algorithms m\py

Article

Selective Offloading by Exploiting ARIMA-BP
for Energy Optimization in Mobile Edge
Computing Networks

Ming Zhao and Ke Zhou *

School of Software, Central South University, Tianxin District, Changsha 410075, China; meanzhao@csu.edu.cn
* Correspondence: zhou_ke@csu.edu.cn; Tel.: +86-186-7038-6718

check for
Received: 21 January 2019; Accepted: 19 February 2019; Published: 25 February 2019 updates

Abstract: Mobile Edge Computing (MEC) is an innovative technique, which can provide cloud-computing
near mobile devices on the edge of networks. Based on the MEC architecture, this paper proposes an
ARIMA-BP-based Selective Offloading (ABSO) strategy, which minimizes the energy consumption of
mobile devices while meeting the delay requirements. In ABSO, we exploit an ARIMA-BP model for
estimating computation capacity of the edge cloud, and then design a Selective Offloading Algorithm
for obtaining offloading strategy. Simulation results reveal that the ABSO can apparently decrease
the energy consumption of mobile devices in comparison with other offloading methods.

Keywords: task offloading; mobile edge computing (MEC); ARIMA-BP; energy efficient

1. Introduction

With the popularity of mobile devices, a growing number of mobile applications are striving for
computation capacity to provide various services. Nevertheless, mobile devices generally have limited
computation resources and short battery lifetime, so some applications which is computationally
massive cannot be successfully implemented on mobile devices [1,2]. This conflict between the
applications which is scarce of resources and mobile devices whose resources are limited hence
presents a formidable challenge.

A new technique called Mobile Cloud Computing (MCC) is likely to solve the aforementioned
challenge. Cloud computing [3] offers enormous storage space and computation resources.
Through transferring tasks from mobile devices to the resource-rich server, it could overcome the
shortage of computation resources in mobile devices. Because mobile devices are far away from the
remote cloud, large delays for mobile users has become a critical challenge for cloud computing.

Mobile Edge Computing (MEC) is envisioned as an emerging technique to handle this challenge.
It provides cloud-computing service at the mobile edge network close to mobile devices [4]. The main
advantages of MEC are as follows: (i) compared with local computing [5], it can avoid the disadvantage
of insufficient computation capacity of mobile devices; (ii) compared to Mobile Cloud Computing,
it can overcome the large latency that occurs while tasks are transferred to the remote cloud. Thus,
MEC presents a better compromise between tasks which is sensitive to delay and tasks is intensive
to computation.

Mobile devices can offload their tasks to the edge cloud for computing, or they can choose to
finish it locally. The computation capability of the edge cloud is crucial for this issue. In existing works
on task offloading, the computation capability of the edge cloud is assumed to be known perfectly and
is supposed to be a fixed value. However, the computation capability of the edge cloud varies over
time due to the dynamic of the number of computation tasks. For instance, the computation capability
of the edge cloud would decline when much more tasks are processed at edge cloud.

Algorithms 2019, 12, 48; doi:10.3390/a12020048 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/12/2/48?type=check_update&version=1
http://dx.doi.org/10.3390/a12020048
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 48 20f 13

In this paper,we focus on the problem of computation capacity of the edge cloud, and propose an
ARIMA-BP-based Selective Offloading strategy. The strategy minimizes the total energy consumption
by mobile devices and simultaneously meets the tasks’ delay constraints. The major contributions of
this paper are summarized as follows:

e We propose a multi-device framework for task offloading in MEC networks, and we formulate
an optimization problem which minimizes the energy consumption and concurrently meets the
delay constraints.

e To solve this problem, we devise an efficient strategy, called ABSO (ARIMA-BP-based Selective
Offloading). In ABSO, we propose an ARIMA-BP model to estimate computation capacity of the
edge cloud, and then design a Selective Offloading Algorithm for obtaining offloading strategy.

The rest of this paper is organized as follows. In Section 2, we introduce the relevant research
works review. The system model is in Section 3. In Section 4, we elaborate an ARIMA-BP model
for estimating computation capacity of the edge cloud and further present a Selective Offloading
Algorithm to solve offloading problem. Section 5 provide the simulation results. Finally, we come to
the conclusion in Section 6.

2. Related Works

Computation offloading has attracted significant attention for both MCC [6,7] and MEC [8,9] in
recent years. A lot of works has been done on the task offloading, meanwhile many strategies have
been put forward. They can be divided into two classes: (i) latency-based offloading strategies [10-14]
and (ii) energy-based offloading strategies [15-19].

The goal of latency-based offloading strategies is to minimize execution time of tasks. Liu et al. [10]
formulated a latency minimization problem, then proposed a search algorithm to obtain the optimal
task scheduling strategy. Chen et al. [11] designed a distributed task offloading method based on
game theory, which can achieve a Nash equilibrium. Yang et al. [12] raised a novel technique based on
compiler code analysis, which optimizes the execution time through offloading some of the code on
the phone to the cloud dynamically. Mao et al. [13] presented a dynamic offloading strategy based
on Lyapunov optimization, in order that execution time can be reduced. Yang et al. [14] designed a
heuristic partitioning method to minimize the average execution time. However, these works do not
consider energy consumption issues.

