set or oriented coloring problem on the reverse input graph.

It remains to consider the existence of an FPT-algorithm for OCN w.r.t. the parameter directed
tree-width as given in [26]. Since the directed tree-width of a digraph is always less or equal the
undirected tree-width of the corresponding underlying undirected graph [26], the FPT-algorithm of
Ganian [9] (see also Section 1) does not imply such a result.

In [9], Ganian has shown that OCN is DET-hard for classes of oriented graphs, such that the
underlying undirected class has bounded rank-width. He used a reduction from the isomorphism
problem for tournaments, which has been shown to be DET-hard in [27]. The same reduction also
works for several linear width parameters, since these can define the disjoint union of two arbitrarily
large cliques. Consequently, OCN is DET-hard for classes of oriented graphs, such that the underlying
undirected class has linear NLC-width at most 2, linear clique-width at most 3, neighbourhood-width
at most 2, or linear rank-width 1. Further, OCN is DET-hard for classes of oriented graphs, such that
the underlying undirected class has NLC-width 1 or equivalently clique-width 2. The complexity of
OCN on oriented graphs, such that the underlying undirected class has linear NLC-width at most
1 (equivalently neighbourhood-width 1) or linear clique-width at most 2, remains open, since these
classes do not contain the disjoint union of two arbitrarily large cliques.

It also remains to generalize the shown results for oriented coloring on oriented graphs of bounded
directed clique-width as given in [12,28]. By the existence of a monadic second order logic formula it
follows that for every c the problem OCNc is fixed parameter tractable w.r.t. the parameter directed
clique-width.

For the more general problem OCN the existence of an XP-algorithm or even an FPT-algorithm
w.r.t. the directed clique-width of the input graph is still open. Since the directed clique-width of
a digraph is always greater or equal the undirected clique-width of the corresponding underlying
undirected graph [12], the result of Ganian [9] (see also Section 1) does not imply a hardness result.
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