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Abstract: During the last decades, intensive efforts have been devoted to the extraction of useful
knowledge from large volumes of medical data employing advanced machine learning and data
mining techniques. Advances in digital chest radiography have enabled research and medical centers
to accumulate large repositories of classified (labeled) images and mostly of unclassified (unlabeled)
images from human experts. Machine learning methods such as semi-supervised learning algorithms
have been proposed as a new direction to address the problem of shortage of available labeled data,
by exploiting the explicit classification information of labeled data with the information hidden in
the unlabeled data. In the present work, we propose a new ensemble semi-supervised learning
algorithm for the classification of lung abnormalities from chest X-rays based on a new weighted
voting scheme. The proposed algorithm assigns a vector of weights on each component classifier of
the ensemble based on its accuracy on each class. Our numerical experiments illustrate the efficiency
of the proposed ensemble methodology against other state-of-the-art classification methods.

Keywords: machine learning; semi-supervised learning; self-labeled algorithms; classifiers; ensemble
learning; weighted voting; image classification; lung abnormalities

1. Introduction

The automatic detection of abnormalities, diseases and pathologies constitutes a significant factor
in computer-aided medical diagnosis and a vital component in radiologic image analysis. For over
a century, radiology has been a typical method for abnormality detection. A typical radiological
examination is performed by utilizing a posterior–anterior chest radiograph, which is most commonly
called Chest X-Ray (CXR). CXR imaging is widely used for health diagnosis and monitoring, due to
its relatively low cost and easy accessibility; thus, it has been established as the single most acquired
medical image modality [1]. It constitutes a significant factor for the detection and diagnosis of several
pulmonary diseases, such as tuberculosis, lung cancer, pulmonary embolism and interstitial lung
disease [1]. However, due to increasing workload pressures, many radiologists today have to daily
examine an enormous number of CXRs. Thus, a prediction system trained to predict the risk of specific
abnormalities given a particular CXR image is considered essential for providing high quality medical
assistance. More specifically, such a decision support system has the potential to support the reading
workflow, improve efficiency and reduce prediction errors. Moreover, it could be used to enhance the
confidence of the radiologist or prioritize the reading list where critical cases would be read first.

The significant advances in digital chest radiography and the continuously enlarged storage
capabilities of electronic media have enabled research centers to accumulate large repositories of
classified (labeled) images and mostly of unclassified (unlabeled) images from human experts. To this
end, researchers and medical staff were able to leverage and exploit these images by the adoption
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of machine learning and data mining techniques for the development of intelligent computational
systems in order to extract useful and valuable information. As a result, the areas of biomedical
research and diagnostic medicine have been dramatically transformed, from rather qualitative sciences
which were based on observations of whole organisms to more quantitative sciences which are now
based on the extraction of useful knowledge from a large amount of data [2].

Nevertheless, distinguishing the various chest abnormalities from CXRs is a rather challenging
task, not only for a prediction model but even for an human expert. The progress in the field has
been hampered by the lack of available labeled images for efficiently training a powerful and accurate
supervised classification model. Moreover, the process of correctly labeling new unlabeled CXRs
usually incurs monetary costs and high time since it constitutes a long and complicated process and
requires the efforts of specialized personnel and expert physicians.

Semi-Supervised Learning (SSL) algorithms have been proposed as a new direction to address
the problem of shortage of available labeled data, comprising characteristics of both supervised
and unsupervised learning algorithms. These algorithms efficiently develop powerful classifiers
by meaningfully relating the explicit classification information of labeled data with the information
hidden in the unlabeled data [3,4]. Self-labeled algorithms probably constitute the most popular class
of SSL algorithms due to their simplicity of implementation, their wrapper-based philosophy and
good classification performance [2,5–8]. This class of algorithms exploits a large amount of unlabeled
data via a self-learning process based on supervised learners. In other words, they perform an iterative
procedure, enriching the initial labeled data, based on the assumption that their own predictions tend
to be correct.

Recently, Triguero et al. [9] proposed an in-depth taxonomy based on the main characteristics
presented in them and conducted a comprehensive research of their classification efficacy on several
datasets. Generally, self-labeled algorithm can be classified in two main groups: Self-training and
Co-training. In the original Self-training [10], a single classifier is iteratively trained on an enlarged
labeled dataset with its most confident predictions on unlabeled data while in Co-training [11], two
classifiers are separately trained utilizing two different views on a labeled dataset and then each
classifier augments the labeled data of the other with its most confident predictions on unlabeled data.
Along this line, several self-labeled algorithms have been proposed in the literature, while some of
them exploit ensemble methodologies and techniques.

