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Abstract: Finetuning pre-trained deep neural networks (DNN) delicately designed for large-scale
natural images may not be suitable for medical images due to the intrinsic difference between the
datasets. We propose a strategy to modify DNNs, which improves their performance on retinal optical
coherence tomography (OCT) images. Deep features of pre-trained DNN are high-level features
of natural images. These features harm the training of transfer learning. Our strategy is to remove
some deep convolutional layers of the state-of-the-art pre-trained networks: GoogLeNet, ResNet and
DenseNet. We try to find the optimized deep neural networks on small-scale and large-scale OCT
datasets, respectively, in our experiments. Results show that optimized deep neural networks not
only reduce computational burden, but also improve classification accuracy.

Keywords: optical coherence tomography; ophthalmology; maculopathy; convolutional neural network;
transfer learning; image classification

1. Introduction

The retina in human eyes receives the focused light by the lens, and converts it into neural signals.
The main sensory region for this purpose is the macula which is located in the central part of a retina.
The macula is responsible for the central, high-resolution, color vision that is possible in good light.
The retina processes the information gathered by the macula, and sends it to the brain via the optic
nerve for visual recognition.

Macular health can be affected by a number of pathologies, including age-related macular
degeneration (AMD) and diabetic macular edema (DME). They account for the majority of irreversible
vision loss subjects in developed and developing countries [1–3]. In the case of DME fluid is
accumulated [4] and in the case of dry AMD drusen is deposited resulting in geographic atrophy,
thereby incurring the deformation of retinal layers [5,6]. Without appropriate treatment, patients of
dry AMD may develop choroidal neovascularization (CNV), a severe blinding form of advanced AMD
(i.e. wet AMD). In the case of CNV, new blood vessels are created in the choroid layer of the eye.

In ophthalmology, one of the most commonly used integral imaging techniques is spectral domain
optical coherence tomography (SD-OCT), with approximately 30 million OCT scans performed each
year worldwide [7]. OCT is a non-invasive imaging technique, which captures cross-sectional images
at microscopic resolution of biological tissues [8]. By providing a clear cross-sectional representation
of the retinal pathology in these conditions (Figure 1), OCT is critical to the early identification and
treatment of retinal pathologies today. Examples in Figure 1 are picked from a public dataset provided
by [9].
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Figure 1. (Far left) Choroidal neovascularization (CNV) with neovascular membrance. (Middle left)
Diabetic macular edema (DME) with retinal-thickening-associated intraretinal fluid. (Middle right)
Multiple drusen present in early (dry) age-related macular degeneration (AMD). (Far right) Normal
retina with preserved foveal contour and absence of any retinal fluid/edema.

Since OCT image interpretation is time-consuming and tedious for ophthalmologists, different
computer-aided diagnosis (CAD) systems for semi/fully automatic analysis of OCT data have been
developed in the past decade. We now briefly discuss a number of related works on the topic of OCT
data classification. In 2011, Liu et al. proposed a methodology for detecting macular pathologies
(including AMD and DME) in fovea slices of OCT images, in which they used local binary patterns
(LBP) and represented images using a multi-scale spatial pyramid (SP) followed by a principal
component analysis (PCA) for dimension reduction [10]. In 2012, Zheng et al. and Hijazi et al.
proposed methods for representing images based on a graph [11,12]. In 2014 Shinivasan et al. presented
a method for classifying AMD, DME and healthy C-scans using multi-scale histogram of gradients
(HoG) features and a support vector machine (SVM) classifier [13]. In 2017, Sun et al. proposed a
classification method based on techniques of scale-invariant feature transform (SIFT), sparse coding
(SC), dictionary learning (K-SVD), multi-scale max pooling and linear SVM [14].

In recent years, deep neural networks (DNNs) have outperformed many traditional techniques
on the large-scale ImageNet dataset [15]. Researchers designed many networks to obtain high accuracy
and reduce parameters, such as AlexNet [16] in 2012, VGGnet [17] in 2014, GoogLeNet [18,19] in 2015,
ResNet [20] in 2016 and DenseNet [21] in 2017. The outstanding performance of DNN inspires scholars
to apply them on medical images [22,23].