The purpose of energy-based offloading policies is to decrease energy consumption of mobile
devices. Kamoun et al. [15] proposed a computation offloading strategy, in which the optimization
problem is expressed as a Markov decision process. Tao et al. [16] apply KKT conditions to solve
the energy minimizing optimization problem, and further propose a request offloading method.
Lyu et al. [17] developed a lightweight framework and then designed a selective offloading strategy
to minimize the energy consumption of devices. In [18], Huang et al. presented a dynamic
offloading strategy through exploiting Lyapunov to reduce energy consumption. Munoz et al. [19]
simultaneously optimized transmission time and data volume so as to minimize the mobile devices’
energy consumption. However, these works only consider energy consumption and do not pay
attention to the delay problem.

Furthermore, few works have addressed the problem of computation offloading jointly
considering energy consumption and task execution time. Zhang et al. in [20] introduced an online
offloading strategy so as to minimize energy consumption while meeting low delay. Guo et al.
in [21] proposed a distributed computation offloading algorithm for MEC networks, in order that
it can optimize energy consumption and time delay simultaneously. Neverless, they ignored that
the computation capability of the edge cloud (details are provided in Sections 3.1 and 4.2.4) vary
with the number of computation tasks for mobile edge computing. Baccarelli et al. [22] analyzed the
energy efficiency of big data stream, and then the energy of batteries is measured through a power
monitor. Taherizadeh et al. in [23] presented a distributed architecture, which can manage dynamic

Algorithms 2019, 12, 48 30f13

IOT environments where edge nodes possible overload because of increased workloads. Although they
take into account the situation when workloads changes over time, they cannot describe the load of
the cloud relatively accurately.

Various models have been applied to prediction of resource in the cloud environment. PRESS [24]
adopts the Markov model and the signature-driven methods for resource prediction, which regards
it as a linear time prediction problem. Martin et al. [25] implemented a Recurrent Neural Network
to estimate CPU utilization. In this paper, we consider the two aspects together. We develop an
ARIMA-BP model to estimate the usage of the edge cloud and then calculate the computation capacity.
Since the computation resources of the edge cloud can be obtained by ARIMA-BP in real time, the
offloading strategy based on this is relatively accurate and effective.

3. System Model

3.1. Scenario Description

The system model is shown in Figure 1. There is a mobile-edge computing system, including
multiple mobile devices which have computation tasks and an edge cloud. Edge cloud is a relatively
large data center with computation resources, which provides computing capacities in proximity to
mobile devices. Its computing capacity is smaller than that of cloud computing and larger than that
of mobile devices. There is a wireless base station, through which mobile devices could offload their
computing tasks to the edge cloud. Suppose there are N mobile devices and K computation tasks in the
MEC system. Then, we define the set of devices and tasksas N = {1,2,...,N} and K = {1,2,...,K}.
Suppose time is divided into equal-sized slots. We assume that a mobile device can only request one
task during a time slot, and different mobile devices can request the same task. Suppose that the
mobile devices are static in the system.

S Computation resource Tasks |:| |:| |:| |:| i

Task offloading problem:

Results..—"" =
| whether the task is offloaded to the edge doud

Lol

Ta s)_lgafﬂg.a:ling

|
A,

J 8

—

Edge cloud Wireless Base-station Mobile devices

Figure 1. A multi-user system for MEC.

We define u,, as the task k that mobile device n requests, and adopt three parameters representing
the computation task. For task u,, its requirement is denoted as a tuple {wy, sy, D, x} , where wy
is the amount of computation resource required for u,,t, (i.e., the number of CPU cycles required to
finish the task), and s is the data size of u,, , i.e., the amount of data content (e.g., the program codes
and input parameters) which is transferred to the edge cloud, and D, ; represents completion time
requirement for the task u,, ;. Furthermore, due to the limitation of computation resources in the edge
cloud, we denote the computation capacity of the edge cloud is ;.

Algorithms 2019, 12, 48 40f 13

3.2. Communication Model

When mobile device n transfers task k to the edge cloud, the uplink data transfer rate for mobile

device n is shown below:
P,H,

rn = Blogy(1+ "

))

where B is channel bandwidth, o is the noise power, P, is the transmitted power of mobile devices, and
H, denotes the channel gain between edge cloud and mobile device n. I, indicates the interference
between edge cloud and mobile device 7.

Similar to many studies [16-18,26], we neglect the downlink transmission delay, because the
output data of many applications is usually much smaller than the input data.

3.3. Computation Model

Considering the computation tasks can be processed locally or at the edge cloud, we will introduce
this in detail.

3.3.1. Local Computing

Let f! denote the CPU computation capacity of mobile device 7. The local completion latency of
uy, x can be given below:

Th, = % @)
The computational energy consumption is expressed as:
E,lLk = wie! 3)
where €! is the coefficient. According to work [27], €/ can be obtained by:
e = k(fu)?)

where k is the energy coefficient. We set k = 107! according to the work [28].

