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Abstract: To improve the overall accuracy of tidal forecasting and ameliorate the low accuracy of
single harmonic analysis, this paper proposes a combined tidal forecasting model based on harmonic
analysis and autoregressive integrated moving average–support vector regression (ARIMA-SVR). In
tidal analysis, the resultant tide can be considered as a superposition of the astronomical tide level and
the non-astronomical tidal level, which are affected by the tide-generating force and environmental
factors, respectively. The tidal data are de-noised via wavelet analysis, and the astronomical tide level
is subsequently calculated via harmonic analysis. The residual sequence generated via harmonic
analysis is used as the sample dataset of the non-astronomical tidal level, and the tidal height of the
system is calculated by the ARIMA-SVR model. Finally, the tidal values are predicted by linearly
summing the calculated results of both systems. The simulation results were validated against
the measured tidal data at the tidal station of Bay Waveland Yacht Club, USA. By considering the
residual non-astronomical tide level effects (which are ignored in traditional harmonic analysis), the
combined model improves the accuracy of tidal prediction. Moreover, the combined model is feasible
and efficient.

Keywords: tidal level prediction; combined model; harmonic analysis method; Support Vector
Regression (SVR); Autoregressive Integrated Moving Average Model (ARIMA)

1. Introduction

Tide is the periodic rising and falling of the sea level, and its fluctuations largely influence
human lifestyle. Accurate real-time recording of tide level information is essential for ship navigation
safety, the development and utilization of marine resources, and marine disaster mitigation and
prevention [1]. Therefore, a simple and efficient tidal prediction method is urgently required. Based
on their underlying prediction principles, tidal prediction methods are classified into traditional and
intelligent prediction models.

Traditional tidal prediction models are mainly based on harmonic analysis [2,3]. Harmonic
analysis for tide prediction was pioneered by Thomson in 1866, which was subsequently improved
by Darwin, who formulated the equilibrium tide theory. Doodson determined the harmonic analysis
constants by least-squares fitting the observed tidal data [4]. Yen smoothed the harmonic analysis
constants by passing them through a Kalman filter [5]. After hundreds of years of development,
harmonic analysis continues to be widely used in tidal prediction; however, this model only considers
the astronomical tidal level affected by the tide-generating forces. Other environmental factors such as
wind, pressure, and seabed topography, which exert nonlinear effects on the tidal level, are ignored. If
the tide level is predicted by harmonic analysis alone, a large prediction error is incurred, which can
be verified in Section 3.2.2 of this paper. Harmonic analysis also requires long-term historical data of
tidal levels, which are generally precluded by the high cost of on-site monitoring equipment [6].

In today’s artificial intelligence era, data prediction is performed by increasingly intelligent models.
Owing to their strong adaptive learning ability and nonlinear-mapping ability, neural networks are
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now widely used in tidal prediction. Many researchers have combined neural networks with related
intelligent algorithms in their tidal prediction models, with much success.

The first prediction of diurnal and semidiurnal tides by an artificial neural network was attempted
by Tsai et al. [7]; Lin et al. [8] proposed an adaptive neuro-fuzzy inference system for sea level prediction,
which accounts for the tidal forces and thermal expansion of the ocean; and Jain et al. [9] developed
a 24 h tidal prediction model based on a neural network, and applied it to the New Mangalore
tidal station on the west coast of the Indian Ocean. However, neural networks generally require a
large amount of training data, are easily trapped into local optima, lack universal applicability, etc.
Support vector machines (SVM) have been widely used in prediction because they provide good
nonlinear fitting with small input data volumes and are strongly generalizable [10]. Bhasin et al. [11]
successfully forecasted the families and subfamilies of G-protein coupled receptors by an SVM-based
approach; Xiong et al. [12] combined an SVM with a Hidden Markov model, and hence proposed
a new framework of vehicle collision prediction; and Deris et al. [13] hybridized the SVM model
with graded resolution, and predicted the surface roughness during abrasive water-jet machining.
Oliveira et al. [14] proposed an evolutionary hybrid system composed of an exponential smoothing
filter, the Autoregressive Integrated Moving Average Model (ARIMA), autoregressive (AR) linear
models, and an SVR model, which has been proven to have good prospects in the forecasting field.
Given this diversity of applications, the prospects of SVM in tidal prediction are high. Nevertheless,
tidal prediction by SVM has rarely been reported.

