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Abstract: We study two problems in computational phylogenetics. The first is tree compatibility.
The input is a collection P of phylogenetic trees over different partially-overlapping sets of species.
The goal is to find a single phylogenetic tree that displays all the evolutionary relationships implied
by P . The second problem is incomplete directed perfect phylogeny (IDPP). The input is a data matrix
describing a collection of species by a set of characters, where some of the information is missing.
The question is whether there exists a way to fill in the missing information so that the resulting matrix
can be explained by a phylogenetic tree satisfying certain conditions. We explain the connection
between tree compatibility and IDPP and show that a recent tree compatibility algorithm is effectively
a generalization of an earlier IDPP algorithm. Both algorithms rely heavily on maintaining the
connected components of a graph under a sequence of edge and vertex deletions, for which they use
the dynamic connectivity data structure of Holm et al., known as HDT. We present a computational
study of algorithms for tree compatibility and IDPP. We show experimentally that substituting HDT by
a much simpler data structure—essentially, a single-level version of HDT—improves the performance
of both of these algorithm in practice. We give partial empirical and theoretical justifications for
this observation.

Keywords: phylogeny; compatibility; perfect phylogeny; incomplete data; graph algorithms; dynamic
graph connectivity

1. Introduction

A phylogenetic tree is a graphical depiction of the evolutionary history of a collection of taxa
(typically species or genes). The leaves are in one-to-one correspondence with the taxa, the
internal nodes correspond to hypothetical ancestral taxa, while edges represent ancestor-descendant
relationships. Here, we consider two problems in computational phylogenetics.

• The input to the tree compatibility problem is a collection P = {T1, . . . , Tk} of rooted phylogenetic
trees with partially-overlapping taxon sets. P and the trees within it are called, respectively,
a profile and the input trees. The problem is to find a tree T whose taxon set is the union of the
taxon sets of the input trees, such that each input tree Ti can be obtained from the restriction of T
to the leaf set of Ti through edge contraction. If such a tree T exists, then P is said to be compatible;
otherwise, P is incompatible.

• The input to the incomplete directed perfect phylogeny problem (IDPP) is an n× k character matrix
A = [aij], where each row corresponds to a taxon and each column to a character. The state aij of
taxon i on character j is zero, one, or ?, depending on whether, for species i, character j is absent,
present, or the state is unknown. A completion of A is a matrix obtained from A by replacing each
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? by either zero or one. IDPP asks if A has a completion B with the following property. There
exists a phylogenetic tree that explains the evolution of the taxa described by B with at most one
0→ 1 state transition on each character.

It is well known that testing the compatibility of a collection of unrooted trees—an NP-complete
problem [1]—is equivalent to the undirected version of IDPP, namely the problem of testing the
compatibility of a collection of “partial binary characters” (bipartitions of a subset of a set of species) [2].
Since a profile of rooted trees is effectively a collection of unrooted trees that have a common root
taxon, the preceding observation establishes the connection between rooted tree compatibility and
IDPP. We should also note that a reduction from rooted tree compatibility to IDPP is implicit in the
work of Chimani et al. [3].

Here, for completeness, we provide a short and direct proof of the equivalence of tree compatibility
and IDPP. We go further and argue that a previous algorithm for IDPP is effectively a variation of a
recent tree compatibility algorithm. We then present a computational study of algorithms for these
problems. This study provides an opportunity to analyze the engineering issues that arise when
applying dynamic graph connectivity data structures in a highly-specific context. Our empirical results
show that, in this setting, simple data structures perform better than more sophisticated ones with
better asymptotic bounds.

1.1. Background

Tree compatibility testing arises in supertree construction [4–7], where the goal is to assemble a
comprehensive phylogenetic tree out of smaller trees for restricted sets of taxa. The tree compatibility
problem, however, has wider uses. In fact, the first polynomial-time algorithm for testing tree
compatibility, the BUILD algorithm of Aho et al. [8], was designed to solve a problem in relational
databases, not phylogenetics. The connection with phylogenetics was noted later [1].

A recent algorithm, called BuildNT [9,10], solves the tree compatibility problem for an arbitrary
profile P inO(MP log2 MP ) time, where MP denotes the total size of the trees in P . BuildNT is closely
related to Semple and Steel’s version of BUILD [2] (the suffix “NT” refers to the fact that the algorithm
can be extended to profiles of trees with “nested taxa”; i.e., where internal nodes are labeled with
higher order species [10]). There is one important difference between the two algorithms. BUILD relies
on the triple graph, whose nodes are the species and where there is an edge between two species a and b
if they are involved in a rooted triple in some input tree; that is, if there is a third species c such that, for
some input tree, the lowest common ancestor of a and b is a descendant of the lowest common ancestor
of a, b, and c. In contrast, BuildNT relies on the display graph of the profile, a graph that was first studied
in the context of testing the compatibility of unrooted trees [11]. The display graph is closely related
to the intersection graph of certain sets of clusters that appear in the input trees (a cluster is a set of
species that descend from the same node). As explained in [9], this cluster-based view provides a link
to BUILD’s triplet-based approach. It also leads to improved performance for high-degree trees.

BuildNT, and essentially every other known algorithm for tree compatibility, involves maintaining
the connected components of a graph under a series of edge and vertex deletions [9,12,13]. Thus,
the efficiency of these algorithms depends heavily on the dynamic graph connectivity data structure
used. Conversely, tree compatibility has been cited as a motivation for developing efficient dynamic
graph connectivity data structures [12,14,15].

IDPP arises when building phylogenetic trees based on rare genomic changes, such as the
insertion of short interspersed nuclear elements (SINEs) [13,16]. IDPP is also useful for resolving
genotypes into haplotypes [17]. The algorithm of Pe’er et al. [13] solves IDPP for an n× k matrix A in
O(nk + m log2(n + k)) time, where m denotes the number of ones in A. This algorithm also relies on
dynamic graph connectivity.

Several dynamic graph connectivity data structures have been proposed [15,18–21]. Notable
among them is the data structure of Holm et al., known as HDT [15,20]. HDT allows one to maintain
a graph under a sequence of vertex and edge deletions and insertions in polylogarithmic amortized
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time per operation. The above-mentioned time bounds for tree compatibility and IDPP are based on
using HDT.

Like other dynamic connectivity data structures, HDT maintains a spanning forest of the given
graph, where there is one spanning tree for each connected component. Edges in the forest are called
tree edges. The deletion of a tree edge breaks a tree in two and triggers the search for an edge, called a
replacement edge, to re-link the trees. To ensure polylogarithmic amortized time per update, HDT stores
edges in a multi-level structure, where an edge can appear in multiple levels (see Section 2.2).

To our knowledge, there is no previously-published computational study of any tree compatibility
algorithm. There is, however, a previous experimental study of HDT [22]. That paper offers insights
into the implementation details and the factors that affect HDT’s performance in practice. The focus
is on assessing how well HDT’s amortized bounds for updates (edge/vertex insertion/deletion) are
realized in practice on non-problem-specific graphs.

1.2. Contributions

As stated earlier, one of our contributions is to elucidate the connection between tree compatibility
and IDPP. Our computational study investigates the performance of the tree compatibility algorithm
of [9] and the IDPP algorithm of [13] over a wide range of real and simulated input profiles. Our
primary goal is to determine the impact of the underlying dynamic graph connectivity data structure,
in this case HDT. In contrast to the experimental work on HDT of Iyer et al. [22], our focus is on
aggregate performance over an entire sequence of edge deletions. A secondary goal is to compare the
performance of the specialized IDPP algorithm against the more general tree compatibility algorithm
in the context of IDPP.

Our experiments suggest that, in the specific setting of compatibility testing and IDPP, we can
dispense with much of the complexity of HDT—indeed, we can go from a multi-level structure to a
single-level data structure, considerably simplifying the code—and actually accelerate the compatibility
testing algorithm while reducing its memory footprint.

