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Abstract: We consider the primitive relay channel, where the source sends a message to the relay
and to the destination, and the relay helps the communication by transmitting an additional
message to the destination via a separate channel. Two well-known coding techniques have been
introduced for this setting: decode-and-forward and compress-and-forward. In decode-and-forward,
the relay completely decodes the message and sends some information to the destination;
in compress-and-forward, the relay does not decode, and it sends a compressed version of the
received signal to the destination using Wyner–Ziv coding. In this paper, we present a novel coding
paradigm that provides an improved achievable rate for the primitive relay channel. The idea is to
combine compress-and-forward and decode-and-forward via a chaining construction. We transmit
over pairs of blocks: in the first block, we use compress-and-forward; and, in the second block, we use
decode-and-forward. More specifically, in the first block, the relay does not decode, it compresses
the received signal via Wyner–Ziv, and it sends only part of the compression to the destination.
In the second block, the relay completely decodes the message, it sends some information to the
destination, and it also sends the remaining part of the compression coming from the first block.
By doing so, we are able to strictly outperform both compress-and-forward and decode-and-forward.
Note that the proposed coding scheme can be implemented with polar codes. As such, it has the
typical attractive properties of polar coding schemes, namely, quasi-linear encoding and decoding
complexity, and error probability that decays at super-polynomial speed. As a running example,
we take into account the special case of the erasure relay channel, and we provide a comparison
between the rates achievable by our proposed scheme and the existing upper and lower bounds.

Keywords: primitive relay channel; compress-and-forward; decode-and-forward; chaining construction

1. Introduction

The relay channel, introduced by van der Meulen in [1], represents the simplest network model
with a single source and a single destination. The source wants to communicate with the destination,
and the relay helps the communication. More specifically, let XS be the signal sent by the source to the
relay and to the destination, YSR the signal received by the relay, XR the signal sent by the relay to the
destination, and YD the signal received by the destination which comes from the source and from the
relay. Note that the relay channel has a broadcast component going from the source to the relay and
to the destination, and a multiple access component going from the source and from the relay to the
destination. The model is schematized in Figure 1.
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Cover and El Gamal provided a general upper bound (the cut-set bound) and two lower bounds
(decode-and-forward and compress-and-forward) in [2]. Since that seminal work, several lower
bounds have been derived, i.e., amplify-and-forward, compute-and-forward, noisy network coding,
quantize-map-and-forward, hybrid coding, see [3–7]. The cut-set bound is tight in most of the settings
where capacity is known [2,8–10]. However, the cut-set bound was shown not be tight in some special
cases [11,12], and novel upper bounds tighter than cut-set were recently presented in [13–16]. For a
review on the relay channel, see also ([17] Chapter 16) and ([18] Chapter 9).
Version October 15, 2019 submitted to Algorithms 2 of 14
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Polar codes, introduced by Arıkan in [19], have been employed to devise practical schemes for
the relay channel. In particular, for the case of the degraded relay channel where XS → (XR, YSR)→ YD

forms a Markov chain, polar coding techniques for decode-and-forward are presented in [20–23].
Furthermore, for the case of the relay channel with orthogonal receiver components, a polar coding
scheme for compress-and-forward is proposed in [22]. For general relay channels, polar coding
techniques for decode-and-forward and compress-and-forward are described in [24]. We will adopt
these schemes as primitives in our approach. Soft decode-and-forward relaying strategies which
employ low-density parity-check (LDPC) codes are considered in [25].

In this work, we consider the relay channel with orthogonal receiver components, which is also
known as the primitive relay channel. The difference with respect to the general relay channel consists
in the fact that the destination receives two separate signals: YSD from the source and YRD from the relay.
Basically, the multiple access component going from the source and from the relay to the destination is
substituted by two parallel channels. Furthermore, we assume that the relay can listen and transmit
simultaneously, namely, it is full-duplex. The model is schematized in Figure 2. Note that the relay
communicates with the destination via a direct link. Thus, the relay can communicate reliably to the
destination at a rate arbitrarily close to capacity by using a capacity achieving code (e.g., a random code
or a polar code). Consequently, we can just assume that the relay and the destination are connected
via a noiseless link of given capacity. Even in this simplified setting, the capacity of the primitive
relay channel is unknown in general. A review on coding scheme for the primitive relay channel is
contained in [26].

Version October 15, 2019 submitted to Algorithms 2 of 14

Source
XS YDpYSR,YD|XR,XS

YSR XR

Relay

Destination

Figure 1. General relay channel.