To exploit these prospects, the current study proposes a tidal prediction model based on harmonic
analysis and an autoregressive integrated moving-average–SVM for Regression (ARIMA-SVR):
The model uses the typical time-series-processing model ARIMA and the SVR, with an excellent
nonlinear-data regression performance, to predict the residual sequence generated by the prediction
of harmonic analysis. The ARIMA-SVR prediction model is a data-driven model. It has unique
advantages in solving numerical predictions, rebuilding highly non-linear functions, time series
analysis, and so on. It does not need to consider the physical mechanism of the tidal formation process,
but establishes a mathematical analysis of time analysis. By learning the given samples, we can find
the statistical or causal relationship among the variables of water level, which has broad prospects in
tidal prediction.

By using the complete data to extract information, including the astronomical tide level and the
non-astronomical tide level, the proposed model greatly improves the accuracy of tidal prediction.
The model was validated against the measured tide data at the port of Bay Waveland Yacht Club in
Mississippi, USA. The verification proves that the combined model effectively ameliorates the low
accuracy of a single model and provides effective tidal prediction.

2. Related Concepts

2.1. SVM and SVR

Pioneered by Vapnik in 1995, SVM is a nonlinear learning method with a solid theoretical
foundation. Unlike other machine learning methods, such as neural networks, SVM implements the
principle of Structural Risk Minimization (SRM) [15]. In convex quadratic programming problems,
SVM seeks the best generalization performance by balancing the learning ability of the finite sample [16]
against the complexity of the model. It has two variants: support vector classification (SVC) and
support vector regression (SVR), which solve data classification and regression prediction problems,
respectively. SVM architecture is shown in Figure 1, where x(n) is the input independent eigenvalue
and K(X, Xi) (i = 1, 2, . . . , n) is the kernel function. The independent variable x(n) is mapped to the
high-dimensional feature space by the kernel function to realize linear regression in the feature space,
and multiple linear regression is then performed in the high-dimensional feature space [17], and the
output characteristic Y is obtained.
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where [x, xi] is the initial low-dimensional feature space vector, δ is the inner bandwidth of the kernel
function, g is the parameter of the kernel function, and ‖‖ is the 2-norm operator. By mapping the RBF
kernel function, each sample (xi, yi) is maximally fitted to the following linear SVR model:

Yi = 〈ω, xi〉+ b (ω ∈ Rn, b ∈ R) (2)

where 〈〉 is the inner product notation and incorporates the kernel function; the weight vector ω and
bias b are obtained by solving the following optimization problems:

min
ω,b,ξ,ξ∗

1
2
‖ω‖+ C

n

∑
i=1

(ξi + ξ∗i ), (3)

s.t.


yi − (ωxi + b) ≤ ε + ξi
(ωxi + b)− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(4)

The factor C is the penalty factor, which compromises between the generalization performance
and the training error, and ε is the maximum tolerance beyond which the optimization fails. ξi and ξ∗i
are relaxation variables that avoid over-fitting during data training, ensuring a certain fault tolerance
of the model.

2.2. PSO Algorithm

The particle swarm optimization (PSO) algorithm [18] is a swarm intelligence optimization
algorithm proposed by Kennedy and Eberhart in 1995. Like the fish swarm algorithm and the ant colony
algorithm, PSO optimizes the solution via group intelligence generated by the mutual cooperation
of particles and information sharing. PSO also has a memory function for dynamically tracking the
current search situation and adjusting the search strategy in real time [19]. Because of its simplicity,
high efficiency, and lack of many parameter adjustments, PSO has been widely applied in fuzzy system
control, parameter optimization of machine learning algorithms, and function optimization.

The PSO algorithm is fully described below.
Step 1: Initialize a group of particles in D-dimensional space. Each particle represents a set of

potential optimal solutions to the optimization problem and is characterized by its position, velocity,
and fitness. The position and velocity vectors are represented as Xi = (Xi1, Xi2, Xi3, . . . , XiD) and
Vi = (Vi1, Vi2, Vi3, . . . , ViD), respectively.
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Step 2: As the particles move in space, update their individual positions by tracking the individual
extremum Pbest and the group extremum Gbest. Pbest and Gbest represent the local and global fitness of
the optimal particle positions, respectively.