1.3. Contents

Section 2 reviews graph and tree notation, phylogenetic trees, and the HDT data structure.
Section 3 defines tree compatibility and IDPP formally and explains the relationship between the two
problems. Section 4 reviews the tree compatibility algorithm of [10] and the IDPP algorithm of [13] and
explains the connections between them. Sections 5 and 6 present the results of our experiments with
tree compatibility and IDPP, respectively. Section 7 delves deeper into the reasons behind the observed
performance of the algorithms for these problems, focusing on the impact of dynamic connectivity
testing. Section 8 gives some concluding remarks.

2. Preliminaries

For each positive integer r, [r] denotes the set {1, . . . , r}. Throughout the paper, X denotes a
set of taxa.

2.1. Graphs and Phylogenetic Trees

Let G be a graph. V(G) and E(G) denote the node and edge sets of G. A tree is an acyclic
connected graph. In this paper, all trees are assumed to be rooted. For a tree T, r(T) denotes the root of
T. Suppose u, v ∈ V(T). Then, u is an ancestor of v in T, and v is a descendant of u, if u lies on the path
from v to r(T) in T. If u is an ancestor of v and (u, v) ∈ E(T), then u is the parent of v and v is a child of
u. The degree of a node u ∈ V(T) is the number of children of u. T is binary if every non-leaf node has
degree two. For u ∈ V(T), we write T(u) to denote the subtree of T rooted at u.

A phylogenetic X-tree is a pair T = (T, φ) where T is a tree in which every internal node has at
least two children and φ is a bijection from the leaf set of T into X. For each leaf v of T, φ(v) is the label
of v. A rooted triple is a binary phylogenetic tree on three leaves.
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Let T = (T, φ) be a phylogenetic X-tree. For each u ∈ V(T), the cluster at u, denoted by X(u),
is the set of all taxa in T(u). Cl(T ) denotes the set of all clusters of T . The cluster X = X(r(T ))
and the clusters X(u) such that u is a leaf of T are called trivial; all other clusters in Cl(T ) are
non-trivial. A phylogenetic X-tree T is completely determined by Cl(T ) ([2], Theorem 3.5.2). That is, if
Cl(T ) = Cl(T ′) for some other phylogenetic X-tree T ′, then T and T ′ are isomorphic.

Suppose Y ⊆ X. The restriction of T to Y, denoted T |Y, is the phylogenetic Y-tree whose cluster
set is Cl(T |Y) = {Z∩Y : Z ∈ Cl(T ) and Z∩ A 6= ∅}. Equivalently, T |Y is obtained from the minimal
rooted subtree of T that connects the leaves in φ−1(Y) by suppressing all non-root internal vertices of
degree one.

Let T = (T, φ) be a phylogenetic X-tree and T ′ = (T′, φ′) be a phylogenetic Y-tree such that
Y ⊆ X. T displays T ′ if Cl(T ′) ⊆ Cl(T |Y).

2.2. Dynamic Graph Connectivity

2.2.1. Spanning Forests and Euler Tour Trees

Like other dynamic graph connectivity data structures [19,21], HDT maintains a spanning forest F
of the given graph throughout the lifetime of this graph. Edges of F are called tree edges; all other edges
are non-tree edges. Each tree T in F is represented using a Euler tour tree (ET tree) [19], a balanced binary
tree over a Euler tour of T. A Euler tour of an n-node tree has 2n− 1 nodes, and a single node of the
tree may appear multiple times in the tour. ET trees support the following operations in logarithmic
time per operation: determining the size of the tree containing a given node, testing if two nodes are in
the same tree, linking two trees with an edge, and deleting an edge from a tree.

2.2.2. Edge Deletion in HDT

We now review how HDT handles edge deletions, focusing on the aspects that are most relevant
for compatibility testing and IDPP. For further details, we refer the reader to [15].

Two cases arise when deleting an edge e. If e is a non-tree edge, the graph remains connected;
no further action is needed. Handling this case takes constant time. If e is a tree edge, the tree T in
F containing e is split into two trees T1 and T2. Since the vertices of T may still be connected by a
non-tree edge in the original graph, HDT searches for a replacement edge f to re-link T1 and T2. Next,
we explain how a replacement edge is found.

HDT associates with each tree or non-tree edge e an integer level `(e) ∈ {0, . . . , L}. Initially,
`(e) = 0. Promoting e means increasing `(e) by one. Let Fi denote the sub-forest of F induced by the
edges with level ≥ i. Thus, FL ⊆ FL−1 · · · ⊆ F1 ⊆ F0 = F. HDT maintains the following invariants:
(i) if we interpret the levels of the edges as their weights, then the edges of F constitute a maximum
spanning forest of the graph; (ii) the number of nodes in any tree in Fi is at most bn/2ic, where n is the
number of nodes in the graph. Thus, (a) if e = (u, v) is a non-tree edge, then u and v are connected in
F`(e), and (b) L ≤ blog2 nc.

Let e = (u, v) be the tree edge to be deleted. Since F was a maximum spanning forest, e’s
replacement must have level at most `(e). We set i = `(e) and look for a replacement at level i as
follows. Let Tu and Tv be the trees in Fi that contain u and v, respectively. Assume |V(Tu)| ≤ |V(Tv)|.
Before deleting (u, v), T = Tu ∪ {(u, v)} ∪ Tv was a tree of Fi such that |V(T)| ≥ 2|V(Tu)|. By Invariant
(ii), |V(T)| ≤ bn/2ic. Thus, |V(Tu)| ≤ bn/2i+1c. For each tree edge f of Tu, we promote f , making Tu

a tree in Fi+1. Next, we scan the level-i non-tree edges incident to Tu until we either find a replacement
edge or all non-tree edges incident to Tu have been examined. If a visited edge f reconnects Tu and Tv,
then f is the replacement edge, and the scan stops. Otherwise, we promote f . If no replacement is
found at level i, we decrease i by one and repeat the search. We stop if the search succeeds or i drops
below zero (which means that no replacement edge exists).

HDT maintains each forest Fi as a collection of ET trees. Thus, deleting an edge requires cutting it
from at most blog2 nc+ 1 ET trees, and if a replacement edge is found, this edge is used to link at most
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blog2 nc+ 1 ET trees. The worst-case time for cutting and linking is thereforeO(log2 n). The amortized
cost of the edge scans can be shown to also be O(log2 n).

2.2.3. Level Truncation

Maintaining HDT’s multi-level structure may require several expensive dynamic memory
allocation operations. Although this expense could be reduced by allocating the space for all levels in
advance, this would be wasteful, since the higher levels tend to be sparsely populated.

Iyer et al. [22] showed that level truncation—i.e., putting a limit on the number of levels in the data
structure—improves HDT’s performance in practice. An extreme version of this idea is to disable edge
promotion entirely and use a single level: Level 0. That is, we maintain a single spanning forest F of the
graph, where each tree in F is represented using an ET tree. Deleting non-tree edges is, again, trivial.
Deleting a tree edge e = (u, v) splits the tree T in F containing e into two trees Tu and Tv. Suppose Tu

is the smaller tree. For each node v in Tu, we scan the edges incident on v to determine if any of them
is a replacement edge. This requires two queries to the ET trees containing the endpoints of each edge.
If a replacement edge f is found, we re-link Tu and Tv using f and stop.

In the rest of the paper, we refer to the version of HDT where edge promotion is disabled as
HDT(0). The following observation is easy to verify.

Proposition 1. Let G be an n-node graph. Then, HDT(0) handles any sequence of q edge deletions in G in
O(q + s log n) time, where s is the total number of edge scans performed over the entire sequence.

Note that Proposition 1 holds regardless of whether one scans the edges incident on the smaller
component or those incident on the larger component. We shall nevertheless assume that the smaller
component is the one whose edges are scanned, since in practice, that component tends to have fewer
incident non-tree edges.