Source
XS YSDpYSR,YSD|XS

YRD

pYRD|XRYSR

XRRelay

Destination

Figure 2. Primitive relay channel: relay channel with orthogonal receiver components.

capacity is known [2,8–10]. However, the cut-set bound was shown not be tight in some special cases [11,12],33

and novel upper bounds tighter than cut-set were recently presented in [13–16]. For a review on the relay34

channel, see also [17, Chapter 16] and [18, Chapter 9].35

Polar codes, introduced by Arıkan in [19], have been employed to devise practical schemes for the relay36

channel. In particular, for the case of the degraded relay channel where XS → (XR, YSR) → YD forms a37

Markov chain, polar coding techniques for decode-and-forward are presented in [20–23]. Further, for the case38

of the relay channel with orthogonal receiver components, a polar coding scheme for compress-and-forward39

is proposed in [22]. For general relay channels, polar coding techniques for decode-and-forward and40

compress-and-forward are described in [24]. We will adopt these schemes as primitives in our approach. Soft41

decode-and-forward relaying strategies which employ LDPC codes are considered in [25].42

In this work, we consider the relay channel with orthogonal receiver components, which is also known43

as the primitive relay channel. The difference with respect to the general relay channel consists in the fact44

that the destination receives two separate signals: YSD from the source and YRD from the relay. Basically, the45

multiple access component going from the source and from the relay to the destination is substituted by two46

parallel channels. Furthermore, we assume that the relay can listen and transmit simultaneously, namely, it is47

full-duplex. The model is schematized in Figure 2. Note that the relay communicates with the destination via a48

direct link. Thus, the relay can communicate reliably to the destination at a rate arbitrarily close to capacity by49

using a capacity achieving code (e.g., a random code or a polar code). Consequently, we can just assume that50

the relay and the destination are connected via a noiseless link of given capacity. Even in this simplified setting,51

the capacity of the primitive relay channel is unknown in general. A review on coding scheme for the primitive52

relay channel is contained in [26].53

The main contribution of this paper is a novel coding scheme that combines compress-and-forward with54

decode-and-forward and improves upon both of them. The idea is to consider pairs of blocks and use a chaining55

construction: in the first block, we perform a variation of compress-and-forward where the relay sends only a56

part of the compressed signal to the destination; in the second block, we perform decode-and-forward and the57

relay sends to the destination the new information bits together with the remaining part of the compressed signal58

coming from the previous block. The idea of chaining was first presented in [27] to design universal codes59

and in [28] to guarantee strong security for the degraded wiretap channel. Since then, it has been employed60

in numerous other settings, such as, the broadcast channel [29,30], the asymmetric channel [31,32], and the61

wiretap channel [33]. We highlight that our proposed coding paradigm is implementable with codes used for62

compress-and-forward and decode-and-forward. Thus, polar codes are an appealing choice [24]: they have an63

encoding and decoding complexity of Θ(n log n) and a block error probability scaling roughly as 2−
√

n, where64

n is the block length.65

The rest of the paper is organized as follows. In Section 2, we provide a review of existing upper66

bounds (cut-set and its improvements) and lower bounds (direct transmission, decode-and-forward, partial67

Figure 2. Primitive relay channel: relay channel with orthogonal receiver components.

The main contribution of this paper is a novel coding scheme that combines compress-and-forward
with decode-and-forward and improves upon both of them. The idea is to consider pairs of blocks and
use a chaining construction: in the first block, we perform a variation of compress-and-forward where
the relay sends only a part of the compressed signal to the destination; in the second block, we perform
decode-and-forward and the relay sends to the destination the new information bits together with
the remaining part of the compressed signal coming from the previous block. The idea of chaining
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was first presented in [27] to design universal codes and in [28] to guarantee strong security for the
degraded wiretap channel. Since then, it has been employed in numerous other settings, such as the
broadcast channel [29,30], the asymmetric channel [31,32], and the wiretap channel [33]. We highlight
that our proposed coding paradigm is implementable with codes used for compress-and-forward
and decode-and-forward. Thus, polar codes are an appealing choice [24]: they have an encoding and
decoding complexity of Θ(n log n) and a block error probability scaling roughly as 2−

√
n, where n is

the block length.
The rest of the paper is organized as follows. In Section 2, we provide a review of existing upper

bounds (cut-set and its improvements) and lower bounds (direct transmission, decode-and-forward,
partial decode-and-forward, compress-and-forward, and partial decode-compress-and-forward).
These bounds are also evaluated for the special case of the erasure relay channel, which serves
as a running example throughout the paper. In Section 3, we state and prove our new lower bound.
In Section 4, we present some numerical results for the erasure relay channel: we compare the rates
achieved by our proposed coding scheme with existing upper and lower bounds. Some concluding
remarks are provided in Section 5. This work is an extended version of [34].