Step 3: Calculate the fitness after updating the particle position. The Pbest and Gbest positions
are updated by comparing the fitness of the new particle with those of the individual extremum and
group extremum computed in Step 2. In each iteration, the particle adjusts its velocity vector based on
the inertia vector Pi = (Pi1, Pi2, Pi3, . . . , PiD), the optimal empirical vector Pg = (Pg1, Pg2, Pg3, . . . , PgD),
and its own experience. It then adjusts its position vector. The specific update formula is

Vk+1
id = ωVk

id + c1r1(Pk
id − Xk

id) + c2r2(Pk
gd − Xk

id) (5)

Xk+1
id = Xk

id + Vk+1
id (6)

where c1 and c2 are the learning factors, and r1 and r2 are random numbers between 0 and 1 (with
i = 1, 2, . . . , n; d = 1, 2, . . . , D).

2.3. The Harmonic Analysis Method

Tidal forces can be regarded as the sum of forces during different periods; in other words,
as the sum of many simple harmonic oscillations. The harmonic analysis method separates the
harmonic constants (including amplitudes and phase lags) of each tidal component from the continuous
observation data of tide heights [6]. Tidal height is calculated by summing the m tidal components as
follows:

h(t) = A0 +
m

∑
i=1

Ri cos(ωit− θi) = A0 +
m

∑
i=1

(αi cos ωit + βi sin ωit) (7)

where αi = Ri cos θi; βi = Ri sin θi; A0 is the mean sea level; Ri is the component amplitude; and ωi
and θi are the angular velocity and initial phase of the tidal components, respectively.

2.4. ARIMA

The ARIMA model is a typical time-series analysis and prediction model. From historical
time-series data, we can build a dynamic model and predict the future trend of the data [20]. The
ARIMA model is based on the autoregressive and moving average model, which is represented by the
following formula:

Yt = µ +
p

∑
i=1

riyt−i + εt +
q

∑
i=1

θiεt−i (8)

and it adds the following difference operator:
∆Yt−i = Yt−i −Yt−i−1 = Yt−i − LYt−i = (1− L)Yt−i

∆2Yt−i = ∆Yt−i − ∆Yt−i−1 = (1− L)Yt−i − (1− L)Yt−i−1 = (1− L)2Yt−i

∆dYt−i = (1− L)dYt−i

(9)

In these expressions, Yt is the predicted value at time t; εt−i and εt denote the errors at times t− i
and t, respectively; and Yt−i is the measured value at time t− i. µ is a constant; ri is the autocorrelation
coefficient; θi is the is the moving average coefficient, which is different from the initial phase of the
tidal components θi mentioned in Formula (7); d is the differential term; and ∆dyt−i is the time series
after adding the d-order difference. p is the order of the autoregressive model, which represents the
lagged rank of the time series. q is the order of the moving average model, which represents the lagged
rank of prediction errors. The model must determine three parameters (p, d, q). If the sequence is
unstable, it should be transformed into a stable sequence by the d-order difference (Equation (9)), and
yt−i in Equation (8) is replaced with ∆dyt−i. If the original sequence is a stationary, d is set to 0.
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3. Combined Tidal Forecasting Model Based on Harmonic Analysis and ARIMA-SVR

3.1. Prediction Steps

As mentioned above, tides can be considered as the superposition of astronomical tidal levels
and non-astronomical tidal levels. The astronomical tidal level is strongly periodic, being governed
by the tide-generating force, whereas the non-astronomical variations in water level largely depend
on climate, hydrology, wind, and other environmental factors, and exhibit a strong randomness [21].
Based on the above analysis, this paper establishes a combined tidal prediction model based on
harmonic analysis and ARIMA-SVR. The prediction steps are described below.