3. Tree Compatibility and Incomplete Directed Perfect Phylogeny

3.1. Tree Compatibility

A profile on X is a set P = {T1, T2, . . . , Tk} where, for each i ∈ [k], Ti = (Ti, φi) is a phylogenetic
Yi-tree on some set Yi ⊆ X, and

⋃
i∈[k] Yi = X (Figure 1). V(P) denotes

⋃
i∈[k] V(Ti), and E(P) denotes⋃

i∈[k] E(Ti). The size of P is MP = |V(P)|+ |E(P)|.

a c d e a b d f b c e f g

a b c d e f g

1,2,3

4,6,8
5,7,9

1 2 3

10

104 6 85 7
9

Figure 1. A profile. Leaves are labeled with species; internal nodes are numbered for later reference.

P is compatible if there exists a phylogenetic X-tree T such that T displays Ti, for each i ∈ [k].
Such a tree T , if it exists, is a compatible supertree for P (Figure 2). The problem of finding a compatible
supertree for a profile, or reporting that no such supertree exists, is called the tree compatibility problem.

Profiles consisting of binary trees (and, in particular, rooted triples) are common in practice.
As Figures 1 and 2 show, a compatible supertree for a profile of binary trees need not itself be binary.

Suppose T is a compatible supertree for profile P . It follows from the definition of the notion of
“displays” that, for any cluster present in some tree in P , there is a corresponding cluster in T . More
formally, for each i ∈ [k], there exists a mapping σi from V(Ti) to V(T) with the following property.
For each v ∈ V(Ti), Yi(v) = X(σi(v))∩Yi (here, we use the cluster notation of Section 2.1). We say that
v maps to σi(v); see Figure 2. Note that the mapping σi need not be unique.



Algorithms 2019, 12, 53 6 of 24
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Figure 2. A compatible supertree for the profile of Figure 1. Each internal node is labeled with the set
of nodes that are mapped to it by the tree compatibility algorithm described in Section 4.1.

3.2. The Display Graph

The display graph of a profile P , denoted by HP , is the graph obtained from the disjoint union
of the underlying trees T1, . . . , Tk by identifying leaves that have a common label (Figure 3). HP has
O(MP ) nodes and edges and can be constructed in O(MP ) time.

We refer to a node of HP that results from identifying multiple leaves as a leaf of HP . Let v be any
leaf of HP . The label of v is the common label of the leaves of P that were identified to create v. We
refer to a node v of HP that is not a leaf as an internal node. A node u in HP is a child of an internal
node v if u is the child of v in some tree in P .

a c d e a b d f b c e f g

a b c d e f g

Figure 3. The display graph for the profile of Figure 1.

3.3. Incomplete Directed Perfect Phylogeny

Assume X = {x1, . . . , xn}, and let C = {c1, . . . , ck} be a set of characters. A character matrix is an
n× k matrix A = [aij], where ai,j ∈ {0, 1, ?}. Entry aij is called the state of taxon xi on character cj. For
each j ∈ [k] and each s ∈ {0, 1, ?}, the s-set of character cj is the set of taxa σj(A, s) = {xi ∈ X : aij = s}.

A completion of a {0, 1, ?}-matrix A is a {0, 1}-matrix B obtained by replacing all the ?s in A by
zeroes and ones (thus, σj(B, ?) = ∅ for all j ∈ [k]). A perfect phylogeny for a completion B of A is a
phylogenetic X-tree T such that σj(B, 1) ∈ Cl(T ) for every j ∈ [k]. If such a tree T exists, we call it a
perfect phylogeny for A as well.

The input to the incomplete directed perfect phylogeny problem (IDPP) is an n× k {0, 1, ?}-matrix A.
The problem is to find a perfect phylogeny for A or report that no perfect phylogeny exists.

For each j ∈ [k], we say that column j of A is trivial if |σj(A, 1)| < 2 or |σj(A, 0)| < 1. Let A′ be
the matrix obtained from A by striking out all trivial columns. It is straightforward to show that A has
a perfect phylogeny if and only if A does. Thus, in the the rest of the paper, we assume that A contains
no trivial columns.

3.4. The Relationship between Tree Compatibility and IDPP

Given an instance A of IDPP, let us define a profile PA = {T1, . . . , Tk} as follows. For each
j ∈ [k], Tj is the phylogenetic Yj-tree where Yj = σj(A, 0) ∪ σj(A, 1) and where Cl(Tj) contains only
one non-trivial cluster: σj(A, 1) (Figure 4).
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1 ? 0
1 1 ?
0 1 0
0 ? 1
? 0 1

a
b
c
d
e

1 2 3

1

a b c d e

2 3

Figure 4. (Left) A character matrix A. (Right) The display graph for PA. The solid nodes and edges
are the only part of the display graph that algorithm PPSS (Section 4.2) uses.

Lemma 1. An instance A of IDPP has a perfect phylogeny if and only if PA is a compatible profile.

Proof. We claim that a phylogenetic X-tree T is a perfect phylogeny for A if and only if T displays Tj
for each j ∈ [k]; that is, if and only if T is a compatible supertree of PA.

Indeed, T is a perfect phylogeny for A if and only if there is a completion B of A such that
σj(B, 1) ∈ Cl(T ) for every j ∈ [k]. This holds if and only if, for each j ∈ [k], σj(A, 1) = σj(B, 1) ∩Yj ∈
T |Yj, where Yj = σj(A, 0)∪ σj(A, 1). Since σj(A, 1) is the only non-trivial cluster in Tj, this is equivalent
to saying that T displays Tj.

4. Algorithms for Tree Compatibility and Incomplete Directed Perfect Phylogeny

4.1. Tree Compatibility

BuildNT (Algorithm 1) builds a compatible supertree for a profile P by traversing the display
graph HP top-down, starting from the roots of the input trees, successively decomposing HP into
subgraphs that correspond to subtrees of the compatible supertree [10]. If it is impossible to decompose
HP , the algorithm reports that P is incompatible. To explain BuildNT in more detail, we need some
definitions and notation. Figure 5 illustrates several of these notions.

A position in HP is a vector U = (U(1), . . . , U(k)), where U(i) ⊆ V(Ti), for each i ∈ [k]. For each
i ∈ [k], let Desci(U) = {v ∈ V(HP ) : v is a descendant of v′ in Ti for some v′ ∈ U(i)}, and let
DescP (U) =

⋃
i∈[k] Desci(U). Note that, since labels may be shared among trees and HP is obtained

by identifying leaves with the same label, we may have Desc(U(i)) ∩Desc(U(j)) 6= ∅, for i, j ∈ [k]
with i 6= j.

A position U is valid if the following holds for each i ∈ [k].

1. If |U(i)| ≥ 2, then the elements of U(i) are siblings in Ti and
2. Desci(U) = DescP (U) ∩V(Ti).

For any valid position U, let HP (U) denote the subgraph of HP induced by DescP (U). Then,
HP (U) is the subgraph of HP obtained by deleting all nodes in V(HP ) \DescP (U), along with all
incident edges [10].

Let U be a valid position, and let v be a vertex in U. Then, v is semi-universal in U if U(i) = {v},
for every i ∈ [k] such that v ∈ V(Ti). Let S(U) denote the set of semi-universal labels in U. The successor
of U is the position U′ such that, for each i ∈ [k], if U(i) = {v}, for some v ∈ S(U), then U′(i) = Chi(v),
where Chi(v) denotes the set of children of v in V(Ti); otherwise, U′(i) = U(i).

The root position is the position Uroot where, for each i ∈ [k], Uroot(i) is a singleton containing r(Ti).
It is obvious that Uroot is valid, that DescP (Uroot) = V(HP ), that HP (Uroot) = HP , and that every
vertex in Uroot is semi-universal.