2. Existing Upper and Lower Bounds

We assume that all channels are binary memoryless and symmetric (BMS). We denote by h2(x) =
−x log2 x− (1− x) log2(1− x) the binary entropy function and by XS, XR, YSR, and YSD the alphabets
associated with XS, XR, YSR, and YSD, respectively. We define a ◦ b = a + b(1− a) for any a, b ∈ R.

Throughout the paper, we will use as a running example the special case of the erasure relay
channel. As schematized in Figure 3, in the erasure relay channel, the links between source and
destination and between source and relay are binary erasure channels (BECs) with erasure probabilities
εSD and εSR, respectively.Version October 15, 2019 submitted to Algorithms 3 of 14
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2.1. Cut-Set Upper Bound

For the general relay channel, the cut-set upper bound on the achievable rate R is given
by ([17] Theorem 16.1)

R ≤ max
pXS ,XR

min{I(XS, XR; YD); I(XS; YSR, YD|XR)}. (1)

For the case of the primitive relay channel, the cut-set bound specializes to ([26] Proposition 1)

R ≤ max
pXS

min{I(XS; YSD) + CRD; I(XS; YSR, YSD)}. (2)

For the special case of the erasure relay channel, the cut-set bound can be rewritten as

R ≤ min{1− εSD + CRD; 1− εSRεSD}. (3)
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2.2. Improvements on a Cut-Set Upper Bound

For the case of the primitive relay channel, an upper bound demonstrating an explicit gap to the
cut-set bound was presented in [13]. Furthermore, two new upper bounds that are generally tighter
than cut-set are proposed in [14] for the symmetric primitive relay channel, in which YSR and YSD are
conditionally identically distributed given XS. The results of [14] are extended to the non-symmetric
case and to the Gaussian case in [15,16], respectively.

Let us now state the result in ([15] Theorem 3.1), which provides an extension of the first bound
of [14]. If a rate R is achievable, then there exists some pXS(xS) and a ≥ 0 such that

R ≤ I(XS; YSR, YSD),

R ≤ I(XS; YSD) + CRD − a,

R ≤ I(XS; YSD, ỸSR) + h2

(√
a ln 2

2

)
+

√
a ln 2

2
log2(|YSR| − 1)− a,

(4)

for any random variable ỸSR with the same conditional distribution as YSR given XS. The evaluation of
the term I(XS; YSD, ỸSR) that gives the tightest bound is simple in the following special cases:

1. Symmetric (YSR and YSD are conditionally identically distributed given XS): I(XS; YSD, ỸSR) =

I(XS; YSD).
2. Degraded (YSD is a stochastically degraded version of YSR): I(XS; YSD, ỸSR) = I(XS; YSR).
3. Reversely degraded (YSR is a stochastically degraded version of YSD): I(XS; YSD, ỸSR) = I(XS; YSD).

For the special case of the erasure relay channel, the bound can be re-written as

R ≤ max
a≥0

min

{
1− εSRεSD, 1− εSD + CRD − a, 1−min{εSR, εSD}+ h2

(√
a ln 2

2

)
+

√
a ln 2

2
− a

}
. (5)

In order to present the second bound of [14], we need some preliminary definitions. Given a
channel transition probability p(ω|x), for any p(x) and d ≥ 0, we define ∆(p(x), d) as

∆(p(x),d) = max
p̃(ω|x)

(
H( p̃(ω|x)|p(x)) + D( p̃(ω|x)||p(ω|x)|p(x))− H(p(ω|x)|p(x))

)
, (6)

subject to the condition
1
2 ∑

(x,ω)

|p(x) p̃(ω|x)− p(x)p(ω|x)| ≤ d, (7)

where D( p̃(ω|x)||p(ω|x)|p(x)) is the conditional relative entropy defined as

D( p̃(ω|x)||p(ω|x)|p(x)) = ∑
(x,ω)

p(x) p̃(ω|x) log2
p̃(ω|x)
p(ω|x) . (8)

H( p̃(ω|x)|p(x)) is the conditional entropy defined with respect to the joint distribution p(x) p̃(ω|x),
i.e.,