The first step is to preprocesses the sample data. While acquiring tidal data, many factors may
cause the data to become inaccurate and incomplete, resulting in noise interference. The preprocessing
step removes the noise from the tidal sequence, thus restoring the tidal motions and improving the
prediction accuracy. The preprocessing is performed by wavelet analysis theory.

Second, the height of the astronomical tide level is calculated via harmonic analysis. The harmonic
constants are calculated by analyzing the historical observations of tidal heights, and the tidal heights
are subsequently calculated. Meanwhile, the residual series generated by this method are collected as
the sample data of the non-astronomical tidal level component.

Third, the nonlinear variations in water level are predicted by the ARIMA-SVR model. As the
astronomical characteristics of the data have been processed in the astronomical tidal level component,
the non-astronomical tidal levels change is reflected in the prediction residue. This prediction step is
divided into several sub-steps: Exploiting the strong processing ability of ARIMA for time series, a
single-step ARIMA model of non-astronomical tidal level sequences is established, which determines
the input in the SVR forecasting model according to the lagged rank of the time series p in ARIMA.
The analysis of the time sequence in the ARIMA model confirms that the residual values from t − 1 to
t − p moment have a noticeable relevance with the values of moment t, which can be chosen as the
input of the SVR forecasting model. That is, the residual values from t − 1 to t − p moment are used to
predict the value at time t. The second sub-step establishes a non-astronomical tidal level prediction
model based on SVR, which has a strong nonlinear processing ability. As mentioned above, the input
variable of SVR mode is

Input =
{

Yt−1, Yt−2, Yt−3, . . . , Yt−p′
}

(10)

where Yt−p′ represents the value at time t− p′. Additionally, the value of p′ is determined by the value
of the lagged rank of the time series p in the ARIMA model. Without considering other factors (p′

value is different only, other factors are the same), the prediction model error is the smallest when
p′ = p, which is verified in Section 3.2.4. Furthermore, the output variable is

Output ={Yt} (11)

The residual sequence generated by the harmonic analysis is normalized to avoid computational
saturation. The data are normalized to the interval (0, 1) as follows:

Yt =
xt − xmin

xmax − xmin
(x ∈ Rn, y ∈ (0, 1)) (12)

where xmin = min(x) and xmax = max(x). The optimal kernel function type, penalty factor C, and
kernel function parameter δ are found by the PSO algorithm and then input to the SVR model for
training. In the third sub-step, the test set samples are predicted by the trained model, and the tidal
calculation values of the non-astronomical part are obtained.

In the fourth main step, the final tidal height is predicted via the equal-weight summation of the
astronomical tidal level and the non-astronomical tidal level. The whole prediction process schematic
is shown in Figure 2.
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Figure 2. Schematic of the combined tidal prediction model.

The error in the prediction model was measured by the mean absolute error (EMA), the mean
squared error (EMS), the root mean squared error (ERMS), and the correlation coefficient r. These four
performance measures are respectively calculated as follows:

EMA =
1
n

n

∑
i=1
|(y−Y)|, (13)

EMS =
1
n

n

∑
i=1

(y−Y)2, (14)

ERMS =

√
n

∑
i=1

(y−Y)2/n, (15)

r =
Cov(y, Y)√
Var[y]Var[Y]

. (16)

Here, y and Y are the measured and predicted tidal heights, respectively; n is the number of tidal
samples; Cov(y, Y) is the covariance between y and Y; and Var[y] and Var[Y] denote the variances in y
and Y, respectively.

3.2. Model Checking

The combined tide-forecasting model presented in this paper was checked against the observed
tide level data at the Bay Waveland Yacht Club port in the USA, obtained from the website of the
National Oceanic and Atmospheric Administration. The harmonic constants of four tidal constituents
of the Bay Waveland Yacht Club tidal station are shown in Table 1. The tidal coefficient of the port is
10.767, indicating a diurnal tide-only one high and low tide each day. The tidal level of this port was
predicted by the proposed model. The astronomical part of the tidal height was calculated via harmonic
analysis, obtaining 720 tidal calculations at 1 h intervals over 30 consecutive days in November 2018.
Meanwhile, the non-astronomical part of the water level variation was determined by the ARIMA-SVR
model, wherein the training set was compiled from 744 prediction residual data of the astronomical
tidal levels from GMT0000 on 1 October 1 2018 to GMT2300 on 31 October 2018, and 720 prediction
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residual data from GMT0000 on 1 November 2018 to GMT 2300 on 30 November 2018, which were
used as the test set for verifying the prediction results. Finally, both parts of the tidal calculation results
were superimposed to obtain the predicted tidal levels throughout November 2018.