3.3.2. Mobile Edge Cloud Computing

If mobile device 1 choose to offload task k to the edge cloud, the process contains task transmission
and task execution. The total completion time has two parts: (i) task transmission time T/? (ii) task
process time T’f 20.

The total latency of u, ; for mobile-edge computing is obtained by:

_ 7t pro _ Sk | Wk
wk =Tk + Ty =+ Q)
n nk
where f°, denotes the computation resource of the edge cloud assigned to u,, ;. Meanwhile, the energy
consumption of mobile device n can be defined as Ef, , , which only consists of the transmission energy
consumption while transferring tasks to the edge cloud. The energy consumption of mobile device as
shown below: s
k
wk = PaTy = P ©6)
n
3.4. Problem Formulation

For the problem of computational task offloading, the variable x, ; € {0,1} is defined, in order to
express whether to offload the task u,, to the edge cloud (x,,x = 1) or not (x,,, = 0).

Based on the aforementioned descriptions, the goal of the presented problem is to minimize the
total energy consumption consumed by mobile devices, can be shown below:

Algorithms 2019, 12, 48 50f 13

min) En

st CLYN jxifS <, VkeK
C2: Ty < Dy g, Vn e N,VkeK . (7)
C3:x, € {0,1}, Vn € N,Vk € K

The constraint condition (C1) guarantees the total computation resources required to offload tasks
must be less than total capacity of the edge cloud during each time slot. The constraint (C2) shows that
the task u, must be completed within the time limit. The constraint (C3) indicates that the decision
variable for task offloading is a binary data.

The objective function of our presented problem is defined as follows:

1
{En,k, Xpk =0

E.r=
E;,k’ xn’k - 1

®)

4. ARIMA-BP-Based Selective Offloading Strategy

4.1. Research Motivation

In MEC, the edge cloud has relatively large storage and computation resources. Compared with
the computation capacity of mobile devices themselves, the computation capacity of the edge cloud is
huge. Mobile edge computing brings computation resources to the mobile devices and reduces energy
consumption in comparison with local execution, but leading to increased duration of transmission.
Hence we need to consider both energy consumption and time delay comprehensively. For this issue,
the computation capacity of the edge cloud is a key factor.

In the experimental environment, we usually set the computation capacity of the edge cloud as a
fixed value. However, the computation capacity of the edge cloud cannot be static in the process of task
offloading. As the number of tasks processed at the edge cloud increases, its remaining computation
resources will decrease, reducing its computation capacity. When the number of tasks processed at the
edge cloud decrease, its computation capacity will increase. Therefore, It is very critical and effective
to obtain the computation capacity of the edge cloud accurately for task offloading.

In practice, the computation capacity of the edge cloud is hard to represent and is not available
ahead of time due to the dynamic of tasks. We hence can only get its estimated value by prediction.
The increasingly advanced big data analysis technology makes it possible to accurately predict
computation resources. By predicting the resource usage of the edge cloud, we can get the estimated
value of its the computation capacity.

4.2. Estimation for Computation Capacity of Edge Cloud by ARIMA-BP

Resource prediction in cloud can be regarded as a time-series prediction problem. So far,
the weighted average method has been widely used in the existing models to predict the trend of
resource change. However, the compound model method for predicting CPU resource by time-series
analysis techniques is rarely used. Moreover, it is found that the time-series process of CPU resource
prediction is composed of linear structure and non-linear structure by researching.

The time-series prediction method mainly adopts a linear prediction model, which makes the
method unable to process nonlinear data more accurately. Compared with the conventional time-series
model, BP neural network is an efficacious nonlinear modeling measure. It has obvious advantages in
handling the data with inconspicuous characteristics that with much randomness and nonlinearity,
but it is a little poorer in processing the linear data compared to the conventional time-series model.
Therefore, the combination method of time-series prediction and BP neural network can improve and
perfect the prediction results.

Algorithms 2019, 12, 48 60f 13

4.2.1. Time Series Prediction

ARIMA Model

The Auto-Regressive Integrated Moving Average (ARIMA) model is composed of the
auto-regressive model (AR) and the moving average model (MA). It is the most commonly used
non-stationary time-series prediction model. The basic idea of the modeling is to use the difference
method to smooth the non-stationary time-series. The time-series is predicted and analyzed by
observing the three parameters of the correlation function truncation and trailing characteristic
auto-regressive order (p), difference frequency (d) and moving average order (q). The structure
of the ARIMA model is as follows:

p—1 -1
X =) aix_i+ Y b)
i=0 i=0

where x; is the real value of time slot i. p is the number of autoregressive terms, and g represents
the order of moving average. a,b are the relevant weights of this model. The term € are the error
terminologies relevance to the model.

Prediction of Resource Usage Using Fractional Differencing

PRESS [24] uses the Markov model and the signature-driven methods for resource prediction.
They divided the use of resource measures into different intervals, then further calculate the conversion
probability matrix. Finally they estimated the probability of the next interval by exploiting the
Chapman-Kolmogorov equations:

T = ﬂt,]P (10)

where 71; and 71;_1 indicate the probability at time instant t and t — 1. Moreover, AGILE [29] improves
PRESS through exploiting wavelets to predict usage of resources in cloud. Also, ARIMA is used to
estimate the resource usage in the cloud.