The key idea behind BuildNT is that if HP (U) is connected, then all semi-universal nodes in U
can map to the same node rU in a compatible supertree T for P . The set of labels in the cluster at
rU is precisely the set of labels that appear in HP (U). Further, each connected component of HP (U′)
corresponds to a distinct subtree of rU in T .
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a b c d e f g

1 2 3
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4 6 8

d e f g

5 7 9

Figure 5. The root position Uroot and its successor for the profile of Figure 1. Sets of nodes inside
shaded boxes are positions. As a result of computing the successor, graph HP = HP (Uroot) breaks
down into two components. In this example, all nodes in the positions shown are semi-universal. Note,
however, that, in general, not all nodes in a position are semi-universal (see [9,10]).

BuildNT uses a first-in first-out queue Q to store pairs 〈U, pred〉, where U is a valid position
in P and pred is a reference to the parent of the node corresponding to U in the supertree built so
far. BuildNT initializes Q to contain the starting position, Uroot, with a null parent. Each iteration
of the while loop of Lines 3–15 starts by de-queuing a pair 〈U, pred〉. Line 5 computes the set S
of semi-universal labels in U. It can be shown that if S is empty, then P is incompatible [10]. This
case is handled in Lines 6–7. If S is not empty, the algorithm creates a tentative root rU labeled
by S for the tree TU for DescP (U) and links rU to its parent (Line 8). If S consists of exactly one
element that is a leaf in HP , then rU is a potential leaf in the output tree T . We set the label of rU
appropriately, skip the rest of the current iteration of the while loop, and continue to the next iteration
(Lines 9–11). Line 12 replaces U by its successor with respect to S. Lines 14–15 enqueue each of
U|W1, U|W2, . . . , U|Wp—where U|Wj denotes the position (U(1)∩Wj, . . . , U(k)∩Wj)—along with rU ,
for processing in subsequent iterations. If the while loop terminates without detecting incompatibility,
BuildNT returns the phylogenetic X-tree T = (T, φ), where T is the tree with root rUroot and φ is the
labeling function constructed in Line 10.

Algorithm 1: BuildNT(P).
Input: A profile P = {T1, . . . , Tk} where Ti = (Ti, φi) for each i ∈ [k].
Output: A tree T = (T, φ) that displays P , if P is compatible; incompatible otherwise.

1 Construct HP (Uroot)

2 Q.enqueue(〈Uroot, null〉)
3 while Q is not empty do
4 〈U, pred〉 = Q.dequeue()
5 Let S = {v ∈ U : v is semi-universal in U}
6 if S = ∅ then
7 return incompatible

8 Create a node rU where rU .parent = pred
9 if |S| = 1 and the single element v ∈ S is a leaf of HP then

10 Set φ(rU) equal to the label of v
11 continue
12 Replace U by the successor of U with respect to S
13 Let W1, W2, . . . , Wp be the connected components of HP (U)

14 foreach j ∈ [p] do
15 Q.enqueue(〈U|Wj, rU〉)
16 return T = (T, φ), where T is the tree with root rUroot
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There are two main contributors to the running time of BuildNT. The first is the time to compute
the successor of U along with the connected components of HP (U) in Lines 12–13. Let U′ be the
successor of U with respect to S(U). Then, HP (U′) can be obtained from HP (U) by doing the following
for each v ∈ S(U): (1) for each i ∈ [k] such that U(i) = {v}, delete all edges between v and Chi(v);
(2) delete v. Using HDT (Section 2.2.2), each deletion takes O(log2 MP ) amortized time. Since the total
number of edge and node deletions is O(MP ), the total work done in these lines is O(MP log2 MP ).
If instead of HDT, we use its single-level version, HDT(0) (Section 2.2.3), then, by Proposition 1,
the running time is O(MP + s log MP ), where s is the number of edge scans performed by BuildNT

over its entire execution.
The other main contributor to the running time of BuildNT is maintaining the semi-universal

nodes of the various components that result from edge deletions, so that the labels can be quickly
retrieved in Line 5. Suppose this information is known for the connected component being processed
in the current iteration of BuildNT’s while loop. When an edge deletion splits a connected component
of HP in two, the algorithm traverses the smaller component to update the set of semi-universal
vertices in that component. It can be shown that, over the entire execution of BuildNT, any given
vertex is visited O(log MP ) times, spending O(1) time per visit. Thus, the total time spent to update
semi-universal vertex information throughout the entire execution of the algorithm is O(MP log MP ).

The following result is adapted from [10].

Theorem 1. Let P be a profile. If P is compatible, then BuildNT(P) returns a tree T that displays P ; otherwise,
BuildNT(P) returns incompatible. When implemented using HDT, the running time of BuildNT(P) is
O(MP log2 MP ). When implemented using HDT(0), the running time is O((MP + s) · log MP ), where s is
the total number of edge scans performed over the entire execution of BuildNT(P).

4.2. IDPP

By Lemma 1 (Section 3.4), we can solve any instance A of IDPP by converting it to a profile PA
and then using BuildNT to determine if there exists a tree T that displays PA. If T exists, then it must
be a perfect phylogeny for A. Otherwise, no perfect phylogeny for A exists.

In [13], Pe’er et al. gave a specialized algorithm for IDPP; we refer to their algorithm as PPSS. PPSS
can be viewed as a variation of BuildNT, with two key differences, which we explain next. Let A be an
instance of IDPP, and let P = PA.

1. PPSS works with HP \ Uroot instead of HP . This is correct, since every vertex in Uroot is
semi-universal. Let m denote the number of ones in A. Then, HP \ Uroot has n + k nodes
and m edges (see Figure 4). Note that m can be considerably smaller than MP , since HP contains
edges for both the zeroes and the ones of A. Since the number of edge deletions is O(m), the
total work to maintain the connected components throughout the entire execution of PPSS is
O(m log2(n + k)), if we use HDT, and O((m + s) · log(n + k)), if we use HDT(0).

2. PPSS updates the set of semi-universal nodes after it computes a successor position. It does so by
traversing each of the resulting connected components. Each such traversal takes O(n + k) time,
assuming the connected components are represented by a spanning forest. The number of times a
successor position is computed is bounded by the number of edges in the final phylogeny, which
is O(min{n, k}). Thus, the total work performed by PPSS in updating semi-universal nodes is
O(nk). In contrast, BuildNT updates the set of semi-universal nodes while computing a successor
position; i.e., after each tree edge deletion.

The running time of PPSS is therefore O(nk + m log2(n + k)), if PPSS is implemented using HDT,
and O(nk + (m + s) · log(n + k)), if we use HDT(0) (we note that a somewhat better running time can
be achieved if HP is extremely dense [13]).
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5. Experiments with Tree Compatibility

We implemented BuildNT using treaps [23] to represent ET trees, as done by Iyer et al. [22]. We
refer to our program, written in C++, as FCT (https://zenodo.org/record/2114273#.XA7iIy2ZPOQ).
FCT implements level truncation (Section 2.2.3), allowing us to specify the maximum level to which an
edge can be promoted in HDT. Two extreme cases are of special interest. One permits HDT to promote
edges up to the maximum allowed level blog2 nc. We refer to the version of FCT that implements this
strategy as FCT(1). The other extreme is to disallow edge promotions entirely; i.e., we use HDT(0). We
refer to this version of FCT as FCT(0).

We ran all experiments on a device with a 2.7-GHz dual core-Intel Core i5 processor and 8-G
1866-MHz LPDDR3 memory. The times reported here do not account for the initialization of the data
structures.

5.1. Real Datasets

Table 1 shows the running times, in seconds, of FCT(0) and FCT(1) on three well-known datasets:
Legumes (471 taxa, 22 trees) [24], Seabirds (121 taxa; 7 trees) [25], and Placental Mammals (116 taxa;
726 trees) [26]. In all three cases, FCT(0) and FCT(1) terminated quickly and correctly reported
incompatibility, but FCT(0) was always considerably faster.

Table 1. Runtime on real datasets.