To our best knowledge, there are three kinds of methods to apply DNN on medical images.
The first one, also the most straightforward, is to initialize randomly all the layers of a DNN and train
the DNN on medical datasets. This method requires large-scale medical datasets, which is not always
available in real world. The second method utilizes pre-trained DNN as feature extractor, extracts
features of medical images and classifies them with softmax dense layer, SVM, random forest (RF) or
other statistic classifier. This method is efficient since no training of the DNN is required. The last one is
to finetune the DNN pre-trained on ImageNet dataset using medical datasets. Some experiments have
been conducted to compare these three methods. Abdolmanafi et al. discusses the performance of three
state-of-the-art networks (AlexNet, VGG-19 and Inception-v3) on characterization of coronary artery
pathological formations from OCT imaging. In the experiment of finetuning, classification layers are
adapted to their data set, and in the experiments of feature extraction, features are extracted before the
last fully connected layer right before the classification layer (pre-trained AlexNet, VGG-19) or before
the last depth concatenation layer (mixed10 layer in pre-trained Inception-v3). Experimental results
show that finetuning method outperforms the feature extraction method with RF as classifier [24].
Karri et al. compares training GoogLeNet from scratch and finetuning pre-trained GoogLeNet on
retinal OCT dataset, and their results show that fine-tuned DNN performs better both in convergence
speed and classification accuracy [25]. Extensive experiments based on 4 distinct medical-imaging
applications from Tajbakhsh et al. demonstrate that deeply fine-tuned convolutional neural networks
(CNN) are useful for medical image analysis, performing as well as fully trained CNNs and even
outperforming the latter when limited training data are available. They also observed that the required
level of finetuning differs from one application to another, which means that the strategy of finetuning
still remains an open question [26].
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Since pre-trained networks are trained on 1.2 million natural images of 1000 classes from ImageNet,
the filters learned may not be suitable for the retinal OCT classification. To further explore the
filters and improve performance of pre-trained DNNs, some visualization techniques of DNN are
developed [27,28]. Their visualizations show the increase in complexity and variation on higher
layers, comprised of simpler components from lower layers. The variation of patterns increases with
increasing layer number, indicating that increasingly invariant representations are learned. Inspired by
these results, we remove the deeper layers of the pre-trained DNNs such that in the process of transfer
learning, the DNNs classify OCT images with the help of low-level features of natural images, without
the interference of high-level features. We investigate the performance on ImageNet dataset of some
modern DNNs such as VGGNet, GoogLeNet, ResNet, DenseNet, MobileNet [29,30] and NASNet [31].
In consideration of the balance between classification accuracy and computational efficiency, we choose
Inception-v3, ResNet50 and DenseNet121 as base networks in our experiments.

Our work is organized as follows. First, the architectures of modified DNNs are illustrated in
Section 2. Datasets, experiments and results are presented in Section 3. Finally, this study is concluded
in Section 4.

2. Architectures of the Modified Deep Neural Networks (DNNs)

In this section, we briefly discuss the parameters, architecture and sub-networks of the three
modern DNNs (Inception-v3, ResNet50 and DenseNet121).

2.1. Sub-Networks of Inception-v3

Inception-v3 is a classical deep network. Its architecture is shown in Figure 2. The network is
composed of 11 Inception modules of five kinds in total. Each module is designed by experts with
convolutional layer, activation layer, pooling layer and batch normalization layer. In the Inception-v3
model, these modules are concatenated to achieve maximal feature extraction.

Inception modules adopt the idea of multi-scale. Each module has multiple branches with
different sizes of kernels (1 × 1, 3 × 3, 5 × 5 and 7 × 7). These filters extract and concatenate different
scale of feature maps and send the combination to the next stage; 1 × 1 convolutions in each inception
module is used for dimensionality reduction before applying computationally expensive 3 × 3 and
5 × 5 convolutions. Factorization of 5 × 5, 7 × 7 convolution into smaller convolutions (3 × 3) or
asymmetric convolutions (1 × 7, 7 × 1) reduces the number of DNN parameters.

After removing some deep Inception modules and the classification layers (global average pooling
layer and last dense layer with 1000 outputs), we add a set of classification layers (a global average
pooling layer, a dense layer with 3 or 4 outputs in our experiments) adapted to our datasets to the new
network graph. Sub-networks are named after their last depth concatenation layers; whose names are
consistent with that in the Keras implementation (the python deep learning library) [32]. For example,
“mixed10” represents the sub-network removing no module; “Mixed9” represents the sub-network
removing Inception E2 module; “Mixed8” represents the sub-network removing Inception E1, E2
modules; “Mixed7” represents the sub-network removing Inception D, E1, E2 modules; “Mixed6”
represents the sub-network removing Inception C4, D, E1, E2 modules. The number of parameters in
Inception-v3 sub-networks is listed in Table 1.