The methods introduced above suppose that time-series are not dynamically changing, and there
is no memory. Neverless, cloud environments is constantly changing, and its workloads are highly
dynamic. The real workload conditions cannot be catched efficiently by traditional time-series models.
It creates a need for a complicate time-series model that can be memorized over time. Thus, the method
of rescaled range analysis [30] can be employed for fractional difference [31] in this paper. Fractional
difference can be expressed as the following formula.

dd—1 dld—1)(d—-2
X =xt—dxt71+%xt—z—%()xt—3

(11)
where x; denotes the value during interval i, x; represents the value of x; which is obtained after
fractional difference. d denotes the parameter related to the difference. Then the method is applied to
the analysis for multi-step ahead prediction of the above-mentioned methods.

The different models will be validated on Google cluster trace. Google cluster trace is a cluster
usage dataset and is divided into six tables. Among them, the table of task resource usage offers the
usage of various resources (such as memory, disk, and CPU) during different time intervals. Here,
we analyze CPU usage at different time intervals.

Table 1 shows the RMSE (Root Mean Squared Error) for the multi-step ahead predictions of the
above methods (PRESS, AGILE and ARIMA) without and with fractional difference. We can observe
that fractional difference contributes to a significant improvement in the prediction results for all
models. As the increase of prediction horizon, the RMSE of the prediction for CPU usage increases.
Because errors accumulate gradually in the process of prediction. We can also observe that ARIMA
has smaller RMSE than other models. Figure 2. shows the results of predictions of PRESS, AGILE
and ARIMA on CPU usage. It can be seen from the figure that ARIMA reflects the trend of changes in

Algorithms 2019, 12, 48 7 of 13

CPU usage more accurately than PRESS and AGILE. Thus we adopt ARIMA model using fractional
difference for time-series prediction.

Table 1. RMSE of Prediction on CPU Usage.

Without Fractional Difference With Fractional Difference
30 Step Ahead 60 Step Ahead 90 Step Ahead 30 Step Ahead 60 Step Ahead 90 Step Ahead

PRESS 0.0294 0.0419 0.0657 0.0167 0.0260 0.0512
AGILE 0.0247 0.0386 0.0526 0.0150 0.0198 0.0453
ARIMA 0.0213 0.0340 0.0463 0.0122 0.0159 0.0306

0.18

Actual trend
0.16 PRESS
\ AGILE
0.14 /”\\/\\ ——ARIMA
0.12 - A\)

01

0.08

CPU Prediction
o)
&

0 10 20 30 40 50 60 70 80 90 100
Time

Figure 2. Prediction on CPU usage for different models.

4.2.2. Modification of the Residual Error Correction by BP Neural Network

Back Propagation

Back Propagation (BP) is a neural network trained by error back propagation algorithm, which is
multi-layer feedforward. It is the most widely used neural network training method in combination
with optimization method such as gradient descent.

BP neural network consists of two processes, including forward propagation of information and
back propagation of errors. Using the error of the output layer to estimate the error of the direct
predecessor layer of the output layer, and then using this error to estimate the error of the previous
layer. It can continuously learn and store a large number of mappings about input-output modes
without describing the equation of this relationship directly.

Modifying the Residual Error Correction

CPU usage has been fitted by ARIMA prediction techniques using fractional difference, then we
use Back Propagation to obtain the nonlinear residual. It involves following steps:

Compute the remaining sequence used by the CPU.
Normalize the residual sequence.

Define the structure of the BP neural network.

Define the trained parameters of the BP neural network.
Obtain the residual sequence by the network simulation.

Ol D=

4.2.3. Prediction of CPU Usage by ARIMA-BP

According to the ARIMA-BP method, the final prediction data of CPU usage can be got through
adding the original data on CPU usage which is estimated by exploiting ARIMA using fractional
difference and BP neural network is used to predict the residual sequence.

Table 2 indicates the RMSE of the two methods (ARIMA, ARIMA-BP), which is obtained by
exploiting fractional difference. We can see that the RMSE of ARIMA-BP is lower than ARIMA leading
to more accurate predictions. Figure 3 shows the results of predictions on CPU usage by ARIMA and

Algorithms 2019, 12, 48 8of 13

ARIMA-BP. It can be observed that the ARIMA-BP predictions are much nearer to the actual values
of CPU usage than ARIMA predictions. Therefore, we adopt the ARIMA-BP model using fractional
difference to predict the computation capacity of the edge cloud in this paper.

Table 2. RMSE of ARIMA and ARIMA-BP on CPU Usage.

30 Step Ahead 60 Step Ahead 90 Step Ahead

ARIMA 0.0139 0.0163 0.0317
ARIMA-BP 0.0120 0.0126 0.0224

0.14

o
(X

ff'\“\/\/\/“ﬂw\/vj

o
= =]
= o

CPU Prediction
o
3

|
[Actual trend
| ARIMA

| ARIMA-BP

o)
£

DDZJ
|

0
100 110 120 130 140 150 160 170 180 190 200
Time

Figure 3. Prediction on CPU usage by ARIMA and ARIMA-BP.