Legumes Seabirds Mammals

FCT(0) 0.0277 s 0.0051 s 0.1327 s
FCT(1) 0.0926 s 0.0192 s 0.3623 s

5.2. Generating Simulated Data

An inherent limitation of testing FCT on real datasets, such as the three considered in the previous
section, is that they are often incompatible. Incompatible inputs do not exercise FCT as thoroughly as
we would like, since the program is likely to terminate early, leaving large parts of HP unexamined.
In order to conduct more extensive tests, we implemented a generator of compatible input profiles.

Our generator begins by producing a random phylogenetic X-tree T on n leaves whose internal
nodes have a user-specified degree D ≥ 2, except possibly for the root, which may have degree less
than D. The generator produces a compatible profile P = {T1, . . . , Tk}, by restricting T to different
subsets of X. We focus on two types of profiles.

• Profiles of rooted triples. We start from a binary phylogenetic X-tree T . For each i ∈ [k], we obtain
Ti by restricting T to a distinct three-element subset of X. We have n− 2 ≤ k ≤ (n

3). If k = n− 2,
we choose P to be a set of rooted triples that defines T . That is, T is the only compatible supertree
for P (the existence of such sets of triples is a folklore theorem in phylogenetics). If k = (n

3), P
consists of every rooted triple that can be obtained by restricting T to a three-element subset of X.
In the latter case, we say that P is a complete set of rooted triples.

• Profiles of phylogenetic trees of specified degree. We start from a phylogenetic X-tree T whose nodes
have degree D. We obtain P by restricting T to k randomly-chosen subsets of X; each label is

chosen to be in a set with probability
1
2

.

We conducted a series of tests on simulated datasets. Each reported data point is the average
execution time, in seconds, over 30 trials.

5.3. Impact of Level Truncation

Figure 6 shows the running time of FCT on complete sets of triples, with maximum truncation
levels set to 1 (i.e., FCT(0)), 2, 4, 6, 8, and blog nc (i.e., FCT(1)). The number of taxa, n, ranged from
10–55 with increments of 5. Thus, 730 ≤ MP ≤ 157, 465.

https://zenodo.org/record/2114273#.XA7iIy2ZPOQ
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Figure 6. Performance of FCT for varying degrees of level truncation on complete sets of triples.

Observe that going beyond 4 levels made little difference. Indeed, beyond Level 1, the difference
is small. This observation is consistent with the intuition that the higher levels of HDT tend to be
sparsely populated and are rarely used.

FCT(0) is the clear winner in these tests. The same was true for every dataset we considered,
whether they were profiles of rooted triples or profiles of more general phylogenetic trees (Figures S1–S7
in the Supplementary Materials). Thus, in the rest of this section, we focus our attention on HDT(0).

5.4. Worst-Case Time versus Empirically-Observed Time

By Theorem 1, the worst-case time of FCT(0) depends on the number of edge scans performed
when searching for replacement edges. A naive estimate yields a worst-case bound of O(M2

P ) for
this number: O(MP ) edge deletions, each requiring O(MP ) scans. This implies a time bound of
O(M2

P log MP ) for the entire execution of FCT(0). In contrast, we now present evidence that FCT(0)’s
performance in practice may be closer to O(MP log MP ) than to its worst-case bound.

Performance on Rooted Triples

Figure 7a shows the running time of FCT(0) on complete sets of triples. The number of taxa, n,
varied from 5–60 with increments of 5, and MP varied from 65–205,380. Also plotted in that figure are
the functions c1 ·MP log MP + c2 and c′1 ·MP log2 MP + c′2, where c1, c2, c′1, and c′2 are appropriate
constants. The plot suggests that, in practice, the running time of FCT(0) was far better than the
above-mentioned worst case and may be close to O(MP log2 MP ).

We also explored the effect of altering the balance factor of the binary phylogenetic X-tree T from
which the triples wee derived (the balance factor is the ratio α of the size of the smaller subtree to that
of the larger subtree: a binary phylogenetic tree is balanced when α = 0.5). Figure 7b shows the results
of running FCT(0) on the profile of triples on n = 40 labels for three balance factors: 10%, 30%, and
50%. The x-axis indicates the percentage of the maximum possible number of triples, (n

3), included in a
profile. The percentage varied from 10%–100%, with increments of 10%. The running time of FCT(0)
appeared to be close to linear in the number of triples; the balance factor has a negligible impact. Thus,
in the rest of this section, we use starting trees T that are, on average, balanced.
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(a)

(b)

Figure 7. FCT(0) on profiles of rooted triples. (a) Complete sets of triples with varying number of taxa.
(b) Rooted triples on 40 labels for different percentages of the maximum number of triples.

5.5. Performance on Profiles of More General Phylogenetic Trees

Figure 8a shows the running time of FCT(0) on profiles of binary trees when the number, k, of trees
was fixed at 100 and the number, n, of taxa varied from 100–1000, with increments of 100. Figure 8b
shows the performance of FCT(0) on profiles of binary trees when the number of taxa was fixed at 100,
while k varied from 100–1000 with increments of 100. Both figures compare the empirical performance
against O(MP ) and O(MP log MP ) curves, using the product n× k as a proxy for MP . Although the
running time of FCT(0) grew non-linearly, its behavior appeared to be close to O(MP log MP ).

We also studied the performance of FCT(0) on profiles of trees of degrees 4 and 7. The results,
which appear in Figures S11 and S12 of the Supplementary Materials, were qualitatively similar to
those for binary trees. Note that a greater number of higher degree internal nodes can be beneficial
for dynamic connectivity data structures based on spanning forests: an abundance of such nodes
increased the number of non-tree edges in HP , which were trivial to delete (see Section 2.2). We return
to this issue in Section 7.
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(a)

(b)

Figure 8. FCT(0) on profiles of binary trees. (a) Running time for 100 trees and varying number of taxa.
(b) Running time for 100 taxa and varying number of trees.

5.6. Connectivity Testing versus Maintaining Semi-Universal Labels

Throughout all of our experiments, connectivity testing took on average slightly more than 50%
of FCT(0)’s running time. FCT(0) spent most of its rest time maintaining semi-universal nodes. As
noted in Section 4, the time to do the latter was asymptotically O(MP log MP ). As one might expect,
there was less variability in this aspect than in dynamic connectivity testing.

6. Experiments with IDPP

We implemented PPSS, the IDPP algorithm of Pe’er et al. described in Section 4.2; we refer to our
implementation as FPP (https://zenodo.org/record/2115972#.XA7mey2ZPOQ). Like FCT, FPP was
implemented in C++ and used treaps to represent ET trees. There were two versions of FPP: FPP(1)
used the full implementation of HDT, which allowed promotion of edges up to level blog2 nc; FPP(0)
used HDT(0). We ran our tests on the same machine used to obtain the results reported in Section 5.

6.1. Simulated Datasets

To generate a random instance of IDPP, our generator proceeded as follows. We started from
a Prüfer code of length of 2n− 2, which defines a unique tree T with n leaves (taxa) and n internal
nodes (characters) [27,28]. We rooted T at a randomly-chosen node and then translated the tree into
an n× n zero-one matrix C that encoded the clusters in T (each column of C corresponds to a cluster;

https://zenodo.org/record/2115972#.XA7mey2ZPOQ
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a one indicates that a taxon is present in the cluster, a zero that it is absent). We obtained a seed matrix
B by duplicating columns in C. We built different instances of IDPP from a seed matrix by converting
a randomly-chosen set of zero- and/or one-entries to question marks.

The generator can build seed matrices of different densities, where the density of a matrix is the
ratio of its number of ones to its total number of entries. Let us call a column of C trivial if all its entries
are one. We built a seed matrix B by duplicating non-trivial columns where the percentage of ones
was above a specified threshold. If the threshold is 25%, we say that the matrix has medium density;
if the threshold is 50%, we say that the matrix has high density. We also consider matrices generated
without a mandatory threshold, allowing any columns to be duplicated; we refer to such instances as
low-density matrices. There is a caveat: The process that we use to generate the starting tree T may
lead to a matrix C where no non-trivial column has the mandatory threshold. If this was the case, we
reduced the threshold and tried again. For medium-density matrices, if 25% failed, we successively
tried 20% and 10%. For high-density matrices, if 50% failed, we tried 40%, 30%, 20%, and 10%.