Democratic-Co learning [12] is based on an ensemble philosophy since it uses three independent
classifiers following a majority voting and a confidence measurement strategy for predicting the values
of unlabeled examples. Tri-training algorithm [13] utilizes a bagging ensemble of three classifiers which
are trained on data subsets generated through bootstrap sampling from the original labeled set and
teach each other using on majority voting strategy. Co-Forest [14] utilizes bootstrap sample data from
the labeled set in order to train Random trees. At each iteration, each random tree is reconstructed by
newly selected unlabeled instances for its concomitant ensemble, utilizing a majority voting technique.
Co-Bagging [15] trains multiple base classifiers on bootstrap data created by random resampling with
replacement from the training set. Each bootstrap sample contains about 2/3 of the original training
set, where each example can appear multiple times. Recently, a new approach has been given by
Livieris et al. [2,8,16,17] and Livieris [18] in which some ensemble self-labeled algorithms are proposed
based on voting schemes. The proposed algorithms exploit the individual predictions of the most
efficient and frequently used self-labeled algorithms using simple voting methodologies.

Motivated by these works, we propose a new semi-supervised self-labeled algorithm which
is based on a sophisticated ensemble philosophy. The proposed algorithm exploits the individual
predictions of self-labeled algorithms, using a new weighted voting methodology. The proposed
weighted strategy assigns weights on each component classifier of the ensemble based on its accuracy
on each class. Our main aim is to measure the effectiveness of our weighted voting ensemble scheme
over the majority voting ensembles, using identical component classifiers in all cases. On top of
that, we want to verify that powerful classification models could be developed by the adaptation of
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advanced ensemble methodologies in the SSL framework. Our preliminary numerical experiments
prove the efficiency and the classification accuracy of the proposed algorithm, demonstrating that
reliable prediction models could be developed by incorporating ensemble methodologies in the
semi-supervised framework.

The remainder of this paper is organized as follows: Section 2 presents a brief survey of recent
studies concerning the application of machine learning for the detection of lung abnormalities from
X-rays. Section 3 presents a detailed description of the proposed weighted voting scheme and ensemble
algorithm. Section 4 presents a series of experiments carried out in order to examine and evaluate the
accuracy of the proposed algorithm against the most popular self-labeled classification algorithms.
Finally, Section 5 discusses the conclusions and some research topics for future work.

2. Related Work

The significance of medical imaging for the diagnosis of diseases has been established for the
treatment of chest pathologies and their early detection. During the last decades, the advances of digital
technology and chest radiography as well as the rapid development of digital image retrieval have
renewed the progress in new technologies for the diagnosis of lung abnormalities. More specifically,
research has been focused on the development of Computer-Aided Diagnostic (CAD) models for
abnormality detection in order to assist medical staff. Along this line, a variety of methodologies
have been proposed based on machine learning techniques, aiming on classifying and/or detecting
abnormalities in patients’ medical images. A number of studies have been carried out in recent years;
some useful outcomes of them are briefly presented below.

Jaeger et al. [19] proposed a CAD system for tuberculosis in conventional posteroanterior chest
radiographs. Their proposed model initially utilizes a graph cut segmentation method to extract the
lung region from the CXRs and then a set of texture and shape features in the lung region is computed
in order to classify the patient as normal or abnormal. Their extensive numerical experiments on two
real-world datasets illustrated the efficiency of the proposed CAD system for tuberculosis screening,
achieving higher performance compared to that of human readings.

Melendez et al. [20] recommend a novel CAD system for detecting tuberculosis on chest X-rays
based on multiple-instance learning. Their proposed system is based on the idea of utilizing probability
estimations, instead of the sign of a decision function, to guide the multiple-instance learning process.
Furthermore, an advantage of their method is that it does not require labeling of each feature sample
during the training process but only a global class label characterizing a group of samples.

Alam et al. [21] utilized a multi-class support vector machine classifier and developed an efficient
lung cancer detection and prediction model. The image enhancement and image segmentation have
been done independently in every stage of the classification process. Image scaling, color space
transformation and contrast enhancement have been utilized for image enhancement while threshold
and marker-controlled watershed have been utilized for segmentation. In the sequel, the support
vector machine classifier categorizes a set of textural features extracted from the separated regions of
interest. Based on their numerical experiments, the authors concluded that the proposed algorithm
can efficiently detect a cancer-affected cell and its corresponding stage such as initial, middle, or final.
Furthermore, in case no cancer-affected cell is found in the input image then it checks the probability
of lung cancer.