H( p̃(ω|x)|p(x)) = − ∑
(x,ω)

p(x) p̃(ω|x) log2 p̃(ω|x), (9)
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and H(p(ω|x)|p(x)) is the conditional entropy similarly defined with respect to p(x)p(ω|x). At this
point, we can state the result in ([14] Theorem 4.2). If a rate R is achievable, then there exists some
pXS(xS) and a ∈ [0, min{CRD, H(YSR | XS)}] such that

R ≤ I(XS; YSR, YSD),
R ≤ I(XS; YSD) + CRD − a,

R ≤ I(XS; YSD) + ∆

(
pXS(xS),

√
a ln 2

2

)
.

(10)

As pointed out at the end of Section IV.C of [14], for the special case of the symmetric erasure relay
channel, we have that ∆(pXS(xS), d) = ∞ for all pXS(xS) and d > 0. Thus, formula (10) reduces to the
cut-set bound (3).

2.3. Direct Transmission Lower Bound

In the direct transmission, the source communicates with the destination by using an optimal
point-to-point code. The relay transmission is fixed at the most favorable symbol for the channel from
the source to the destination.

For the general relay channel, direct transmission allows for achieving the following
rate ([17] Section 16.3):

RDT = max
pXS ,xR

I(XS; YD|XR = xR). (11)

For the case of the primitive relay channel, the direct transmission lower bound specializes to

RDT = max
pXS

I(XS; YSD). (12)

Note that the direct transmission lower bound (12) meets the cut-set upper bound (2), and it equals the
capacity of the primitive relay channel when either of the following two conditions holds:

1. the primitive relay channel is reversely degraded, which implies that I(XS; YSD) = I(XS; YSR, YSD);
2. CRD = 0.

For the special case of the erasure relay channel, the direct transmission lower bound can be
rewritten as

RDT = 1− εSD. (13)

The direct transmission lower bound (13) meets the cut-set upper bound (3), and it equals the capacity
of the erasure relay channel when either 1− εSD = 1− εSRεSD or CRD = 0.

2.4. Decode-and-Forward Lower Bound

In decode-and-forward, the relay completely decodes the received sequence and cooperates with
the source to communicate the message to the destination.

For the general relay channel, decode-and-forward allows for achieving the following
rate ([17] Theorem 16.2):

RDF = max
pXS ,XR

min{I(XS, XR; YD), I(XS; YSR|XR)}. (14)

For the case of the primitive relay channel, the decode-and-forward lower bound specializes
to ([26] Proposition 2)

RDF = max
pXS

min{I(XS; YSD) + CRD; I(XS; YSR)}. (15)

Note that the decode-and-forward lower bound (15) meets the cut-set upper bound (2) and is equal to
the capacity of the primitive relay channel when either of the following two conditions holds:
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1. the primitive relay channel is degraded, which implies that I(XS; YSR) = I(XS; YSR, YSD);
2. I(XS; YSR) ≥ I(XS; YSD) + CRD.

For the special case of the erasure relay channel, the decode-and-forward lower bound can be
rewritten as

RDF = min{1− εSD + CRD; 1− εSR}. (16)

The decode-and-forward lower bound (16) meets the cut-set upper bound (3), and it equals the capacity
of the erasure relay channel when either 1− εSR = 1− εSRεSD or 1− εSD + CRD ≤ 1− εSR.

2.5. Partial Decode-and-Forward Lower Bound

In partial decode-and-forward, the relay decodes and sends to the destination only part of the
received sequence.

For the general relay channel, partial decode-and-forward allows for achieving the following
rate ([17] Theorem 16.3):

RpDF = max
pU,XS ,XR

min{I(XS, XR; YD), I(U; YSR|XR) + I(XS; YD|XR, U)}, (17)

where the cardinality of the alphabet associated with U can be bounded as |U | ≤ |XS| · |XR|. Note that
U is an auxiliary random variable that represents the part of the message decoded by the relay. By
taking U = XS, we recover the decode-and-forward lower bound (14). Furthermore, by taking U = ∅,
we recover the direct transmission lower bound (11).

Note that the partial decode-and-forward lower bound (17) meets the cut-set upper bound (1)
when the relay channel has orthogonal sender components, namely, the broadcast channel from the
source to the relay and the destination is decoupled into two parallel channels.