4.2.4. ARIMA-BP for Prediction of Computation Capacity in Edge Cloud

In mobile edge computing, computation capacity of the edge cloud is usually represented by
computation resources f¢ that can be allocated to mobile devices. We use f°(t) indicate computation
resources that edge cloud have been allocated to mobile devices during the time slot [t — At, t], then
the remaining computation resources of the edge cloud is f¢(t) = cs — f°(t) . Suppose that m tasks
u, are processed at the edge cloud during the time slot [t — At, t].We have

f(t)=)Y frr VneNVkeK (12)
i=1

We use the ARIMA-BP model for predicting the usage of computation resources of the edge
cloud during a time slot. First, we build the ARIMA model. The usage of computation resources to be
estimated during [t, t + At], denoted by f¢(t + At), is expressed below:

Fet+Dt) = agfS(t) + arf(t = Db) + -+ ap 1 f(t— (p— 1)AL) +boer + -+ + by 1€, (g-1)ar (13)

Then, we apply fractional difference method for catching long-term dependencies in the data.
Finally, we use BP neural network to correct the residual error.

4.3. A Selective Offloading Algorithm

Based on the estimation of computation resources utilization of the edge cloud, we can obtain the
remaining computation resources of the edge cloud by f¢(t) = c¢; — f¢(t). Then we develop a selective
offloading algorithm.

Initially, all mobile devices need to set their initial decisions during a time slot.

Then, we lead into the condition below for prioritizing urgent tasks that need to be offloaded.
This is known as selective offloading.

Condition 1. if T,i > Dil i the task u,, i offloads to the edge cloud for processing.

Algorithms 2019, 12, 48 90of 13

When Condition 1 is satisfied, it is usually the devices which are constrained to resource, and
their tasks are sensitive to latency. We give priority to offload these tasks. Because computing locally
cannot meet tasks’ delay constraints. (i.e., T > D! -

Tasks must be accomplished within the spec1f1ed time (i.e., the delay requirements) D,, ;. Therefore,
we can calculate the minimum computation resources needed for each task under the latency
requirements when computed at edge cloud by:

min Wi
— 14
" Dy — T (9
The edge cloud server gets the remaining computation resources f¢(t) and broadcasts it to the
mobile devices. Mobile devices which do not meet Condition 1 will be judged by Condition 2 after

they get f<(t).
Condition 2. if f¢(t) > fik Min | the task merges into the set ©(t).

For all tasks that satisfy Condition 2, they will merge into the set ©(t), since the remaining
computation resources of the edge cloud can meet the minimum resources they need (i.e., f¢(t) > fok miny,
and the tasks not satisfying the Condition 2 still to judge in the next time slot.

While ©O(t) # @, tasks in ©() compete for decision-making opportunity by sending requests to
the edge cloud. During each time slot, only one task can get the opportunity to make the decision.
Suppose the mobile device i obtain the chance, it shows to other devices that it gains the chance for
decision-making by broadcasting. Then, the energy consumption of local computing and edge cloud
processing of task u,, , will be compared. If the energy consumption of the edge cloud computing is
smaller (i.e., Elek < Eiz,k), the task would be offloaded to the edge cloud for processing; If not, the task
would be processed locally. For mobile devices don’t get the opportunity, they will continue to judge
the Condition 2 in the next time slot. Algorithm 1 shows the process of getting offloading decision.

Algorithm 1 A Selective Offloading Algorithm

loop

initialize each task computation offloading decision x, , = 0;
for each task u,, ; do

mlpare local }ﬁ ocessing time Tl w1th the latency requirements D,, ;
n k t

update Y =1
else

calculate ™" according to (16) and compare ™" with f¢
1ffc()fjfmth g to (16) pare f}; fe(t);

merge into the set O(t);
else

ju_dfge Condition 2 again for next time slot ;
en

end if
end for
while O(t) # & do

tasks in ©(t) send requests to the edge cloud to compete for the chance of decision-making;
if task u,, ; gain the chance then

compare the energy consumption of local execution E! , and edge cloud process E
i, < i I ther P nk & P

update X =1;
else ’

setx,r =0;
endif ’
else

tge Condition 2 again for next time slot;
en i

end while
end loop

Algorithms 2019, 12, 48 10 of 13

5. Simulation Results

5.1. Experiment Setup

We do simulations to prove the performance optimization that our presented computation
offloading strategy can bring. An edge computing system is considered in this paper. The system is
composed of the edge cloud and mobile devices, in which mobile devices have relatively intensive
computation tasks. The simulation settings are listing as follows. We set the transmission bandwidth
B = 5 MHz and transmitting power P, = 0.5 W, and the relevant noise power ¢ = 10~1°. The channel
gain H, is denoted by H,, = 127 + 30 x log d, where d is the distance between edge cloud and mobile
device n.

By default, the mobile devices have 50 computation tasks in total. For task u, ;, the number of
CPU cycles wy subjects to normal distribution, which its average is 1000 M Cycles. The data size sy
obeys normal distribution, and its average value is 3 MB, and the completion time D,, ; is generated
by a normal distribution with an average of 1 s. Furthermore, the computational capability of mobile
devices is assumed 1 GHz. Relative to the research field, the above parameters are typical values, and
will not affect the results obtained.