In more recent works, Madani [22] focused on the detection of abnormalities in chest X-ray images,
having available only a fairly small size dataset of annotated images. Their proposed method deals
with both problems of labeled data scarcity and data domain overfitting, by utilizing Generative
Adversarial Networks (GAN) in a SSL architecture. In general, GAN utilize two networks: a generator
which seeks to create as realistic images as possible and a discriminator which seeks to distinguish
between real data and generated data. Next, these networks are involved in a minimax game to find the
Nash equilibrium between them. Based on their experiments, the author concluded that the annotation
effort is reduced considerably to achieve similar performance through supervised training techniques.
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In [2], Livieris et al. evaluated the classification efficacy of an ensemble SSL algorithm, called
CST-Voting, for CXR classification of tuberculosis. The proposed algorithm combines the individual
predictions of three efficient self-labeled algorithms i.e., Co-training, Self-training and Tri-training
using a simple majority voting methodology. The authors presented some interesting results,
illustrating the efficiency of the proposed algorithm against several classical algorithms. Additionally,
their experiments lead them to the conclusion that reliable and robust prediction models could
be developed utilizing a few labeled and many unlabeled data. In [16] the authors extended the
previous work and proposed DTCo algorithm for the classification of X-rays. The proposed ensemble
algorithm exploits the predictions of Democratic-Co learning, Tri-training and Co-Bagging utilizing a
maximum-probability voting scheme. Along this line, Livieris et al. [17] proposed EnSL algorithm
which constitutes a generalized scheme of the previous works. More specifically, EnSL constitutes
a majority voting scheme of N self-labeled algorithms. Their preliminary numerical experiments
demonstrated that robust classification models could be developed by the adaptation of ensemble
methodologies in the SSL framework.

Guan and Huang [23] considered the problem of multi-label thorax disease classification on chest
X-ray images by proposing a Category-wise Residual Attention Learning (CRAL) framework. CRAL
predicts the presence of multiple pathologies in a class-specific attentive view, aiming to suppress the
obstacles of irrelevant classes by endowing small weights to the corresponding feature representation
while the same time, the relevant features would be strengthened by assigning larger weights. More
analytically, their proposed framework consists of two modules: feature embedding module and
attention learning module. The feature embedding module learns high-level features using a neural
network classifier while the attention learning module focuses on exploring the assignment scheme
of different categories. Based on their numerical experiments, the authors stated that their proposed
methodology constitutes a new state of the art.

3. A New Weighted Voting Ensemble Self-Labeled Algorithm

In this section, we present a detailed description of the proposed self-labeled algorithm, which is
based on an ensemble philosophy, entitled Weighed voting Ensemble Self-Labeled (WvEnSL) algorithm.

Generally, the generation of an ensemble of classifiers considers mainly two steps: Selection and
Combination. The selection of the component classifiers is considered essential for the efficiency of
the ensemble and the key point for its efficacy is based on their diversity and their accuracy; while
the combination of the individual classifiers’ predictions takes place through several techniques with
different philosophy [24,25].

By taking these into consideration, the proposed algorithm is based on the idea of selecting a set
C = (C1, C2, . . . , CN) of N self-labeled classifiers by applying different algorithms (with heterogeneous
model representations) to a single dataset and the combination of their individual predictions takes
place through a new weighted voting methodology. It is worth noticing that weighted voting is a
commonly used strategy for combining predictions in pairwise classification in which the classifiers are
not treated equally. Each classifier is evaluated on a evaluation set D and associated with a coefficient
(weight), usually proportional to its classification accuracy.

Let us consider a dataset D with M classes, which is utilized for the evaluation of each component
classifier. More specifically, the performance of each classifier Ci, with i = 1, 2, . . . , N is evaluated on D
and a N ×M matrix W is defined, as follows

W =


w1,1 w1,2 . . . w1,M
w2,1 w2,2 . . . w2,M

...
...

. . .
...

wN,1 wN,2 . . . wN,M
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where each element wi,j is defined by

wi,j =
2p(Ci)

j

|Dj|+ p(Ci)
j + q(Ci)

j

, (1)

where Dj is the set of instances of the dataset belonging to the class j, p(Ci)
j are the number of correct

predictions of classifier Ci on Dj and q(Ci)
j are the number of incorrect predictions of Ci that an instance

belongs to class j. Clearly, each weight wi,j is the F1-score of classifier Ci for j class [26]. The rationale
behind (1) is to measure the efficiency of each classifier, relative to each class j of the evaluation set D.

Subsequently, the class ŷ of each unknown instance x in the test set is computed by

ŷ = arg max
j

N

∑
i=1

wi,j χA(Ci(x) = j),

where function arg max returns the value of index corresponding to the largest value from array,
A = {1, 2, . . . , M} is the set of unique class labels and χA is the characteristic function which takes
into account the prediction j ∈ A of a classifier Ci on an instance x and creates a vector in which the j
coordinate takes a value of one and the rest take the value of zero. At this point, it is worth mentioning
that in our implementation we selected to evaluate the performance of each classifier of the ensemble
on the initial training labeled set L.