For the case of the primitive relay channel, the partial decode-and-forward lower bound specializes
to ([26] Equation (5))

RpDF = max
pU,XS

min{I(XS; YSD) + CRD, I(U; YSR) + I(XS; YSD|U)}, (18)

with |U | ≤ |XS|.
For the special case of the erasure relay channel, we show that partial decode-and-forward does not

provide any improvement upon both direct transmission and decode-and-forward. After some simple
calculations, one obtains that

I(XS; YSD) = H(XS)− H(XS|YSD) = H(XS)(1− εSD),

I(U; YSR) = H(U)− H(U|YSR)

= H(U)− εSR H(U)− (1− εSR)H(U|XS)

= (1− εSR)(H(XS)− H(XS|U)),

I(XS; YSD|U) = H(XS|U)− H(XS|U, YSD)

= H(XS|U)(1− εSD).

(19)

Hence, by setting α = H(XS) and β = H(XS|U), we can re-write (18) as

RpDF = max
0≤β≤α≤1

min{α(1− εSD) + CRD, α(1− εSR) + β(εSR − εSD)}

= max
0≤β≤1

min{(1− εSD) + CRD, (1− εSR) + β(εSR − εSD)}.
(20)

On the one hand, if εSR ≥ εSD, then the maximum is achieved by taking β = 1, and RpDF = 1− εSD = RDT.
On the other hand, if εSR ≤ εSD, then the maximum is achieved by taking β = 0, and RpDF =
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min{(1 − εSD) + CRD, 1 − εSR} = RDF. Consequently, no improvement is possible over both direct
transmission and decode-and-forward.

2.6. Compress-and-Forward Lower Bound

In compress-and-forward, the relay does not attempt to decode the received sequence, but it sends
a (possibly compressed) description of it, denoted by ŶSR, to the destination. Since this description is
correlated with the sequence received by the destination from the source, Wyner–Ziv coding is used to
reduce the rate needed to communicate it to the destination.

For the general relay channel, compress-and-forward allows for achieving the following
rate ([17] Theorem 16.4):

RCF = max
pXS pXR pŶSR |XR ,YSR

min{I(XS, XR; YD)− I(YSR; ŶSR|XS, XR, YD), I(XS; ŶSR, YD|XR)}, (21)

where the cardinality of the alphabet associated with ŶSR can be bounded as |ŶSR| ≤ |XR| · |YSR|+ 1.
This expression can be equivalently rewritten as ([17] Remark 16.3)

RCF = max
pXS pXR pŶSR |XR ,YSR

{I(XS; ŶSR, YD|XR) : I(YSR; ŶSR|XR, YD) ≤ I(XR; YD)}. (22)

The bound is in general not convex, therefore it can be improved via time sharing.
For the case of the primitive relay channel, the compress-and-forward lower bound specializes

to ([26] Proposition 3)

RCF = max
pXS pŶSR |YSR

{I(XS; ŶSR, YSD) : I(YSR; ŶSR|YSD) ≤ CRD}, (23)

with |ŶSR| ≤ |YSR|+ 1.
Note that the compress-and-forward lower bound (23) meets the cut-set upper bound (2), and it

equals the capacity of the primitive relay channel when H(YSR|YSD) ≤ CRD. Indeed, in this case, we can
pick ŶSR = YSR, namely, the relay performs Slepian–Wolf source coding. Therefore, RCF = I(XS; YSR, YSD),
which is one of the two terms in the cut-set bound.

On the contrary, if H(YSR|YSD) > CRD, then we can degrade YSR into ŶSR, namely, the relay performs a
step of lossy source coding. The relay transmits this lossy description to the destination that can decode
it successfully since ŶSR requires less bits than YSR. However, after that the destination has recovered
ŶSR, there is a penalty loss: we can achieve rates up to I(XS; ŶSR, YSD), instead of up to I(XS; YSR, YSD).

For the case of the erasure relay channel, we have that

H(YSR|YSD) = h2(εSR) + εSD(1− εSR). (24)

Hence, if CRD ≥ h2(εSR) + εSD(1− εSR), then the compress-and-forward lower bound meets the cut-set
upper bound, and it equals the capacity of the erasure relay channel.