Table 1. The harmonic constants of four tidal constituents of the Bay Waveland Yacht Club tidal station.

Constituent Amplitude/m Phase/◦

M2 0.03 31.7
S2 0.026 36
K1 0.169 328.2
O1 0.154 325.1

3.2.1. Sample Data Preprocessing

The original waveform was constructed from the real-time signal sets (the tidal series measured
from GMT0000 on 1 December 2017 to GMT2300 on 31 December 2017). The original waveform
is shown in Figure 3. The waveform construction was based on the Sym8 wavelet basis function
and two-layer wavelet decomposition. The threshold was selected using the heursure function, and
de-noising was performed with a soft threshold function. The original and de-noised waveforms are
compared in Figure 4, and the noise signal is shown in Figure 5. De-noising comparatively flattened
the processed waveforms without changing their overall trend (Figure 4). The effectiveness of the
de-noising pretreatment was verified in a comparative test (Section 3.2.4). The results show that
de-noising improves the accuracy of the sample data.Algorithms 2019, 12, x FOR PEER REVIEW 8 of 18 
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3.2.2. Analysis of Prediction Results of Astronomical Tide Level

The astronomical tidal level calculation used 11 main tidal constituents, namely, M2S, S2, N2,K2,K1,
O1, P1, Q1, M4, MS4, and M6. Figure 6 compares the astronomical tidal level predicted by the harmonic
analysis method with the original (not de-noised) measured tidal level. Figure 7 is an error distribution
chart of the tidal levels predicted by the harmonic analysis method alone, and Figure 8 plots the
linear regression between the observations and predicted results of the harmonic analysis method. As
indicated by the deviation of the best-fit line (red line in Figure 8) from the Y = X line, the observed
and predicted values were highly discrepant. The simple harmonic analysis introduced obvious errors
at some points. The ERMS of the harmonic analysis method was determined as 0.180571 m. This
large error is attributed to the oversimplified analysis method: the simple harmonic method only
considers the influence of the tide-generating force and ignores the non-astronomical components of
the changing water levels.
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3.2.3. Analysis of Prediction Results of Non-Astronomical Tide Level

The model parameters of the non-astronomical part were determined by the single-step ARIMA
model. To determine the difference term d, the stationarity of the sequence must be determined by
visual processing. To this end, the 744 nonlinear data throughout October 2018 were processed by
the augmented Dickey–Fuller (ADF) stationarity test. The parameters are shown in Table 2. Here,
the p-value is the probability of significance test in statistics, which is different from the order of the
autoregressive model p mentioned in Formula (8). The t-statistics were below the critical values at the
1%, 5%, and 10% significance levels, and the p-values were close to 0, confirming that the tidal level
sequence was a stationary sequence with d = 0 [22]. To determine the factors p in the autoregressive
term and q in the moving average term, the sequence was evaluated by an autocorrelation function
and a partial autocorrelation function [23], respectively. The evaluation results are shown in Figures 9
and 10, respectively. In the partial autocorrelation function plot (Figure 9), the sequence is mainly
located in the confidence interval after the third order; i.e., it begins to truncate after the third order,
and the autoregressive term p is thus 3. After establishing p, the independent variables of the sample
set in the SVR model are set to the tide levels at times t− i (i = 1, 2, 3), and the dependent variable is
the tide level at time t.
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Table 2. Parameters determined in the ADF unit root test.

Parameter Type t-Statistic p-Value 1% Level 5% Level 10% Level

Parameter values −3.679002 0.0002 −2.568196 −1.941266 −1.616402
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As is evident in the autocorrelation plot (Figure 8), the tidal level time series is tailing, and the
moving average term q is 0. In summary, the sequence establishes the ARIMA (3, 0, 0) model. The
prediction process for the non-astronomical tidal part is shown in Figure 11.