Table 1. The number of parameters in Inception-v3 sub-networks.

Inception-v3 Total Trainable Non-Trainable

Mixed6 6,834,468 6,819,492 14,976
Mixed7 8,978,340 8,959,524 18,816
Mixed8 10,679,972 10,658,596 21,376
Mixed9 15,730,916 15,703,012 27,904

Mixed10 21,810,980 21,776,548 34,432
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Figure 2. (Left) Inception-v3 architecture. Blocks with dotted line represents modules that might be
removed in our experiments. (Right) Different Inception modules. Inception A, C, E are three kinds of
factorization modules. Inception B, D are modules which achieve efficient grid size reduction.

2.2. Sub-Networks of ResNet50

ResNet is another representative deep network. Before ResNet, the state-of-the-art DNN was
going deeper and deeper. However, deep networks are hard to train because of the notorious vanishing
gradient problem—as the gradient is back-propagated to earlier layers, repeated multiplication may
make the gradient infinitively small. By introducing a skip connection (or shortcut connection) to fit
the input from the previous layer to the next layer without any modification of the input, ResNet can
have a very deep network of up to 152 layers. The architecture of ResNet50 is shown in Figure 3.

There are two kinds of shortcut module in the implementation of ResNet. The first one is an
identity block which has no convolution layer at shortcut. In this case, input has the same dimensions
as output. The other is convolution block, which has convolution layer at shortcut. In this case,
the input dimensions are smaller than the output dimensions.

In both blocks, 1 × 1 convolution layers are added to the start and end of the network. This is a
technique called bottleneck design which reduces the number of parameters while not degrading the
performance of the network so much.

In our experiments, we removed some deep shortcut modules and added a new set of
classification layers adapted to our dataset. Consistent with the ResNet50 implementation in Keras,
our sub-networks are named after their last addition layer. For example, “Ac49” represents the
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sub-network removing no module; “Ac46” represents the sub-network removing the last identity
block; “Ac43” represents the sub-network removing the last two identity blocks; “Ac40” represents the
sub-network removing the last two identity blocks and the last convolution block; “Ac37” represents
the sub-network removing the last two identity blocks, the last convolution block and the identity
block right before the last convolution block. The number of parameters in ResNet50 sub-networks is
listed in Table 2.

Table 2. The number of parameters in ResNet50 sub-networks.

ResNet50 Total Trainable Non-Trainable

Ac37 7,471,492 7,443,972 27,520
Ac40 8,593,284 8,562,692 30,592
Ac43 14,652,292 14,611,460 40,832
Ac46 19,124,100 19,077,124 43,976
Ac49 23,595,908 23,542,788 53,120

Figure 3. (Left) ResNet50 architecture. Blocks with dotted line represents modules that might be
removed in our experiments. (Middle) Convolution block which changes the dimension of the input.
(Right) Identity block which will not change the dimension of the input.

2.3. Sub-Networks of DenseNet121

In ResNet, gradients can flow directly through the identity function from later layers to the earlier
layers. To further improve the information flow between layers, DenseNet adopts direct connections
from any layer to all its subsequent layers. Consequently, any layer receives a concatenation of the
feature maps of all its preceding layers.

There are three kinds of blocks in the DenseNet implementation. The first is convolution block,
which is a basic block of dense block. Convolution block is similar to the identity block in ResNet.
The second is dense block, in which convolution blocks are concatenated and densely connected.
Dense block is the main component in DenseNet. The last is transition layer, which connects two
contiguous dense blocks. Since feature map sizes are the same within the dense block, transition layer
reduces the dimensions of the feature map. The technique of bottleneck design is adopted in all the
blocks. The architecture of DenseNet121 is shown in Figure 4.
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In our experiment, we remove some deep convolution blocks in the last dense block and add
a new set of classification layers. Consistent with the DenseNet121 implementation in Keras, our
sub-networks are named after their last concatenation layer. For conciseness, we use the abbreviation
of the layer name. For example, the layer named “conv5_block16_concat” in Keras is represented as
“C5_b16” in the article. In our experiment, “C5_b16” represents the sub-network removing no module;
“C5_b14” represents the sub-network removing last two convolution blocks; “C5_b12” represents the
sub-network removing last four convolution blocks; “C5_b10” represents the sub-network removing
last six convolution blocks; “C5_b8” represents the sub-network removing last eight convolution
blocks; “C5_b6” represents the sub-network removing last 10 convolution blocks; “C5_b4”represents
the sub-network removing last 12 convolution blocks; “C5_b2” represents the sub-network removing
last 14 convolution blocks. The number of parameters in DenseNet121 sub-networks is listed in Table 3.