On the contrary, if CRD < h2(εSR) + εSD(1− εSR), it is not easy to find the best choice of ŶSR even for
this simple scenario. Following [25], let us assume that ŶSR is the output of an erasure-erasure channel
(EEC) with erasure probability ε̂R and input YSR. This means that, if YSR =?, then ŶSR =? with probability
1; if YSR ∈ {0, 1}, then ŶSR =? with probability ε̂R and ŶSR = YSR with probability 1− ε̂R. Consequently,

I(XS; ŶSR, YSD) = H(XS)− H(XS|ŶSR, YSD)

= H(XS)(1− (ε̂R ◦ εSR) · εSD).
(25)
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Clearly, I(XS; ŶSR, YSD) is maximized by setting pXS to the uniform distribution. Furthermore,

H(ŶSR|YSR, YSD) = H(ŶSR|YSR) = (1− εSR)h2(ε̂R),

H(ŶSR|YSD) = h2(εSR ◦ ε̂R) + εSD(1− εSR ◦ ε̂R).
(26)

As a result, the rate (23) can be rewritten as

RCF = max
0≤ε̂R≤1

{1− (ε̂R ◦ εSR) · εSD : h2(εSR ◦ ε̂R) + εSD(1− εSR ◦ ε̂R)− (1− εSR)h2(ε̂R) ≤ CRD}. (27)

2.7. Partial Decode-Compress-and-Forward Lower Bound

In partial decode-compress-and-forward, the relay decodes and sends to the destination part of
the source message, and it also sends to the destination a compressed description of the remaining
signal by Wyner–Ziv coding.

For the general relay channel, partial decode-compress-and-forward allows for achieving the
following rate ([2] Theorem 7):

RpDCF = max min{I(XS; ŶSR, YD|U, XR) + I(U; YSR|V, XR), I(XS, XR; YD)− I(YSR; ŶSR|U, XS, XR, YD)}, (28)

where the maximization is taken over all the joint probability density functions of the form

pU,V,XS,XR,YSR,ŶSR,YD
= pV pU|V pXS|U pXR|V · pYSR,YD|XS,XR

pŶSR|XR,YSR,U (29)

such that
I(XR; YD|V) ≥ I(ŶSR; YSR|U, XR, YD). (30)

Partial decode–compress-and-forward is a generalization of partial decode-and-forward and
compress-and-forward. Futhermore, it can strictly improve on both, e.g., for the state-dependent
orthogonal relay channel with state information available at the destination [35].

Let us consider the case of the primitive relay channel and pick V = ∅. Then, the partial
decode-compress-and-forward lower bound specializes to

RpDCF = max min{I(XS; ŶSR, YSD|U) + I(U; YSR),

I(XS; YSD) + CRD − I(YSR; ŶSR|U, XS)},
(31)

such that
CRD ≥ I(ŶSR; YSR|YSD, U). (32)

3. Main Result

We are now ready to state our new lower bound for the primitive relay channel.

Theorem 1. Consider the transmission over a primitive relay channel, where the source sends XS to the relay
and the destination, the relay receives YSR from the source, the destination receives YSD from the source, and
relay and destination are connected via a noiseless link with capacity CRD. Furthermore, denote by ŶSR the
compressed description of YSR transmitted by the relay, and define Imax = max{0, I(XS; YSR)− I(XS; YSD)}.
Then, the following rate is achievable:

Rnew =

(
CRD − Imax

)
I(XS; ŶSR, YSD) + max{I(XS; YSR), I(XS; YSD)}

(
I(YSR; ŶSR | YSD)− CRD

)
I(YSR; ŶSR | YSD)− Imax

, (33)
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for any joint distribution pXS pŶSR|YSR
such that

I(XS; YSR) < I(XS; YSD) + CRD, (34)

I(YSR; ŶSR|YSD) ≥ CRD, (35)

and where |ŶSR| ≤ |YSR| + 1. Furthermore, the rate (33) can be achieved by a polar coding scheme with
encoding/decoding complexity Θ(n log n) and error probability O(2−nβ

) for any β ∈ (0, 1/2), where n is the
block length.

Remark 1. If (34) does not hold, then decode-and-forward achieves the cut-set bound, and it is optimal.
Furthermore, if (35) does not hold, then our scheme reduces to compress-and-forward, and the achievable
rate is given by (23). As we will see in the proof, we have two slightly different schemes for the cases (i)
I(XS; YSR) ≥ I(XS; YSD) and (ii) I(XS; YSR) < I(XS; YSD). Thus, introducing the term Imax allows us to write
the achievable rate in a more compact form.