To reduce the influence of the order of magnitude of the sample on the prediction accuracy, the
data in the training and test sets were normalized to the interval (0,1), and the RBF was selected as the
kernel function. The parameters (penalty factor C and kernel function parameter g) were optimized by
the PSO algorithm. The group termination algebra was set to 200; the population number was set to
20; and the learning factors C1 and C2 were set to 1.5 and 17, respectively. The optimization results are
shown in Table 3. The searched optimal parameters were input to the SVM model as the training data.
After training, the test data were input to the model, and the predicted results were compared with the
real results. The comparisons and their relative errors are displayed in Figures 12 and 13, respectively.
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Table 3. Optimal parameters detected by PSO.

Parameter Penalty Factor C Kernel Function Parameter g

SVR model 20.4906 798.0125
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3.2.4. Analysis of Prediction Results of the Combined Model

Next, the astronomical tidal level and the non-astronomical tidal level were linearly added to
obtain the overall tidal prediction throughout November 2018. Figure 14 compares the predicted tidal
levels with the observed (not de-noised) data, and Figure 15 plots the predicted errors. The combined
model yielded much more accurate results than the pure harmonic analysis method. The ERMS of
the combined model was 0.022293 m, which is obviously smaller than that in the harmonic analysis
method. Figure 16 linearly regresses the predictions of the combined model against the observed (not
de-noised) data. The combined model clearly predicted the observed tidal level with a high accuracy.Algorithms 2019, 12, x FOR PEER REVIEW 14 of 18 

 
Figure 14. Comparison of the (not de-noised) observations and the water levels predicted by the 
combined model. 

 
Figure 15. Error distribution map of the combined model. 

 
Figure 16. Linear regression plot of the predicted versus observed tidal heights. The predicted results 
were calculated by the combined model. 

Figure 14. Comparison of the (not de-noised) observations and the water levels predicted by the
combined model.



Algorithms 2019, 12, 65 13 of 17

Algorithms 2019, 12, x FOR PEER REVIEW 14 of 18 

 
Figure 14. Comparison of the (not de-noised) observations and the water levels predicted by the 
combined model. 

 
Figure 15. Error distribution map of the combined model. 

 
Figure 16. Linear regression plot of the predicted versus observed tidal heights. The predicted results 
were calculated by the combined model. 

Figure 15. Error distribution map of the combined model.

Algorithms 2019, 12, x FOR PEER REVIEW 14 of 18 

 
Figure 14. Comparison of the (not de-noised) observations and the water levels predicted by the 
combined model. 

 
Figure 15. Error distribution map of the combined model. 

 
Figure 16. Linear regression plot of the predicted versus observed tidal heights. The predicted results 
were calculated by the combined model. 

Figure 16. Linear regression plot of the predicted versus observed tidal heights. The predicted results
were calculated by the combined model.

To verify the effect of de-noising, the tide level was predicted using the original data (without
de-noising) and the predicted error was calculated by the above steps. The errors in the predictions are
compared with those of the de-noised data in Table 4. Clearly, the wavelet transform smoothed the
data and improved the prediction accuracy. This result confirms the feasibility and effectiveness of
de-noising the sample data prior to analysis.

Table 4. Comparison of the predicted tide level errors with and without de-noising.

Data EMA/m2 EMS/m ERMS/m

With de-noising 0.0152928 0.0005121 0.0226293
Without de-noising 0.0245718 0.0015876 0.0398451

To further verify the prediction accuracy of the combined model, the total tidal levels at the Bay
Waveland Yacht Club station were predicted by single harmonic analysis, the combined model, the SVR
model, and another common method called back propagation neural networks (the BP model) [24].
The parameters of the SVR model were optimized by the PSO algorithm. For a fair comparison, the
sample data and parameters were identical in all methods. The prediction performances of the four
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methods are compared in Table 5. The proposed combined model required a longer training time, but
yielded more accurate tidal predictions with lower errors than the other models.

Table 5. Performance comparison of different models simulating the tidal behavior at Bay Waveland
Yacht Club. The second column lists “p′”, which refers to the fact that when the prediction time step
is 1, the residual values from t− 1 to t− p′ moment are used to predict the value at time t. The last
column lists the processing time required for the various methods.