Figure 9 shows the execution time of FPP(1) and FPP(0) on medium- and high-density matrices.
In both cases, n and k are fixed. For each data point reported, we started with a particular (random)
seed matrix and then generated multiple IDPP instances by replacing a certain percentage of ones in
the seed matrix by question marks. To be consistent, we also converted the same percentage of zeroes
to question marks. The percentage ranged from 5%–50% with increments of 5%. The figures also show
the time needed to initialize the connectivity data structures and the total time spent on manipulating
these structures.

(a)

(b)

Figure 9. Running time of FPP(0) and FPP(1) on matrices of order 300× 6000 for (a) medium- and
(b) high-density inputs.
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Without exception, the experiments showed that there was no benefit to enabling edge promotion
in HDT; a single level suffices. A more extensive set of results, leading to the same conclusion,
is reported in the Supplementary Materials (Figure S13).

6.2. Solving IDPP via Tree Compatibility

As explained in Sections 3.4 and 4.2, any instance A of IDPP can be solved by transforming it
into a profile PA and then checking if PA is compatible. Table 2 compares the running time of FPP(0)
against that of FCT(0) applied to the corresponding instance of tree compatibility, on high-density input
matrices of order 100× 2000. As in Figure 9, we varied the percentage of zeroes and ones converted
to question marks from 5%–50% with increments of 5%. The table also shows the time the programs
spent on maintaining connectivity information. FPP(0) was uniformly faster than FCT(0). Much of this
speedup can be attributed to the smaller amount of time FPP(0) spent in connectivity-related work
compared to FCT(0). This reflects the fact that the former operates on a graph that contains edges
only for the one-entries of A, whereas the latter works with the entire display graph of PA, which
contains edges for every one and zero-entry of A. We found similar results for low-density matrices
(Supplementary Materials, Table S2).

Table 2. Comparison between execution time (in seconds) of the tree compatibility algorithm on
transformed IDPP and original IDPP on high-density matrices of order 100× 2000.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

FCT(0) 10.07 10.00 9.87 9.61 9.52 9.41 9.36 9.07 9.05 8.80
FPP(0) 6.43 6.48 6.38 6.32 6.43 5.68 6.30 6.55 6.44 6.12

Connectivity (FCT) 3.37 3.37 3.32 3.24 3.28 3.22 3.30 3.16 3.15 3.07
Connectivity (FPP) 1.38 1.36 1.33 1.28 1.36 1.26 1.35 1.42 1.38 1.30

7. Analysis

In our experiments, the most striking and consistent observation was the effectiveness of HDT(0)
for both compatibility testing and IDPP, across the entire range of inputs considered. A partial
explanation is that HDT(0) incurs far less overhead than HDT. This, however, does not fully explain
why the running time of FCT(0) was close to O(MP log MP ) in practice. Theorem 1 indicates that this
performance may be tied to the small number of edge scans performed throughout the execution of
the algorithms. Here, we explore this issue in more detail. First, we break down in more detail the
factors that affect the performance of HDT(0) in BuildNT and PPSS.

For each vertex v ∈ V(HP ), let dv denote the number of children of v. At any stage of its execution,
BuildNT maintains a graph H obtained from HP through edge and node deletions. Because these
deletions are performed top-down, the number of edges incident on any node v in H is at most dv.

Lemma 2. Let e = (u, v) be a tree edge in the current spanning forest F maintained by HDT(0) during the
execution of BuildNT (or PPSS), and let Tu and Tv be the two trees that result from deleting e from the tree in F
that contains e. Assume, without loss of generality, that |V(Tu)| ≤ |V(Tv)|. Then, searching for a replacement
edge for e requires scanning at most 2 + ∑w∈V(Tu)(dw − 1) non-tree edges.

Proof. We claim that the number of non-tree edges scanned is at most one more than the number of
edges with both endpoints in Tu. To see why, note that the scan for a replacement edge stops as soon as
either (i) we encounter an edge that has one endpoint, x, in Tu and the other, y, outside Tu (and, thus,
(x, y) is a replacement edge) or (ii) we find that all non-tree edges incident on Tu have both of their
endpoints in Tu (and, thus, no replacement edge exists). To complete the proof, we argue that the
number of non-tree edges with both endpoints in Tu is at most 1 + ∑w∈V(Tu) dw.
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Let mu be the total number of tree and non-tree edges incident on V(Tu). Then, mu ≤ ∑w∈V(Tu) dw.
The number of tree edges with both endpoints in V(Tu) is m′u = |V(Tu)| − 1. The number of non-tree
edges is thus mu −m′u ≤ ∑w∈V(Tu) dw − (|V(Tu)| − 1) ≤ 1 + ∑w∈V(Tu)(dw − 1), as claimed.

Proposition 2. Let F be the current spanning forest maintained by HDT(0) during the execution of BuildNT
(or PPSS); let v be the semi-universal node being processed during the computation of the next successor position;
and let e be the next edge incident on v to be deleted. Then, the following hold.

1. Deleting e takes:

(a) O(1) time if e is a non-tree edge,
(b) O(log MP ) time if e is the only tree edge incident on v, and
(c) O(min{∑w∈V(T) dw, |V(T)|2} · log MP ) time otherwise, where T is the smaller of the two trees

created by deleting e from F. In particular, if the input profile consists of binary trees, the time is
O(|V(T)| · log MP ).

2. Suppose dv = 2 and that e is the first edge incident on v that is deleted. Let e′ be the other edge incident on
v. Then, at the time of deletion, e′ is a tree edge, and deleting it takes O(log MP ) time.

Proof. (1) Part (a) was noted in Section 2.2.2. For Part (b) observe that if e is the only tree edge incident
on v, then deleting e leaves v as an isolated node in the spanning forest; i.e, as a component of size
one, and, hence, as the smaller component. Any non-tree edge incident on v must be a replacement
edge, and, if such an edge is found, it takes O(log MP ) time to re-link v to the rest of the forest. Part (c)
follows from Lemma 2 and the fact that there are at most (|V(T)|

2 ) − (|V(T)| − 1) edges with both
endpoints incident in T. The claim for profiles of binary trees follows by noting that dw ≤ 2 for
every node w.

(2) There are two cases. If e′ was a tree edge before deleting e, then e′ remains a tree edge after
the deletion of e. If e′ is a non-tree edge before deleting e, then e′ must be used as a replacement edge
during the deletion of e, so e′ becomes a tree edge.

HDT(0) deletes e′ by first splitting, in O(log MP ) time, the ET-tree that contains both endpoints
of e′. This leaves vertex v as the sole element in the smaller component, after which the vertex v is
simply discarded.

Proposition 2 points to three key issues that affect the performance of HDT(0) when used in either
BuildNT or PPSS: the number of non-tree edge deletions, the number of tree edge deletions, and the
size of the smaller components resulting from tree edge deletions.

For profiles consisting of binary phylogenetic trees (including profiles of triples), Proposition 2(2)
implies that at least half of HDT(0)’s tree-edge deletions take O(log MP ) time in the worst case. This is
faster than the amortized time they take when performed by HDT. Proposition 2(1) notes the downside:
the other half of the deletions could be expensive. These observations hold to some extent for profiles
consisting of trees of small degree, although the ratio of inexpensive to expensive tree-edge deletions
goes down. On the other hand, for larger degree trees, and in particular for the denser inputs generated
by IDPP, non-tree edges are relatively abundant. As indicated in Proposition 2(1a), such edges are
trivial to delete.