5.2. Task Offloading Evaluation

To evaluate the offloading, we compare our proposed scheme ABSO with following task
offloading strategies.

Local execution: All computational tasks are processed locally.
Full offloading: All computational tasks are executed on edge cloud by offloading.

e Branch and Bound Algorithm (BBA) : The objective function is transformed into a question that is
binary and linear, and it can be resolved availably by using a branch-and-bound algorithm.

We observe the energy consumption of mobile devices and the completion time of tasks under
various quantities of computation tasks in Figure 4. Obviously, we can see that the completion time
and energy consumption will gradually increase as computational tasks increase. We can see that local
execution consumes the most energy, because the CPU computation capacity of a mobile device is
relatively small. Also, full offloading has higher completion time compared to others; this can mainly
be attributed to the reason that full offloading needs to transmit data to the edge cloud before tasks
can be processed. Moreover, it can be observed that the presented offloading strategy has better results
compared to others on decreasing the expenditure of energy and time, and as the number of tasks
increases, its advantages become more obvious. For the metric of the completion time, ABSO can
achieve up-to 14% and 26%, and 7% performance improvement over the local execution, full offloading,
and BBA, respectively. For the metric of the energy consumption, ABSO can reach up to 42% and 22%,
and 9% decrement of energy compared to the local execution, full offloading, and BBA, respectively.

Figure 5a depicts the influence of data size of tasks on the energy consumption. We can observe
that our presented ABSO outperforms other methods. The energy consumption of local execution
is relatively steady, and it is smaller than the value of full offloading as sy increases. We can also see
that as the data size of tasks increase, the energy consumption starts to increase. That’s because with
the data size of tasks rise, the communication time become larger, and the energy consumption of the
edge cloud computing become larger than that of before. In the meantime, the difference of energy
consumption between different strategies is subtle while the data size of tasks is small. Therefore, we
infer that tasks with small amount of data are processed in the edge cloud when the other conditions
of tasks are consistent. On the contrary, tasks would be supposed to processed locally.

The energy consumption with the different number of CPU cycles wy are shown in Figure 5b.
According to the comparison, it can be seen that the energy consumption of our presented method
ABSO is most optimal. It can be observed that the energy consumption of full offloading is relatively
steady with little fluctuation. Also, as the increasing of required CPU cycles, the energy consumption

Algorithms 2019, 12, 48 11 of 13

are getting larger. This is because that when the required CPU cycles of tasks rise, the energy
consumption of local execution turns larger. From Figure 5b, we can conclude that in the case
of the consistent amount data size of tasks, the needed CPU cycles is small and tasks ought to be
processed locally. Conversely, the CPU cycles needed is large, tasks are transferred to the edge cloud
for processing.

120 11
110 F —— Local execution s i |
— & —Full offleading L 1 —— Local execution
ot BBA) — & —Full offioading
— * —ABSO 2 —0gf BBA 1
o
o — % —
w0 3 ABSO
0 Baosf 1
= 2
£ 80 3 _E
= BTy 1
S 70 5
2 2o08f]
£ 60 (i e s
Q 505 x 1
50 S
=
0 Woal]
30 . 03 4
20 \ \ . . \ \ 0.9 \
30 40 50 60 70 80 20 100 30 40 50 60 7o 80 90 100

Number of computation tasks Number of computation tasks

Figure 4. Energy consumption of mobile devices and completion time of tasks under various quantities
of computation tasks.

0.7 T T T T T T T 0.8

—— Local execution

— & —Full officading —— Local execution
BBA - — & —Full offioading

— * —ABSO BBA

— * —ABSO

o
@
=]
by

Energy Consumption{Joules)
o o
= o
Energy Consumption{Joules)
o o
w (=3}

o
w

\
=]
s

- -t -

o
8]
5

=]
w

0.1 0.2

1 15 2 25 3 35 4 45 5 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Average Data Size(MB) Average Computations per Task(MCycles)

(a) (b)

o
o
o

%

o

s

o
T

o
=
T

Energy Consumption{Joules)
=
o 8
! F
r

o
o
&
T
F*

—s— Local execution S e
02 H— © — Full offieading [l ST 4
BBA T =

— * —ABSO

015 L L N N
06 07 08 09 1 11 12 13 14 15

Latency deadline(s)
()

Figure 5. Comparison of energy consumption for different offloading strategies. (a) Effect of task size
on energy consumption; (b) Effect of required computation cycles on energy consumption; (c) Effect of
latency deadline on energy consumption.

Algorithms 2019, 12, 48 12 of 13

In Figure 5c, we consider the energy consumption as the variance of latency requirements.
The energy consumption of local computing and full offloading is little changed. This is because
that latency requirements are not taken into account when processing locally and offloading entirely,
and energy consumption is independent of latency requirements. Obviously, offloading tasks to
the edge cloud is helpful to cut down energy consumption. While tasks” delay deadlines are small,
the performance of our proposed ABSO resembles full offloading and BBA. Since most tasks are
offloaded to the edge cloud for processing. It seems the energy consumption of ABSO is plunged and
tends to be gentle after 1.1 s. This is because that as latency turns larger, the presented ABSO uses an
optimized strategy, in order that the energy consumption can be reduced slightly.