Table 3. The number of parameters in DenseNet121 sub-networks.

DenseNet121 Total Trainable Non-Trainable

C5_b2 5,063,620 5,007,556 56,064
C5_b4 5,294,916 5,235,972 58,944
C5_b6 5,543,108 5,481,028 62,080
C5_b8 5,808,196 5,742,724 65,472

C5_b10 6,090,180 6,021,060 69,120
C5_b12 6,389,060 6,316,036 73,024
C5_b14 6,704,836 6,627,652 77,184
C5_b16 7,037,508 6,955,908 81,600

Figure 4. (Left) DenseNet121 architecture. (Right) Dense_block, conv_block and transition_layer.

3. Experiments and Results

To assess the sub-network architectures, their diagnostic performance is explored based on two
different OCT datasets: a large-scale dataset and a small-scale dataset. Our classification algorithm
is implemented in Keras and tested on a PC with Intel core i5-4590 CPU, 8GB RAM and NVIDIA
GTX 1070 GPU. Accuracy, sensitivity and specificity are measured using the confusion matrix for each
classification result.
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3.1. Performance of the Sub-Networks on Large-Scale Dataset

The large-scale retinal OCT dataset [9] consists of a training set of 83,484 images (37,205 CNV,
11,348 DME, 8616 DRUSEN, 26,315 NORMAL) from 4686 patients and a test set of 1000 images
(250 CNV, 250 DME, 250 DRUSEN, 250 NORMAL) from 633 patients. The image-based deep learning
(IBDL) algorithms in [9] utilize pre-trained Inception-v3, fix the weights of the convolutional layers and
finetune the last dense (softmax) layer. In this article, we finetune all the layers of the sub-networks.
The training of layers is performed in batches of 32 using Adam [33] optimizer with learning rate
of 0.001, β1 of 0.9, β2 of 0.999, decay rate of 0.3 (Inception-v3 and ResNet50) or 0.01 (DenseNet121).
Training is run for 20 epochs, which guarantees convergence. Images are resized to 299 × 299
(Inception-v3) or 224 × 224 (ResNet50 and DenseNet121). Table 4 compares the performance of the
sub-networks and the results in [9].

Table 4. The performance (%) of the sub-networks on large-scale dataset.

Accuracy Sensitivity Specificity

IBDL [9] 96.60 97.80 97.40

Sub-networks of Inception-v3

Mixed6 99.70 99.40 99.80
Mixed7 99.35 98.70 99.57
Mixed8 99.70 99.40 99.80
Mixed9 99.55 99.10 99.70
Mixed10 99.70 99.40 99.80

Sub-networks of ResNet50

Ac37 99.60 99.20 99.73
Ac40 99.65 99.30 99.77
Ac43 99.45 98.90 99.63
Ac46 99.60 99.20 99.73
Ac49 99.60 99.20 99.73

Sub-networks of DenseNet121

C5_b2 99.50 99.00 99.67
C5_b4 99.80 99.60 99.87
C5_b6 99.45 98.90 99.77
C5_b8 99.65 99.30 99.77
C5_b10 99.75 99.50 99.83
C5_b12 99.70 99.40 99.80
C5_b14 99.80 99.60 99.87
C5_b16 99.75 99.50 99.83

The results demonstrate the higher performance of all sub-networks compared against algorithm
in [9], which means that method of finetuning all layers is better than finetuning the last layer after
feature extraction.

In the case of Inception-v3, “mixed6”, “mixed8” and “mixed10” reach the highest accuracy of 99.70%.
Among them, “mixed6” is the most effective and has only 32% trainable parameters of “mixed10”.

As for ResNet50, the “Ac40” model performs best with the accuracy of 99.65%, sensitivity of
99.30%, specificity of 99.77% and has only 36% trainable parameters of “Ac49”.

In DenseNet121, both “C5_b4” and “C5_b14” obtain the accuracy of 99.80%. Taking computational
complexity into account, “C5_b4” (79% of trainable parameters in “C5_b14”) is best among
DenseNet121 sub-networks.