Model p
′ EMA/m2 EMS/m ERMS/m r Time/s

Harmonic Analysis - 0.1439167 0.0326057 0.1805706 0.52892 32.547131
BP 3 0.1381779 0.0194776 0.1395623 0.61248 7.404504

PSO-SVR 3 0.0415324 0.0023897 0.0498613 0.97381 56.04157
Combined model 3 0.0152928 0.0005121 0.0226293 0.99066 148.28581

The prediction accuracy of a model depends on the size of the training set. Accordingly, the
prediction accuracies of the SVR and combined models were compared on training sets with different
sample sizes (samples collected over 1, 3, 6, or 12 months). In this comparison, the test set remained
fixed. ARIMA modeling is performed on the training sets of different sample sizes, and the lagged
order of time series p is determined, and the input of the model is determined thereby. Again, the data
were the tidal levels at the Bay Waveland Yacht Club tidal station. The prediction results of the SVR
model and the combined model are shown in Tables 6 and 7, respectively. As the sample size increased,
the ERMS of the tidal levels predicted by the SVR model (Table 6) changed substantially around 0.049,
whereas those of the combined model (Table 7) fluctuated around 0.022 m. By contrast, the error
indicators of tidal prediction were lower in the combined model than in the SVR model. The combined
model thus exhibited a more accurate and stable prediction performance than the SVR model alone,
within a significantly lower runtime than the SVR model. This result confirms the efficiency of the
combined model.

Table 6. Sample-size comparison tidal prediction errors in the SVR model. The second column lists
“p′”, which refers to the fact that when the prediction time step is 1, the total tidal level from t− 1 to
t− p′ moment is used to predict the total tidal level at time t.

The Size of Sample Set p
′ EMA/m2 EMS/m ERMS/m r Time /s

One month 3 0.0415324 0.0023897 0.0498613 0.9738146 56.042
Three months 2 0.0413146 0.0022134 0.0495362 0.9738124 37.312

Six months 4 0.0412874 0.0021045 0.0494135 0.9738113 64.617
Twelve months 3 0.0411763 0.0020983 0.0493245 0.9738137 143.982

Table 7. Sample-size comparison tidal prediction errors in the combined model. The second column
lists “p′”, which refers to the fact that when the prediction time step is 1, the residual water level from
t− 1 to t− p′ moment is used to predict the non-astronomical tidal level at time t.

The size of Sample Set p
′ EMA/m2 EMS/m ERMS/m r Time /s

One month 3 0.0152928 0.0005121 0.0226293 0.9906614 148.286
Three months 2 0.0152994 0.0005184 0.0227172 0.9906592 174.217

Six months 4 0.0152613 0.0005127 0.0226981 0.9906452 209.576
Twelve months 2 0.0151472 0.0005094 0.0226242 0.9906601 251.880

As mentioned above, the Bay Waveland Yacht Club tidal station experiences a diurnal tide. To test
the combined model on different tidal types and stations, the harmonic analysis, SVR, and combined
models were trained on the tidal level data from four stations with different tidal types, and their
predictive performances were evaluated in each case. Nawiliwili, The Battery, and Texas Point tidal
stations were selected for tidal prediction comparison experiments, which have different tidal types.
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The ARIMA model was established for the tidal data of different tidal stations to determine the lagged
rank of the time series p, so the input of the non-astronomical tidal part was determined. The error
results are shown in Table 8. At all four stations, the combined model outperformed the pure harmonic
analysis and pure SVR models. In order to further measure the prediction accuracy, the relative
magnitude of the astronomical tide and non-astronomical tide parts of the sample data of four tidal
station was calculated, and the following Table 8 was obtained. As shown in Tables 8 and 9, it can
be seen that the larger the relative magnitude of the astronomical tide, the higher the accuracy of the
harmonic analysis. The harmonic analysis method is suitable for predicting tidal stations with a high
relative magnitude of astronomical tides.

Table 8. Tidal-type comparisons of prediction errors in the harmonic analysis, SVR, and combined
models. The third column lists “p′”, which refers to the fact that when the prediction time step is 1, the
value from t− 1 to t− p′ moment is used to predict the value at time t.