A high-level description of the proposed framework is presented in Algorithm 1 which consists of
three phases: Training, Evaluation and Weighted-Voting Prediction. In the Training phase, the self-labeled
algorithms, which constitute the ensemble are trained utilizing the same labeled L and unlabeled
dataset U (Steps 1–3). Subsequently, in the Evaluation phase, the trained classifiers are evaluated using
the training set L in order to calculate the weight matrix W (Steps 4–9). Finally, in the Weighted-Voting
Prediction phase, the final hypothesis on each unlabeled example x of the test set combines the
individual predictions of self-labeled algorithms utilizing the proposed weighted voting methodology
(Steps 10–15). An overview of the proposed WvEnSL is depicted in Figure 1.

Algorithm 1: WvEnSL
Input: L − Set of labeled instances (Training labeled set).

U − Set of unlabeled instances (Training unlabeled set).
T − Set of unlabeled test instances (Testing set).
D − Set of instances for evaluation (Evaluation set).
C = (C1, C2, . . . , CN) − Set of self-labeled classifiers which constitute the ensemble.

Output: The labels of instances in the testing set.

/* Phase I: Training */
Step 1: for i = 1 to N do
Step 2: Train Ci using the labeled L and the unlabeled dataset U.
Step 3: end for

/* Phase II: Evaluation */
Step 4: for i = 1 to N do
Step 5: Apply Ci on the evaluation set D.
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Algorithm 1: Cont.
Step 6: for j = 1 to M do
Step 7: Calculate the weight

wi,j =
2p(Ci)

j

|Dj|+ p(Ci)
j + q(Ci)

j

.

Step 8: end for
Step 9: end for

/* Phase III: Weighted-Voting Prediction */
Step 10: for each x ∈ T do
Step 11: for i = 1 to N do
Step 12: Apply classifier Ci on x.
Step 13: end for
Step 14: Predict the label ŷ of x using

ŷ = arg max
j

N

∑
i=1

wi,j χA(Ci(x) = j).

Step 15: end for

Phase I
Training

Classifier 1

Labeled
set
L

Unlabeled
set
U

Classifier 2

Labeled
set
L

Unlabeled
set
U

Classifier N

Labeled
set
L

Unlabeled
set
U

Weighted matrix

W =


w1,1 w1,2 . . . w1,M
w2,1 w2,2 . . . w2,M

...
...

. . .
...

wN,1 wN,2 . . . wN,M



Evaluation
set
D

Phase II
Evaluation

Weighted voting

Test set
T

Phase III
Weighted-Voting
Prediction

Figure 1. WvEnSL framework.
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4. Experimental Methodology

In this section, we present a series of experiments in order to evaluate the performance
of the proposed WvEnSL algorithm for X-ray classification against the most efficient ensemble
self-labeled algorithms i.e., CST-Voting, DTCo and EnSL which utilize simple voting methodologies.
The implementation code was written in JAVA, making use of the WEKA 3.9 Machine Learning
Toolkit [27].

The performance of the classification algorithms is evaluated using the following performance
metrics: F-measure (F1) and Accuracy (Acc). It is worth mentioning that F1 consists of a harmonic
mean of precision and recall while Accuracy is the ratio of correct predictions of a classifier.

4.1. Datasets

The compared classification algorithms were evaluated utilizing the chest X-ray (Pneumonia)
dataset, the Shenzhen lung mask (Tuberculosis) dataset and the CT Medical images dataset.

• Chest X-ray (Pneumonia) dataset: The dataset contains 5830 chest X-ray images (anterior-posterior)
which were selected from retrospective cohorts of pediatric patients of one to five years old from
Guangzhou Women and Children’s Medical Center, Guangzhou. All chest X-ray imaging was
performed as part of patients’ routine clinical care. For the analysis of chest X-ray images, all chest
radiographs were initially screened for quality control by removing all low quality or unreadable
scans. The diagnoses for the images were then graded by two expert physicians before being
cleared for training the artificial intelligence system. In order to account for any grading errors,
the evaluation set was also checked by a third expert. The dataset was partitioned into two sets
(training/testing). The training set consisting of 5216 examples (1341 normal, 3875 pneumonia)
and the testing set with 624 examples (234 normal, 390 pneumonia) as in [28].