Remark 2. The proposed scheme can be thought of as a particular form of time-sharing between
decode-and-forward and compress-and-forward: in the first block, we are performing (a variant of)
compress-and-forward, and, in the second block, we are performing decode-and-forward. However, we allow
different time-sharing strategies across different channels: in the channel from relay to destination, part
of the compressed message of the first block is sent together with the message of the second block. This is
different from the ‘classical’ way of implementing time-sharing, which can be realized through the partial
decode-compress-and-forward scheme, as described for example in [35]. In [35], in the same block, a part of the
message is processed according to the decode-and-forward scheme, and the remaining part is processed according
to the compress-and-forward scheme. Therefore, it is not clear that the rate achievable by our scheme can also
be achieved by partial decode-compress-and-forward. In fact, in the special case considered in the numerical
simulations of Section 4, our achievable rate strictly improves upon partial decode-compress-and-forward.

Remark 3. The proposed scheme is based on a chaining construction. Chaining can be thought of as a form
of block Markov encoding, where the joint distribution is over blocks of symbols (instead of being over a single
symbol). As described in detail in the proof, at the relay, we generate the first block according to a first codebook;
we repeat part of the first block into the second block; and we generate the rest of the second block according to
a second codebook. Thus, the repetition of part of the first block into the second block can be interpreted as a
particular joint distribution over pairs of blocks.

The special case of the erasure relay channel is handled by the corollary below.

Corollary 1. Consider the transmission over the erasure relay channel, where YSD is obtained from XS via a
BEC(εSD), YSR is obtained from XS via a BEC(εSR), ŶSR is obtained from YSR via an EEC(ε̂R), and the relay is
connected to the destination via a noiseless link with capacity CRD. Then, the rate

Rnew =
(CRD −max{0, εSD − εSR})(1− (ε̂R ◦ εSR) · εSD)

h2(εSR ◦ ε̂R) + εSD(1− εSR ◦ ε̂R)− (1− εSR)h2(ε̂R)−max{0, εSD − εSR}

+
max{1− εSR, 1− εSD}(h2(εSR ◦ ε̂R) + εSD(1− εSR ◦ ε̂R)− (1− εSR)h2(ε̂R)− CRD)

h2(εSR ◦ ε̂R) + εSD(1− εSR ◦ ε̂R)− (1− εSR)h2(ε̂R)−max{0, εSD − εSR}

(36)

is achievable for any ε̂R ∈ [0, 1] such that

1− εSR < 1− εSD + CRD, (37)

h2(εSR ◦ ε̂R) + εSD(1− εSR ◦ ε̂R)− (1− εSR)h2(ε̂R) ≥ CRD. (38)
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Furthermore, the rate (36) can be achieved by a polar coding scheme with encoding/decoding complexity
Θ(n log n) and error probability O(2−nβ

) for any β ∈ (0, 1/2), where n is the block length.

The proof of Corollary 1 easily follows from the application of Theorem 1 and of Formulas (25)
and (26). We will now proceed with the proof of our main result.

Proof of Theorem 1. We start by presenting the main idea of our scheme. We split the transmission
into two blocks. In the first block, we perform a variant of compress-and-forward: the relay does not
decode the received sequence, but it sends a compressed description of it to the destination. However,
differently from standard compress-and-forward, we require that (35) holds. Hence, we cannot
transmit all the compressed description ŶSR during the first block. In the second block, we perform
decode-and-forward: the relay completely decodes the received sequence. Furthermore, we choose
the length of the second block so that the relay can transmit the part of ŶSR that was not sent in the
previous block plus the new information needed to decode the second block.

Let us now describe this scheme more in detail and provide the achievability proof of the rate (33).
First, we deal with the case I(XS; YSR) ≥ I(XS; YSD).

Consider the transmission of the first block. Denote by n1 and R1 the block length and the rate
of the message transmitted by the source, and let R1 approach from below I(XS; ŶSR, YSD). The relay
receives YSR and constructs the compressed description ŶSR. Recall that the destination receives the
side information YSD from the source. Hence, by using Wyner–Ziv coding, the destination needs
from the relay a number of bits approaching from above I(YSR; ŶSR | YSD) · n1, in order to decode the
message sent by the source. As I(YSR; ŶSR|YSD) ≥ CRD, the relay transmits right away a number of
these bits approaching from below CRD · n1. The number of remaining bits approaches from above
(I(YSR; ŶSR|YSD)− CRD) · n1, and it is stored by the relay. The destination stores the message received
from the relay and the observation YSD obtained from the source.