6. Conclusions

In this paper, we committed to designing an energy-efficient offloading strategy, which also
meets the constraints of users’ delay requirements. We propose an offloading strategy named the
ARIMA-BP-based Selective Offloading (ABSO) strategy and use the two-step framework for designing
it. We first design an ARIMA-BP model to estimate computation capacity of the edge cloud. Then, we
propose a Selective Offloading Algorithm for obtaining offloading strategy. The simulation results
show that the presented ABSO can obtain superior performance on reducing energy consumption
of mobile devices. In future research work, we plan that more common situations will be taken into
account, such as mobile user movement during use.

Author Contributions: Conceptualization, M.Z.; Data curation, K.Z.; Formal analysis, K.Z.; Funding acquisition, M.Z.;
Investigation, K.Z.; Methodology, K.Z.; Project administration, M.Z.; Resources, M.Z.; Software, K.Z.; Supervision,
M.Z; Validation, M.Z.; Visualization, K.Z.; Writing—original draft, K.Z.; Writing—review and editing, M.Z.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fu,Z,;Ren, K;; Shy, J.; Sun, X.; Huang, F. Enabling personalized search over encrypted outsourced data with
efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 2546-2559. [CrossRef]

2. Kumar, K; Lu, YH. Cloud computing for mobile users: Can offloading computation save energy.
IEEE Comput. 2010, 43, 51-56. [CrossRef]

3. Abolfazli, S. Cloud-based Augmentation for MobileDevices: Motivation, Taxonomies, and Open Challenges.
IEEE Commun. Surv. Tutor. 2014, 16, 337-368. [CrossRef]

4. Milan, P; Jerome,].; Valerie, Y.; Sadayuki, A. Mobile-Edge Computing Introductory Technical White
Paper. White Paper. Available online: https:/ /portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_
computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf (accessed on 14 September 2018).

5. Chen, M,; Hao, Y,; Li, Y,; Lai, C.-F.; Wu, D. On the computation offloading at ad hoc cloudlet: Architecture
and service modes. IEEE Commun. Mag. 2015, 53, 18-24. [CrossRef]

6. Fernando, N.; Loke, S.W.; Rahayu, W. Mobile cloud computing: A survey. Future Gener. Comput. Syst. 2013,
29, 84-106. [CrossRef]

7. Buyya, R.; Yeo, C.S.; Venugopal, S.; Broberg, J.; Brandic, I. Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 2009, 25,
599-616. [CrossRef]

8. Mao, Y,; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. Mobile edge computing: Survey and research outlook.
arXiv 2017, arXiv:1701.01090.

9. Shi, W, Cao,].; Zhang, Q.; Li, Y;; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things |. 2016,
3, 637-646. [CrossRef]

10. Liu, J.; Mao, Y,; Zhang,].; Letaief, K.B. Delay-optimal computation task scheduling for mobile-edge
computing systems. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT),
Barcelona, Spain, 10-15 July 2016; pp. 1451-1455.

http://dx.doi.org/10.1109/TPDS.2015.2506573
http://dx.doi.org/10.1109/MC.2010.98
http://dx.doi.org/10.1109/SURV.2013.070813.00285
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
http://dx.doi.org/10.1109/MCOM.2015.7120041
http://dx.doi.org/10.1016/j.future.2012.05.023
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1109/JIOT.2016.2579198

Algorithms 2019, 12, 48 13 of 13

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient multi-user computation offloading for mobile-edge cloud computing.
IEEE/ACM Trans. Netw. 2016, 24, 2795-2808. [CrossRef]

Yang, S.; Kwon, D.; Yi, H.; Cho, Y.; Kwon, Y,; Paek, Y. Techniques to Minimize State Transfer Costs for Dynamic
Execution Offloading in Mobile Cloud Computing. IEEE. Trans. Mob. Comput. 2014, 13, 2648-2660. [CrossRef]
Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic computation offloading for mobile-edge computing with energy
harvesting devices. IEEE]. Sel. Areas Common. 2016, 34, 3590-3505. [CrossRef]

Yang, L.; Cao, J.; Cheng, H.; Ji, Y. Multi-user computation partitioning for latency sensitive mobile cloud
applications. IEEE Trans. Comput. 2015, 64, 2253-2266. [CrossRef]

Kamoun, M.; Labidi, W.; Sarkiss, M. Joint resource allocation and offloading strategies in cloud enabled
cellular networks. In Proceedings of the IEEE International Conference on Communications (ICC), London,
UK, 8-12 June 2015; pp. 5529-5534.