• Shenzhen lung mask (Tuberculosis) dataset: Shenzhen Hospital is one of the largest hospitals in China
for infectious diseases with a focus both on their prevention, as well as treatment. The X-rays
were collected within a one-month period, mostly in September 2012, as a part of the daily routine,
using a Philips DR Digital Diagnost system. The dataset was constructed by manually-segmented
lung masks for the Shenzhen Hospital X-ray set as presented in [29]. These segmented lung masks
were originally utilized for the description of the lung segmentation technique in combination with
lossless and lossy data augmentation. The segmentation masks for the Shenzhen Hospital X-ray
set were manually prepared by students and teachers of the Computer Engineering Department,
Faculty of Informatics and Computer Engineering, National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute” [29]. The set contained 279 normal CXRs and 287
abnormal ones with tuberculosis. All classification algorithms were evaluated using the stratified
ten-fold cross-validation.

• CT Medical images dataset: This data collectioncontains 100 images [30] which constitute part of a
much larger effort, focused on connecting cancer phenotypes to genotypes by providing clinical
images matched to subjects from the cancer genome Atlas [31]. The images consist of the middle
slice of all Computed Tomography (CT) images taken from 69 different patients. The dataset
is designed to allow different methods to be evaluated for examining the trends in CT image
data associated with using contrast and patient age. The basic idea is to identify image textures,
statistical patterns and features correlating strongly with these traits and possibly build simple
tools for automatically classifying these images when they have been misclassified (or finding
outliers which could be suspicious cases, bad measurements, or poorly calibrated machines).
All classification algorithms were evaluated using the stratified ten-fold cross-validation.

The training partition was randomly divided into labeled and unlabeled subsets. In order to
study the influence of the amount of labeled data, four different ratios (R) of the training data were
used: 10%, 20%, 30% and 40%. Using the recommendation established in [9,32] in the division process
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we do not maintain the class proportion in the labeled and unlabeled sets since the main aim of
semi-supervised classification is to exploit unlabeled data for better classification results. Hence, we
use a random selection of examples that will be marked as labeled instances, and the class label of
the rest of the instances will be removed. Furthermore, we ensure that every class has at least one
representative instance.

4.2. Performance Evaluation of WvEnSL against Ensemble Self-Labeled Algorithms

Next, we focus our interest on the experimental analysis for evaluating the classification
performance of WvEnSL algorithm against the ensemble self-labeled algorithms CST-Voting and
DTCo, which utilize simple voting methodologies. It is worth noticing that our main goal is to
measure the effectiveness of the proposed weighted voting strategy over the simple majority voting;
therefore, we will compare ensembles using identical set of classifiers. This will eliminate the source
of discrepancy originated from unequal classifiers. Thus, the difference in accuracy can solely be
attributed to the difference of voting methodologies.

Furthermore, the base learners utilized in all self-labeled algorithms are the Sequential Minimum
Optimization (SMO) [33], the C4.5 decision tree algorithm [34] and the kNN algorithm [35] as in [2,7–9],
which probably constitute the most effective and popular machine learning algorithms for classification
problems [36].

• “CST-Voting (SMO)” stands for an ensemble of Co-training, Self-training and Tri-training with
SMO as base learner using majority voting [2].

• “WvEnSL1 (SMO)” stands for Algorithm WvEnSL using the same components classifiers as
CST-Voting (SMO).

• “CST-Voting (C4.5)” stands for an ensemble of Co-training, Self-training and Tri-training with
C4.5 as base learner using majority voting [2].

• “WvEnSL1 (C4.5)” stands for Algorithm WvEnSL using the same components classifiers as
CST-Voting (C4.5).

• “CST-Voting (kNN)” stands for an ensemble of Co-training, Self-training and Tri-training with
kNN as base learner using majority voting [2].

• “WvEnSL1 (kNN)” stands for Algorithm WvEnSL using the same components classifiers as
CST-Voting (kNN).

• “DTCo” stands for an ensemble of Democratic-Co learning, Tri-training and Co-Bagging with
C4.5 as base learner using majority voting [16].

• “WvEnSL2” stands for Algorithm WvEnSL using the same components classifiers as DTCo.
• “EnSL” stands for an ensemble of Self-training, Democratic-Co learning, Tri-training and

Co-Bagging with C4.5 as base learner using majority voting [17].
• “WvEnSL3” stands for Algorithm WvEnSL using the same components classifiers as EnSL.

The configuration parameters for all supervised classifiers and self-labeled algorithms, utilized in
our experiments, are presented in Table 1.
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Table 1. Parameter specification for all the base learners and self-labeled methods used in
the experimentation.

Algorithm Parameters

SMO Supervised base learner C = 1.0,
Tolerance parameter = 0.001,
Pearson VII function-based kernel,
Epsilon = 1.0× 10−12,
Fit logistic models = true.