Proposition 2(1c) implies that if the majority of the smaller components resulting from tree edge
deletions are very small, then the time that HDT(0) spends on maintaining connectivity information
throughout the execution of BuildNT (or PPSS) will also be small. More precisely, let e1, . . . , e` be the
successive tree edges deleted by BuildNT (or PPSS), and let Ni = min{|V(ti)|2, ∑w∈V(ti)

dw}, where
ti is the smaller of the two trees of HDT(0)’s spanning forest created by deleting ei. Then, the total
time spent in all tree edge deletions is O(∑`

i=1 Ni · log MP ). If, for instance, ∑`
i=1 Ni = O(MP log MP ),

then the total time to maintain connectivity information (including the total time for non-tree edge
deletions, which take O(1) time each) would be O(MP log2 MP ), matching the behavior we observed
in Section 5.
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In the next sections, we examine separately the three key factors affecting the performance of
HDT(0) on BuildNT and PPSS. Section 7.1 studies the impact of deletion of non-tree edges on overall
performance. As one would expect, the number of such deletions increases with the degree of the
input trees. Section 7.2 examines the impact of tree-edge deletion. Here, the focus is on the number of
edges scanned in searching for a replacement edge. As we shall see, the total number of such edges
grows at a rate that seems only slightly super-linear in MP . Section 7.3 studies the size of the smaller
components encountered during tree edge deletions. Surprisingly, we find that components of size at
most two constitute the overwhelming majority across a wide range of profiles.

7.1. The Impact of Deleting Non-Tree Edges

We first examine the prevalence of non-tree edge deletions and their total contribution to the
execution time. Recall that each such deletion takes O(1) time (Proposition 2(1a)).

Table 3 shows HDT(0)’s performance on complete sets of triples. The first row of the table
shows the ratio of the number of actually deleted non-tree edges to the total number of edges in HP .
The second row shows the percentage of time that HDT(0) spends on deleting non-tree edges. Both
numbers are small, indicating that the work is dominated by processing tree edges.

Table 3. FCT(0) on complete sets of triples: Ratio of number of deleted non-tree edges to total number
of edges and ratio of time spent on deleting non-tree edges to total HDT execution time.

MP 65 730 2745 6860 13,825 24,390 39,305 59,320 85,185 117,650

Num(NTE)
Num(E)

9.25% 19.51% 21.88% 21.08% 22.49% 23.00% 23.20% 22.49% 23.05% 23.13%

Time(NTE)
Time(HDT)

7.48% 9.49% 10.04% 9.86% 10.09% 10.28% 10.22% 9.99% 9.99% 9.83%

Tables 4 and 5 show the running time of FCT(0) on profiles of binary phylogenetic trees. Similar
to the situation for triples, the number of non-tree edge deletions and the amount of time performing
them is relatively small.

Table 4. FCT(0) on profiles of binary phylogenetic trees for k = 100 and varying n: Ratio of number of
deleted non-tree edges to total number of edges and ratio of time spent on deleting non-tree edges to
total HDT execution time.

MP 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Num(NTE)
Num(E)

17.13% 17.32% 17.25% 17.27% 17.25% 17.27% 17.35% 17.35% 17.32% 17.42%

Time(NTE)
Time(HDT)

8.03% 7.97% 7.64% 7.82% 7.81% 7.58% 7.69% 7.58% 7.62% 7.63%

Table 5. FCT(0) on profiles of binary phylogenetic trees for n = 100 and varying k: Ratio of number of
deleted non-tree edges to total number of edges and ratio of time spent on deleting non-tree edges to
total HDT execution time.

MP 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Num(NTE)
Num(E)

17.87% 18.76% 18.76% 18.79% 18.76% 19.17% 19.33% 19.13% 19.11% 19.35%

Time(NTE)
Time(HDT)

8.21% 8.30% 8.29% 8.35% 8.47% 8.22% 8.30% 8.38% 8.29% 8.39%
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Tables 6 and 7 show the running time of FCT(0) on phylogenetic trees where internal node have
degree seven. As expected, by increasing the degree of internal nodes, we increased the number of
non-tree edges. On the other hand, the contribution of these edges to the total running time did not
increase markedly.

Table 6. FCT(0) on profiles of phylogenetic trees of degree 7 with k = 100 and varying n: Ratio of
number of deleted non-tree edges to total number of edges and ratio of time spent on deleting non-tree
edges to total HDT execution time.

MP 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Num(NTE)
Num(E)

42.23% 42.72% 42.69% 42.16% 42.27% 42.13% 42.11% 42.47% 42.14% 42.23%

Time(NTE)
Time(HDT)

14.07% 13.85% 13.39% 13.20% 13.32% 12.88% 12.65% 13.02% 12.92% 12.99%

Table 7. FCT(0) on profiles of phylogenetic trees of degree 7 with n = 100 and varying k: Ratio of
number of deleted non-tree edges to total number of edges and ratio of time spent on deleting non-tree
edges to total HDT execution time.

MP 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Num(NTE)
Num(E)

42.20% 42.59% 44.90% 45.04% 44.88% 44.92% 46.22% 46.44% 44.79% 44.97%

Time(NTE)
Time(HDT)

14.00% 13.94% 15.00% 14.93% 15.15% 15.13% 15.34% 15.40% 14.96% 14.94%

Tables 3–7 indicate that to get a better understanding of the behavior of FCT(0) on profiles of
low-degree trees, it is necessary to focus on tree edge deletions and, more specifically, on the time
spent scanning for replacement edges. We study this issue in the next section. Before doing so, we
consider the case of high-degree vertices, which is encountered in IDPP.

Tables 8–10 show the performance of FPP(0) on low-, medium-, and high-density inputs.
The results show that deletions were mostly done on the non-tree edges, which makes sense due
to their relative abundance. Further, the program spent a large fraction of its time (in some cases,
upwards of 50%) on such edges. This is significant, since it suggests the potentially more expensive
deletions of tree edges are not as expensive as the worst-case bound would indicate. As we shall see in
the next section, this appears to be due to the fact that the total number of edges scanned in search of
replacement edges is relatively small.

Table 8. FPP(0) on low-density matrices of order 300× 6000: Ratio of the number of deleted non-tree
edges to the total number of edges and the ratio of time spent on deleting non-tree edges to total HDT
execution time.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Num(NTE)
Num(E)

88.53% 87.95% 87.42% 87.12% 86.54% 85.94% 85.36% 84.62% 83.73% 82.70%

Time(NTE)
Time(HDT)

41.77% 41.01% 40.18% 39.86% 38.96% 38.07% 37.83% 36.89% 35.07% 34.10%



Algorithms 2019, 12, 53 19 of 24

Table 9. FPP(0) on medium-density matrices of order 300× 6000: Ratio of number of deleted non-tree
edges to total number of edges and ratio of time spent on deleting non-tree edges to total HDT
execution time.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Num(NTE)
Num(E)

88.78% 88.28% 87.57% 87.03% 86.32% 85.00% 83.87% 82.61% 82.12% 79.89%

Time(NTE)
Time(HDT)

56.36% 54.65% 54.61% 55.24% 53.33% 52.79% 52.84% 51.24% 50.24% 49.78%

Table 10. FPP(0) on high-density matrices of order 300× 6000: Ratio of number of deleted non-tree
edges to total number of edges and ratio of time spent on deleting non-tree edges to total HDT
execution time.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Num(NTE)
Num(E)

97.80% 97.69% 97.58% 97.37% 97.24% 97.11% 96.88% 96.62% 96.39% 96.07%

Time(NTE)
Time(HDT)

68.38% 67.74% 67.17% 66.15% 65.99% 65.05% 64.53% 63.25% 62.74% 61.73%

7.2. The Number of Edges Scanned

We now examine the impact of edge scans more closely. Figure 10 shows the average number
of non-tree edges, as a function of MP , actually scanned by FCT(0) when operating on complete sets
of rooted triples. Observe that not only does the number of edge scans increase at an only slightly
super-linear rate, but also the average number of non-tree edges scanned is considerably smaller than
MP . Together with Theorem 1, this explains the near-O(MP log MP ) behavior seen in Figure 7.