Tao, X.; Ota, K.; Dong, M.; Qi, H.; Li, K. Performance Guaranteed Computation Offloading for Mobile-Edge
Cloud Computing. IEEE Commun. Mag. 2017, 6, 2162-2345. [CrossRef]

Lyu, X,; Tian, H.; Jiang, L.; Vinel, A.; Maharjan, S.; Gjessing, S.; Zhang, Y. Selective Offloading in Mobile Edge
Computing for the Green Internet of Things. IEEE Netw. 2018, 32, 54—60. [CrossRef]

Huang, D.; Wang, P.; Niyato, D. A Dynamic Offloading Algorithm for Mobile Computing. IEEE Trans.
Wirel. Commun. 2012, 11, 1991-1995. [CrossRef]

Munoz, O.; Pascual-Iserte, A.; Vidal, J. Optimization of radio and computational resources for energy efficiency
in latency-constrained application offloading. IEEE Trans. Veh. Technol. 2015, 64, 4738-4755. [CrossRef]
Zhang, W.; Wen, Y.; Chen, H.-H. Toward transcoding as a service: Energy-efficient offloading policy for
green mobile cloud. IEEE Netw. 2014, 28, 67-73. [CrossRef]

Guo, J.; Zhang, H; Yang, L.; Ji, H.; Li, X. Decentralized Computation Offloading in Mobile Edge Computing
Empowered Small-Cell Networks. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps),
Singapore, 4-8 December 2017; pp. 1-6.

Baccarelli, E.; Cordeschi, N.; Mei, A.; Panella, M.; Shojafar, M.; Stefa, J. Energy-efficient dynamic traffic
offloading and reconfiguration of networked data centers for big data stream mobile computing: Review,
challenges, and a case study. IEEE Access 2016, 30, 54—61. [CrossRef]

Taherizadeh, S.; Stankovski, V.; Grobelnik, M. A Capillary Computing Architecture for Dynamic Internet
of Things: Orchestration of Microservices from Edge Devices to Fog and Cloud Providers. Sensors 2018,
18, 2938. [CrossRef] [PubMed]

Gong, Z.; Gu, X.; Wilkes, J. PRESS: PRedictive Elastic Resource Scaling for cloud systems. In Proceedings of
the International Conference on Network and Service Management (CNSM), Niagara Falls, ON, Canada,
25-29 October 2010; pp. 9-16.

Duggan, M.; Mason, K.; Duggan, J. Predicting host CPU utilization in cloud computing using recurrent
neural networks. In Proceedings of the 2017 12th International Conference for Internet Technology and
Secured Transactions (ICITST), Cambridge, UK, 11-14 December 2017.

Hao, Y.; Chen, M.; Hu, L.; Hossain, M.S.; Ghoniem, A. Energy Efficient Task Caching and Offloading for
Mobile Edge Computing. IEEE Access 2018, 6, 11365-11373. [CrossRef]

Wen, Y.; Zhang, W.; Luo, H. Energy-optimal mobile application execution: Taming resource-poor mobile
devices with cloud clones. In Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA,
25-30 March 2012; pp.2716-2720.

Chen, M.; Miao, Y.; Hao, Y.; Huang, K. Narrow band Internet of Things. IEEE Access 2017, 5, 20557—-20577.
[CrossRef]

Nguyen, H.; Shen, Z.; Gu, X.; Subbiah, S.; Wilkes, J. AGILE: Elastic distributed resource scaling for
infrastructure-as-a-service. In Proceedings of the 10th International Conference on Autonomic Computing
(ICAC), San Jose, CA, USA, 26-28 June 2013; pp. 69-82.

Granero, M.S.; Segovia,].T,; Prez,].G. Some comments on Hurst exponent and the long memory processes
on capital markets. Phys. A Stat. Mech. Appl. 2008, 387, 5543-5551. [CrossRef]

Hosking,].R. Fractional differencing. Biometrika 1981, 68, 165-176. [CrossRef]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TMC.2014.2307293
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1109/TC.2014.2366735
http://dx.doi.org/10.1109/LWC.2017.2740927
http://dx.doi.org/10.1109/MNET.2018.1700101
http://dx.doi.org/10.1109/TWC.2012.041912.110912
http://dx.doi.org/10.1109/TVT.2014.2372852
http://dx.doi.org/10.1109/MNET.2014.6963807
http://dx.doi.org/10.1109/MNET.2016.7437025
http://dx.doi.org/10.3390/s18092938
http://www.ncbi.nlm.nih.gov/pubmed/30181454
http://dx.doi.org/10.1109/ACCESS.2018.2805798
http://dx.doi.org/10.1109/ACCESS.2017.2751586
http://dx.doi.org/10.1016/j.physa.2008.05.053
http://dx.doi.org/10.1093/biomet/68.1.165
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	System Model
	Scenario Description
	Communication Model
	Computation Model
	Local Computing
	Mobile Edge Cloud Computing

	Problem Formulation

	ARIMA-BP-Based Selective Offloading Strategy
	Research Motivation
	Estimation for Computation Capacity of Edge Cloud by ARIMA-BP
	Time Series Prediction
	Modification of the Residual Error Correction by BP Neural Network
	Prediction of CPU Usage by ARIMA-BP
	ARIMA-BP for Prediction of Computation Capacity in Edge Cloud

	A Selective Offloading Algorithm

	Simulation Results
	Experiment Setup
	Task Offloading Evaluation

	Conclusions
	References