C4.5 Supervised base learner Confidence level: c = 0.25,
Minimum number of item-sets per leaf: i = 2,
Prune after the tree building.

kNN Supervised base learner Number of neighbors = 3,
Euclidean distance.

Self-training Self-labeled (single classifier) MaxIter = 40,
c = 95%.

Co-training Self-labeled (multiple classifier) MaxIter = 40,
Initial unlabeled pool = 75

Tri-training Self-labeled (multiple classifier) No parameters specified.

Co-Bagging Self-labeled (multiple classifier) Committee members = 3,
Ensemble learning = Bagging.

Democratic-Co Self-labeled (multiple classifier) Classifiers = kNN, C4.5, NB.

CST-Voting Ensemble of self-labeled No parameters specified.

DTCo Ensemble of self-labeled No parameters specified.

EnSL Ensemble of self-labeled No parameters specified.

Tables 2–4 presents the performance of all ensemble self-labeled methods on Pneumonia dataset,
Tuberculosis dataset and CT Medical dataset, respectively. Notice that the highest classification
performance for each ensemble of classifiers and performance metric is highlighted in bold.
The aggregated results showed that the new weighted voting strategy exploits the individual
predictions of each component classifier more efficiently than the simple voting schemes, illustrating
better classification performance. WvEnSL3 exhibits the best performance, reporting the highest
F1-score and accuracy, relative to all classification benchmarks and labeled ratio, followed by WvEnSL2.
In more detail, WvEnSL3 demonstrates 82.53–83.49%, 69.79–71.73% and 69–77% classification accuracy
for Pneumonia dataset, Tuberculosis dataset and CT Medical dataset, respectively; while WvEnSL2

reports 81.89–83.17%, 69.79–71.55% and 67–77%, in the same situations.
The statistical comparison of several classification algorithms over multiple datasets is

fundamental in the area of machine learning and it is usually performed by means of a statistical
test [2,7–9]. Since our motivation stems from the fact that we are interested in evaluating the rejection of
the hypothesis that all the algorithms perform equally well for a given level based on their classification
accuracy and highlighting the existence of significant differences between our proposed algorithm
and the classical self-labeled algorithms, we utilized the non-parametric Friedman Aligned Ranking
(FAR) [37] test.
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Table 2. Performance evaluation of WvEnSL against ensemble self-labeled algorithms for Pneumonia
dataset.

Algorithm
Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

F1 Acc F1 Acc F1 Acc F1 Acc

CST-Voting (SMO) 83.08% 75.32% 83.26% 75.64% 83.39% 75.80% 83.39% 75.80%
WvEnSL1 (SMO) 83.39% 75.80% 83.48% 75.96% 83.76% 76.44% 83.85% 76.60%

CST-Voting (C4.5) 85.52% 79.97% 85.85% 80.45% 86.68% 81.73% 86.58% 81.57%
WvEnSL1 (C4.5) 85.65% 80.13% 86.08% 80.77% 86.78% 81.89% 86.92% 82.05%

CST-Voting (kNN) 82.91% 75.48% 83.09% 75.80% 83.15% 75.96% 83.73% 76.76%
WvEnSL1 (kNN) 83.63% 76.60% 83.73% 76.76% 83.95% 77.08% 84.23% 77.56%

DTCo 86.79% 81.41% 87.21% 82.05% 87.21% 82.05% 87.74% 82.85%
WvEnSL2 87.12% 81.89% 87.44% 82.37% 87.54% 82.53% 87.97% 83.17%

EnSL 87.19% 82.05% 86.92% 81.57% 87.34% 82.21% 87.61% 82.69%
WvEnSL3 87.51% 82.53% 87.70% 82.69% 88.23% 83.49% 88.17% 83.49%

Table 3. Performance evaluation of WvEnSL against ensemble self-labeled algorithms for Tuberculosis
dataset.

Algorithm
Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

F1 Acc F1 Acc F1 Acc F1 Acc

CST-Voting (SMO) 69.27% 69.43% 68.65% 68.37% 69.50% 69.61% 70.42% 70.32%
WvEnSL1 (SMO) 69.73% 69.79% 69.73% 69.79% 70.32% 70.32% 71.00% 70.85%

CST-Voting (C4.5) 66.67% 67.31% 68.19% 68.02% 67.51% 68.20% 69.52% 69.79%
WvEnSL1 (C4.5) 67.86% 68.20% 69.26% 69.26% 69.63% 69.79% 69.98% 70.14%

CST-Voting (kNN) 65.71% 66.08% 66.43% 66.96% 68.21% 68.55% 68.93% 69.26%
WvEnSL1 (kNN) 65.83% 66.25% 67.14% 67.49% 68.57% 68.90% 69.40% 69.61%

DTCo 69.73% 69.79% 69.96% 69.96% 71.45% 71.20% 71.80% 71.55%
WvEnSL2 69.73% 69.79% 70.19% 70.14% 71.58% 71.38% 71.80% 71.55%

EnSL 69.73% 69.79% 69.96% 69.96% 71.00% 70.85% 71.58% 71.38%
WvEnSL3 69.73% 69.79% 70.19% 70.14% 71.58% 71.38% 72.03% 71.73%

Table 4. Performance evaluation of WvEnSL against ensemble self-labeled algorithms for CT
Medical dataset.