Overall, “C5_b4” is the best model, which reaches the highest accuracy of 99.80% among all the
sub-networks. In the meantime, there are only 5,235,972 trainable parameters in “C5_b4”, less than
6,819,492 in “Mixed6” and 8,562,692 in “Ac40”. In order to further validate the results, we conduct the
experiments of “C5_b4” five times and calculate the mean ± standard deviation of the value of metrics.
In each experiment, we mix the training set and test set and resample 83,484 images (37,205 CNV,
11,348 DME, 8616 DRUSEN, 26,315 NORMAL) as a new training set and 1000 images (250 CNV,
250 DME, 250 DRUSEN, 250 NORMAL) as new test set. After multiple experiments, “C5_b4” obtains
accuracy of 99.76 ± 0.04%, sensitivity of 99.52 ± 0.08% and specificity of 99.84 ± 0.03%. Results
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demonstrate the improvement in diagnostic performance and the decline in trainable parameters of
“C5_b4” compared to “mixed6” and “ac40” as expected.

3.2. Performance of the Sub-Networks on Small-Scale Dataset

The small-scale retinal OCT dataset is obtained from clinics in Beijing hospital, using CIRRUS
TM (Heidelberg Engineering Inc., Heidelberg, Germany). This dataset consists of 560 AMD, 560 DME
and 560 normal (NOR) images. All the SD-OCT images are read and assessed by the trained graders.
We first preprocessed these images using the preprocessing method in [14] which is mainly divided
into three stages. (1) In the perceiving stage, the method detects the overall morphology of a retina.
Firstly, the sparsity-based block matching and 3-D-filtering (BM3D) denosing method [34] is used
to reduce noises of the OCT image, then the binarization, median filtering, morphological closing
and morphological opening methods are used to obtain the subject of the image. (2) In the fitting
stage, the method automatically chooses the set of data points and a fitting method (linear fitting or
second-order polynomial fitting). (3) In the normalizing stage, the method normalizes the retinas by
aligning them to a relatively unified morphology and crops the images to trim out insignificant space.
Some examples are shown in Figure 5.

Figure 5. Beijing clinical small-scale dataset. First row shows original AMD, DME and normal optical
coherence tomography (OCT) images. Second row shows AMD, DME and normal OCT images
after pre-processing.

Then the preprocessed dataset is divided into training set of 840 images (280 AMD, 280 DME
and 280 NOR) and test set of 840 images (280 AMD, 280 DME and 280 NOR). We finetuned all the
layers of the sub-networks using the same batch size, Adam optimizer and input size as in large-scale
experiment. The only difference is that we trained for 30 epochs in the small-scale dataset instead
of 20. Each experiment conducts 10 times. The mean ± standard deviation of the value of accuracy,
sensitivity and specificity were calculated.

We compared our algorithm with some state-of-the-art work. The algorithm of spatial pyramid
matching using sparse coding (ScSPM) [14] utilizes techniques such as SIFT, SC, K-SVD, multi-scale
max pooling and linear SVM. The algorithm of deep learning-based CNN (DL-based CNN) [35]
removes the last several layers from the pre-trained Inception-v3 and regards the remaining part as a
fixed feature extractor. Then the features are used as input of a CNN designed to learn the feature space
shifts. Results in Table 5 show that all the sub-networks of Inception-v3, ResNet50 and DenseNet121
outperform ScSPM [14], DL-based CNN [35] and IBDL [9].

In the case of Inception-v3, “mixed6” reaches the highest accuracy of 99.67% and the minimal
standard deviation of 0.08%. Note that method of finetuning complete inception-v3 (“mixed10”)
only achieves accuracy of 99.21% and standard deviation of 0.41%. It shows improvement both in
accuracy and stability of the sub-network removing deep layers, which means that the removal of
deep convolution layer with a high-level feature in pre-trained Inception-v3 enhances the process of
transfer learning.
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Table 5. The performance (%) of the sub-networks on the clinical dataset.

Accuracy Sensitivity Specificity

ScSPM [14] 97.75 96.67 98.30
DL-based CNN [35] 98.86 98.30 99.15
IBDL [9] 94.57 92.03 95.85

Sub-networks of Inception-v3

Mixed6 99.67 ± 0.08 99.50 ± 0.12 99.75 ± 0.06
Mixed7 99.51 ± 0.17 99.26 ± 0.25 99.63 ± 0.13
Mixed8 99.58 ± 0.13 99.37 ± 0.19 99.68 ± 0.10
Mixed9 99.56 ± 0.17 99.35 ± 0.25 99.67 ± 0.13
Mixed10 99.27 ± 0.41 98.90 ± 0.61 99.45 ± 0.31