Figure 10. Number of non-tree edges scanned by FCT(0) for complete sets of rooted triples.

Figure 11 shows the average number of non-tree edges actually scanned by FCT(0) on profiles of
binary phylogenies. The input profiles were generated as described in Section 5.4. As in that section,
we varied one of n, the number of labels, or k, the number of trees, while keeping the other quantity
fixed, and we took the product n× k as a proxy for MP .

When n was fixed, the number of non-tree edges scanned was roughly proportional to MP ,
suggesting that the running time of FCT(0) was O(MP log MP ). This is reflected in Figure 8a. On
the other hand, when k was fixed, the number of non-tree edges scanned appeared to grow in a
slightly super-linear manner. The explanation appears to be that increasing k increased the amount
of overlap among the trees, and consequently also the number of non-tree edges. Nevertheless, the
overall running time of FCT(0) in this case appeared close to O(MP log MP ); see Figure 8b. This may
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be because the effect of increasing the number of non-tree edges was mitigated by another factor: the
sizes of the smaller of two subtrees resulting from edge deletion.

Figure 11. Number of non-tree edge FCT scans for profiles of binary phylogenetic trees. The blue curve
corresponds to varying k, while keeping n fixed at 100. The orange curve corresponds to varying n
while keeping k fixed at 100.

Table 11 reports the number of non-tree edges scanned throughout the execution of FPP(0).
Overall, the number of scanned non-tree edges was smaller than the total number of edges. This again
illustrates that searching for replacement edges did not significantly contribute to the running time.
Surprisingly, the largest number of edge scans occurred for medium-density matrices. We have not
found a satisfactory explanation for this observation.

Table 11. Number of non-tree edges scanned by FPP(0) for matrices of order of 300 × 6000 with
different density levels.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Low 69,133 65,415 61,975 57,305 53,638 47,722 44,590 40,668 35,545 31,668
Medium 461,875 420,106 372,561 400,387 387,020 353,904 334,324 292,983 250,507 251,315

High 42,210 32,766 41,489 36,797 40,709 29,770 29,068 29,206 26,317 26,811

7.3. The Size of the Smaller Component

In the previous section, we saw that HDT(0) scanned relatively few non-tree edges when used in
either FCT(0) or FPP(0). Tables 12–16 show one reason for this: the smaller component was often very
small. In fact, the small component often contained just one or two nodes. The tables show the number
of times the smaller subtree resulting from an edge deletion had at most two nodes (“Num. ≤ 2”) and
more than two nodes (“Num. > 2”) for different types of input profiles. In all cases, subtrees of a size
at most two outnumbered the rest by a wide margin.

Table 12. FCT(0): Number of subtrees of a size at most two versus number of subtrees of size greater
than two for complete sets of triples.

MP 65 730 2745 6860 13,825 24,390 39,305 59,320 85,185 117,650

Num. ≤ 2 29 355 1385 3498 7130 12,460 20,110 30,433 43,911 61,348
Num. > 2 2 23 50 81 113 151 191 233 277 318
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Table 13. FCT(0): Number of subtrees of a size at most two versus number of subtrees of size greater
than two for profiles of binary trees with varying number of trees and 100 taxa.

MP 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Num. ≤ 2 7453 14,985 22,566 29,957 37,532 44,959 52,500 59,630 66,984 74,780
Num. > 2 667 1156 1648 2104 2555 3201 3460 3966 4643 4975

Table 14. FCT(0): Number of subtrees of a size at most two versus number of subtrees of size greater
than two for profiles of binary trees with varying number of taxa and 100 trees.

MP 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Num. ≤ 2 7473 15,098 22,711 30,403 37,903 45,636 53,083 60,638 68,336 75,946
Num. > 2 683 1340 2037 2722 3387 4047 4759 5394 6017 6743

Table 15. FPP(0): Number of subtrees of a size at most two versus number of subtrees of size greater
than two for medium-density matrices of order 300× 6000.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Num. ≤ 2 27,592 27,793 26,951 27,358 27,358 27,126 26,711 26,839 26,590 26,003
Num. > 2 924 926 940 972 969 983 983 976 976 979

Table 16. FPP(0): Number of subtrees of a size at most two versus number of subtrees of size greater
than two for high-density matrices of order 300× 6000.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Num. ≤ 2 31,130 30,709 31,054 30,443 30,194 29,359 29,393 28,839 27,603 26,696
Num. > 2 882 908 905 907 901 908 892 912 900 879

Subtrees with at most two nodes (and, thus, one edge) were easily handled in O(log MP ) time:
the search for a replacement edge terminated immediately after encountering the first non-tree edge
incident on one of the at most two nodes in the subtree, assuming such an edge exists.

Table 17 examines the distribution of the size of the smaller component in greater detail for
profiles of binary trees. The number of small components of a given size declined rapidly as the size
increased. This pattern was evident even for profiles of trees of larger degrees, including for instances
of IDPP, although it was somewhat less marked; see Tables S34–S46 of the Supplementary Materials.
Invariably in our experiments, the overwhelming majority of the smaller subtrees had just one node.
This means that, prior to deletion, the single node in that small component was a semi-universal node
with just one incident tree edge.

Table 17. FCT(0): Number of subtrees of sizes 1, 2, . . . , 8 and greater than 8 for profiles of binary trees
with k = 100 and varying n.

MP 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

1 7012 14,188 21,324 28,550 35,603 42,883 49,848 56,924 64,181 71,334
2 461 910 1387 1853 2300 2753 3235 3714 4155 4612
3 158 287 434 586 721 862 1016 1154 1288 1448
4 88 157 239 315 393 472 560 615 689 794
5 56 101 149 197 242 290 350 392 431 495
6 38 70 102 137 166 197 238 266 294 348
7 27 48 71 101 125 143 174 190 218 245
8 20 37 54 78 95 113 132 151 167 182

>8 296 640 988 1308 1645 1970 2289 2626 2930 3231
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8. Discussion

Our experimental results show that both the tree compatibility testing algorithm of [10] and the
IDPP algorithm of [9] performed at least as well as their theoretical worst-case bounds, and often
better, if implemented using HDT(0), a much-simplified version of the HDT dynamic connectivity
data structure.

The results of Section 7 indicate that the main reason for the observed performance of HDT(0) is
that the components that were scanned in search for replacement edges tended to be extremely small.
Since we observed this phenomenon for a wide range of input profiles, we suspect that it is not an
artifact of our experimental setup, but instead reflects a basic property of the graphs with which we
are dealing. Indeed, BuildNT and PPSS use very special kinds of graphs—constructed from profiles of
phylogenetic trees by gluing leaves with the same label—and perform deletions top-down. It is an
open question whether there is a way to bound the total sizes of the smaller trees encountered during
the execution of those algorithms, either asymptotically or in expectation.

Profiles consisting of binary trees—and, in particular, triples—are quite common in practice.
Proposition 2(1b) of Section 7 implies that for such profiles, certain spanning forests are better
than others for maintaining connectivity information. A “good” spanning forest is one where the
number of semi-universal nodes incident to only one tree edge is large, relative to the total number
of semi-universal nodes. The results reported in Section 7.3 (in particular, Table 17) indicate that the
spanning forests our programs generated were good in this sense, despite the fact that the programs
took no special measures to ensure this. It is an open question whether there is an analytical explanation
for this phenomenon. Another open question is whether good spanning forests always exist and, if so,
whether they can be constructed and maintained efficiently.

In our experiments, we never encountered a setting where HDT outperformed HDT(0). Of course,
this does not mean that the latter is always to be preferred over the former. It would be interesting to
find an application of dynamic graph connectivity where HDT is preferable to HDT(0) in practice.

Supplementary Materials: Additional figures and tables are available online at http://www.mdpi.com/1999-
4893/12/3/53/s1. Figures S1–S17, Tables S1–S46.
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