Tidal Stations Tidal Type p
′ Combined Model SVR Model Harmonic Analysis

ERMS/m r ERMS/m r ERMS/m r

Nawiliwili Semidiurnal mixed tide 3 0.0157421 0.9967487 0.0637458 0.9267340 0.0517735 0.9760012
The Battery Semidiurnal tide 2 0.0345787 0.9945872 0.2547214 0.8998741 0.2661074 0.9014375
Texas Point Diurnal mixed tide 2 0.0424531 0.9857817 0.0845512 0.9459475 0.1908219 0.7382920

Bay Waveland Yacht Club Diurnal tide 3 0.0152928 0.9906615 0.0498613 0.9738146 0.1805706 0.7188010

Table 9. The relative magnitude of the astronomical tide and the un-astronomical tide parts of four
tidal stations.

Tidal Stations The Astronomical Tide The Non-Astronomical Tide

Nawiliwili 88.1535% 11.8465%
The Battery 85.9369% 14.0631%
Texas Point 74.2308% 25.7692%

Bay Waveland Yacht Club 60.406% 39.594%

The input of the SVR also significantly affects the prediction accuracy of the combined models.
To verify the robustness of the input of SVR in the combined model determined according to the
lagged rank p of the residual sequence in the ARIMA model, the combined model was trained on the
tide level data from the Bay Waveland Yacht Club tidal station, and its predictive performance was
compared for different inputs. The prediction results are shown in Table 10. Here, the first column
lists “p′”, which refers to the fact that when the prediction time step is 1, the residual values from
t− 1 to t− p′ moment is used to predict the value at time t. Increasing the p′ from 1 to 3 reduced the
error in the combined model, but increasing the p′ further increased the error. The minimized error at
p′ = 3 is consistent with the test results of the lagged rank p of the residual sequence in the ARIMA
model. However, even at the largest p′ (p′ = 12 ), the error was lower in the combined model than in
the harmonic analysis method. Therefore, the combined model is more accurate and more suitable for
short-term tidal level prediction than the simple harmonic model.

Table 10. The input of SVR model comparisons of prediction accuracy of the combined method at Bay
Waveland Yacht Club Tidal Station. The first column lists “p′”, which refers to the fact that when the prediction
time step is 1, the residual values from t− 1 to t− p′ moment is used to predict the value at time t.

p
′ EMA/m2 EMS/m ERMS/m r Time /s

1 0.0218577 0.0009071 0.0301173 0.9916444 29.233
2 0.0163588 0.0005606 0.0236780 0.9948650 40.472
3 0.0152412 0.0005076 0.0225293 0.9953641 130.600
4 0.0153038 0.0005076 0.0225293 0.9953641 169.639
6 0.0154409 0.0005186 0.0227718 0.9952334 281.034

12 0.0793346 0.0073769 0.0858892 0.9904756 556.413
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4. Conclusions

This study analyzes predictions of tide level by common analysis techniques and
those of a proposed method that combines simple harmonic analysis with autoregressive
moving-average–support vector regression (ARIMA-SVR). To better capture the tidal dynamic
properties and improve the prediction accuracy, the original tidal wave data were de-noised by
wavelet threshold analysis. The method fully utilizes the strong time-series processing ability of
ARIMA and the outstanding nonlinear regression predictions of the SVR. Harmonic analysis and
ARIMA-SVR in the combined model predict the astronomical tide level and the non-astronomical tidal
level, respectively. In the non-astronomical component of the data, the data were normalized and the
ARIMA-SVR parameters were optimized by the PSO algorithm, which improved the overall prediction
accuracy of this component. In experimental tests, the combined model achieved a higher prediction
accuracy than any of its composite models used on their own, as well as the BP neural network.
Therefore, the proposed model ameliorates the low precision associated with single prediction models.
Accordingly, it promises broad applications in future tidal prediction. However, as mentioned in the
introduction, harmonic analysis as a part of the combined model has the problem of the high cost of
obtaining large amounts of data from on-site monitoring equipment. This problem has not been solved
in the model proposed in this paper and is the next problem that needs to be solved.
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