Algorithm
Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

F1 Acc F1 Acc F1 Acc F1 Acc

CST-Voting (SMO) 66.67% 66.00% 70.00% 70.00% 73.08% 72.00% 75.00% 74.00%
WvEnSL1 (SMO) 68.00% 68.00% 71.29% 71.00% 73.79% 73.00% 75.73% 75.00%

CST-Voting (C4.5) 67.96% 67.00% 71.84% 71.00% 73.79% 73.00% 73.79% 73.00%
WvEnSL1 (C4.5) 69.90% 69.00% 73.79% 73.00% 75.00% 74.00% 75.73% 75.00%

CST-Voting (kNN) 66.00% 66.00% 69.90% 69.00% 73.79% 73.00% 73.27% 73.00%
WvEnSL1 (kNN) 66.67% 67.00% 70.59% 70.00% 72.00% 72.00% 74.75% 75.00%

DTCo 66.02% 65.00% 69.90% 69.00% 72.55% 72.00% 74.29% 73.00%
WvEnSL2 67.33% 67.00% 71.29% 71.00% 72.55% 72.00% 76.92% 76.00%

EnSL 64.08% 63.00% 71.84% 71.00% 74.29% 73.00% 74.29% 73.00%
WvEnSL3 69.90% 69.00% 75.73% 75.00% 76.47% 76.00% 77.67% 77.00%
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Let rj
i be the rank of the j-th of k learning algorithms on the i-th of M problems. Under the

null-hypothesis H0, which states that all the algorithms are equivalent, the Friedman aligned ranks
test statistic is defined by:

FAR =

(k− 1)

[
k

∑
j=1

R̂2
j − (kM2/4)(kM + 1)2

]
kM(kM + 1)(2kM + 1)

6
− 1

k

M

∑
i=1

R̂2
i

where R̂i is equal to the rank total of the i-th dataset and R̂j is the rank total of the j-th algorithm.
The test statistic FAR is compared with the χ2 distribution with (k− 1) degrees of freedom. It is worth
noticing that, FAR test does not require the commensurability of the measures across different datasets,
since it is non-parametric, neither assumes the normality of the sample means, and thus, it is robust
to outliers.

Additionally, in order to identify which algorithms report significant differences, the Finner
test [38] with a significance level α = 0.05, is applied as a post-hoc procedure. More analytically,
the Finner procedure adjusts the value of α in a step-down manner. Let p1, p2, . . . , pk−1 be the ordered
p-values with p1 ≤ p2 ≤ · · · ≤ pk−1 and H1, H2, . . . , Hk−1 be the corresponding hypothesis. The Finner
procedure rejects H1–Hi−1 if i is the smallest integer such that pi > 1− (1− α)(k−1)/i, while the adjusted
Finner p-value is defined by:

pF = min
{

1, max
{

1− (1− pj)
(k−1)/j

}}
,

where pj is the p-value obtained for the j-th hypothesis and 1 ≤ j ≤ i. It is worth mentioning that the
test rejects the hypothesis of equality when the pF is less than α.

The control algorithm for the post-hoc test is determined by the best (lowest) ranking obtained
in each FAR test. Moreover, the adjusted p-value with Finner’s test (pF) was presented based on
the corresponding control algorithm at the α level of significance while the post-hoc test rejects the
hypothesis of equality when the value of pF is less than the value of a. It is worth mentioning that
the FAR test and the Finner post-hoc test were performed based on the classification accuracy of each
algorithm over all datasets and labeled ratio.

Table 5 presents the information of the statistical analysis performed by nonparametric multiple
comparison procedures for all ensemble self-labeled algorithms. The interpretation of Table 5
demostrates that WvEnSL3 reports the highest probability-based ranking by statistically presenting
better results, followed by WvEnSL2 and WvEnSL1 (C4.5). Moreover, it is worth mentioning that all
weighted voting ensemble outperformed the corresponding ensemble which utilize classical voting
schemes. Finally, based on the statistical analysis, we can easily conclude that the new weighted voting
scheme had a significant impact on the performance of all ensemble of self-labeled algorithms.
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Table 5. Friedman Aligned Ranking (FAR) test and Finner post-hoc test.