Sub-networks of ResNet50

Ac37 99.49 ± 0.18 99.24 ± 0.26 99.62 ± 0.13
Ac40 99.35 ± 0.19 99.02 ± 0.28 99.51 ± 0.14
Ac43 99.34 ± 0.19 99.01 ± 0.29 99.50 ± 0.14
Ac46 99.27 ± 0.19 98.90 ± 0.28 99.45 ± 0.14
Ac49 99.09 ± 0.25 98.64 ± 0.38 99.32 ± 0.19

Sub-networks of DenseNet121

C5_b2 99.53 ± 0.16 99.30 ± 0.24 99.65 ± 0.12
C5_b4 99.56 ± 0.17 99.35 ± 0.26 99.67 ± 0.13
C5_b6 99.60 ± 0.18 99.40 ± 0.26 99.70 ± 0.13
C5_b8 99.53 ± 0.18 99.30 ± 0.27 99.65 ± 0.13
C5_b10 99.46 ± 0.23 99.19 ± 0.34 99.59 ± 0.17
C5_b12 99.48 ± 0.17 99.23 ± 0.26 99.61 ± 0.13
C5_b14 99.55 ± 0.16 99.33 ± 0.24 99.67 ± 0.12
C5_b16 99.58 ± 0.11 99.37 ± 0.17 99.68 ± 0.08

Results of ResNet50 demonstrate similar conclusion. “Ac37” (99.49 ± 0.08%) outperforms all
ResNet50 sub-networks discussed in the article, including complete ResNet50 (“mixed10” with
99.09 ± 0.25%).

Let us claim that “mixed6” and “Ac37” perform better than their corresponding entire network.
In inferential statistics, the null hypothesis is that the mean accuracy of sub-network is the same as that
of entire network. We measure the accuracy of ten repeated experiments and conduct one-way analysis
of variance with α = 0.05. As Table 6 shows, P-value is 7.73 × 10−3 in the Inception-v3 group and
6.94 × 10−4 in the ResNet group, both far less than α; F value is 8.984 in the Inception-v3 group and
16.690 in the ResNet group, both greater than the critical value 4.414. Results mean that we reject the
null hypothesis. The analysis demonstrates significant difference of accuracy between the sub-network
and entire network.

Table 6. One-way analysis of variance (ANOVA) with α = 0.05.

Average Standard Deviation F p-Value F Crit

Mixed6 99.67 0.08
8.984 7.73 × 10−3 4.414Mixed10 99.27 0.41

Ac37 99.49 0.18
16.690 6.94 × 10−4 4.414Ac49 99.09 0.25

Compared with Inception-v3 and ResNet50, the improvement of diagnostic performance is limited
in the case of DenseNet. Accuracy of the best sub-network of DenseNet121 (“C5_b6”) is only 0.02%
higher than that of complete DenseNet121 (“C5_b16”), with 0.07% decline in standard deviation. It can
be well explained in terms of architecture different from Inception-v3 and ResNet50, as deep layers of
DenseNet121 receive concatenation of all the preceding feature maps, which reserve information of
shallow layers in the output. Thus, the removal of the deep layer has little influence on the classification.
However, similar performance is obtained with only 78% of trainable parameters, and “C5_b6” still
beats other sub-networks in DenseNet121.
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Overall, the removal of deep layers in Inception-v3 and ResNet50 improves the accuracy and
stability significantly on the small-scale dataset. Due to the dense connection structure of DenseNet121,
a similar improvement does not exist in this case. The best sub-network among them is “Mixed6” with
accuracy of 99.67% and standard deviation of 0.08%. The number of trainable parameters of “Mixed6”
is also acceptable compared to other sub-networks.

4. Conclusions

Traditionally, pre-trained networks such as Inception-v3, ResNet, DenseNet are transferred into
medical image applications as a whole. This paper proposes a strategy to obtain their 5–8 sub-networks
by removing some deep layers, finetunes, and tests their performance for identification of macular
diseases from optical coherence tomography images on two different scale OCT datasets. Optimized
deep convolutional neural networks are obtained, i.e. Inception-v3 removing the last 4 blocks, ResNet50
removing the last 3 or 4 blocks, and DenseNet121 removing the last 10 or 12 basic blocks in the last
dense block, which could improve diagnostic performance and computational efficiency compared to
Inception-v3, ResNet50 and DenseNet121, respectively, in the process of transfer learning on OCT data.
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