Algorithm FAR
Finner Post-Hoc Test

pF -Value Null Hypothesis

WvEnSL3 15.667 - -
WvEnSL2 34.958 0.174312 accepted
WvEnSL1 (C4.5) 44.208 0.049863 rejected
EnSL 47.958 0.029437 rejected
DTCo 51.125 0.018734 rejected
CST-Voting (C4.5) 64.042 0.001184 rejected
WvEnSL1 (SMO) 71.417 0.000194 rejected
CST-Voting (SMO) 88.292 0.000001 rejected
WvEnSL1 (kNN) 89.083 0.000001 rejected
CST-Voting (kNN) 98.250 0.000001 rejected

4.3. Performance Evaluation of WvEnSL against Classical Supervised Algorithms

Next, we compare the classification performance of the proposed algorithm against the classical
supervised classification algorithms: SMO, C4.5 and kNN. Moreover, we compare the performance of
iCST-Voting against the ensemble of classifiers (Voting) which combines the individual predictions of
the supervised classifiers utilizing a simple majority voting strategy. It is worth noticing that

• we selected WvEnSL3 from all versions of the proposed algorithm since it presented the best
overall performance.

• all supervised algorithms were trained using with 100% of the training set while WvEnSL3 was
trained using R = 40% of the training set.

Table 6 presents the performance of the proposed algorithm WvEnSL3 against the supervised
algorithms SMO, C4.5, kNN and Voting on Pneumonia dataset, Tuberculosis dataset and CT Medical
dataset. As above mentioned, the highest classification performance for each labeled ratio and
performance metric is highlighted in bold. The aggregated results show that WvEnSL3 is the most
efficient algorithm since it illustrates the best overall classification performance. More specifically,
WvEnSL3 exhibits the highest F1-score and classification accuracy on Pneumonia and Tuberculosis
datasets, while for CT Medical dataset, WvEnSL3 reports the second best performance, considerably
outperformed by C4.5.

Table 6. Performance evaluation WvEnSL3 against state-of-the-art supervised algorithms on
Pneumonia dataset, Tuberculosis dataset and CT Medical dataset.

Algorithm
Pneumonia Tuberculosis CT Medical

F1 Acc F1 Acc F1 Acc

SMO 74.03% 76.76% 71.41% 71.37% 74.91% 75.00%
C4.5 72.41% 74.83% 62.32% 62.36% 79.82% 80.00%
3NN 72.32% 74.51% 67.51% 67.49% 67.08% 67.00%
Voting 73.34% 76.12% 71.00% 71.02% 74.07% 74.00%
WvEnSL3 88.17% 83.49% 72.03% 71.73% 77.67% 77.00%

5. Conclusions

In this work, we proposed a new weighted voting ensemble self-labeled algorithm for the
detection of lung abnormalities from X-rays, entitled WvEnSL. The proposed algorithm combines
the individual predictions of self-labeled algorithms utilizing a new weighted voting methodology.
The significant advantage of WvEnSL is that weights assigned on each component classifier of the
ensemble are based on its accuracy on each class of the dataset.

For testing purposes, the algorithm was extensively evaluated using the chest X-rays (Pneumonia)
dataset, the Shenzhen lung mask (Tuberculosis) dataset and the CT Medical images dataset. Our
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numerical experiments indicated better classification accuracy of the WvEnSL and demonstrated the
efficiency of the new weighted voting scheme, as statistically confirmed by the Friedman Aligned
Ranks nonparametric test as well as the Finner post hoc test. Therefore, we can conclude that the new
weighted voting strategy had a significant impact on the performance of all ensembles of self-labeled
algorithms, exploiting the individual predictions of each component classifier more efficiently than
the simple voting schemes. Finally, it is worth mentioning that efficient and powerful classification
models could be developed by the adaptation of ensemble methodologies in the SSL framework.

In our future work, we intend to pursue extensive empirical experiments to compare the proposed
WvEnSL with other algorithms belonging to different SSL classes, and evaluate its performance using
various component self-labeled algorithms and base learners. Furthermore, since our preliminary
numerical experiments are quite encouraging, our next step is to explore the performance of the
proposed algorithm on imbalanced datasets [39,40] and incorporate our proposed methodology for
multi-target problems [41–43]. Additionally, another interesting aspect is the use of other component
classifiers in the ensemble and enhance our proposed framework with more sophisticated and
theoretically sound criteria for the development of an advanced weighted voting strategy. Finally, we
intend to investigate and evaluate different strategies for the selection of the evaluation set.
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