Consider the transmission of the second block and define

α =
I(YSR; ŶSR|YSD)− CRD

CRD −
(

I(XS; YSR)− I(XS; YSD)
) . (39)

Denote by n2 and R2 the block length and the rate of the message transmitted by the source. Let n2 =

n1 · α and let R2 approach from below I(XS; YSR). The relay receives YSR and successfully decodes the
message. Again, the destination receives the side information YSD from the source. Hence, it needs
from the relay a number of bits approaching from above (I(XS; YSR)− I(XS; YSD)) · n1 · α, in order to
decode the message sent by the source. The relay transmits to the destination these (I(XS; YSR) −
I(XS; YSD)) · n1 · α information bits plus the (I(YSR; ŶSR|YSD)− CRD) · n1 bits remaining from the previous
block. This transmission is reliable as (39) implies that(

I(XS; YSR)− I(XS; YSD)
)
· n1 · α +

(
I(YSR; ŶSR|YSD)− CRD

)
· n1 = CRD · n2. (40)

At this point, the destination can reconstruct the second block by using the side information received
from the source and the extra (I(XS; YSR)− I(XS; YSD)) · n1 · α bits received from the relay. Furthermore,
it can also reconstruct the first block by using the side information previously received from the source
and the extra I(YSR; ŶSR | YSD) · n1 bits received from the relay (partly in the first and partly in the
second block).

The overall block length is n = n1 + n2 = (1 + α)n1, and the achievable rate is

R =
R1 + αR2

1 + α
, (41)
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which approaches from below(
CRD − (I(XS; YSR)− I(XS; YSD))

)
I(XS; ŶSR, YSD)

I(YSR; ŶSR|YSD)−
(

I(XS; YSR)− I(XS; YSD)
) +

(
I(YSR; ŶSR|YSD)− CRD

)
I(XS; YSR)

I(YSR; ŶSR|YSD)−
(

I(XS; YSR)− I(XS; YSD)
) . (42)

Note that the expression (42) coincides with (33) when I(XS; YSR) ≥ I(XS; YSD).
The case I(XS; YSR) < I(XS; YSD) is handled in a similar way. As concerns the transmission of

the first block, nothing changes. Denote by n′1 and R′1 the block length and the rate of the message
transmitted by the source, and let R′1 approach from below I(XS; ŶSR, YSD). The relay receives YSR

and constructs the compressed description ŶSR. By using Wyner–Ziv coding, the destination needs
from the relay a number of bits approaching from above I(YSR; ŶSR | YSD) · n′1, in order to decode the
message sent by the source. As I(YSR; ŶSR|YSD) ≥ CRD, the relay transmits right away a number of
these bits approaching from below CRD · n′1. The number of remaining bits approaches from above
(I(YSR; ŶSR|YSD)−CRD) · n′1 and it is stored by the relay. The destination stores the message received from
the relay and the observation YSD obtained from the source.

As concerns the transmission of the second block, define

α′ =
I(YSR; ŶSR|YSD)− CRD

CRD

, (43)

and denote by n′2 and R′2 the block length and the rate of the message transmitted by the source.
Let n′2 = n′1 · α′ and let R′2 approach from below I(XS; YSD). The relay discards the received message
and transmits to the destination the (I(YSR; ŶSR|YSD)− CRD) · n′1 bits remaining from the previous block.
This transmission is reliable as (43) implies that(

I(YSR; ŶSR|YSD)− CRD

)
· n′1 = CRD · n′2. (44)

At this point, the destination can reconstruct the second block by using the message received from the
source. Furthermore, it can also reconstruct the first block by using the side information previously
received from the source and the extra I(YSR; ŶSR | YSD) · n1 bits received from the relay (partly in the
first and partly in the second block).

The overall block length is n′ = n′1 + n′2 = (1 + α′)n′1 and the achievable rate is

R′ =
R′1 + α′R′2

1 + α′
, (45)

which approaches from below

CRD · I(XS; ŶSR, YSD) +
(

I(YSR; ŶSR|YSD)− CRD

)
I(XS; YSD)

I(YSR; ŶSR|YSD)
. (46)

Note that the expression (46) coincides with (33) when I(XS; YSR) < I(XS; YSD).
Clearly, the coding scheme described so far can be implemented with codes that are suitable

for compress-and-forward and for decode-and-forward. Hence, we can employ the polar coding
schemes for compress-and-forward and for decode-and-forward presented in [24]. However, polar
codes require block lengths n1 and n2 (or n′1 and n′2) that are powers of two, which puts a constraint on
the possible values for α = n2/n1 (or α′ = n′2/n′1). To remove this constraint and achieve the rate (33)
for any α, it suffices to use the punctured polar codes described in ([36] Theorem 1).

4. Numerical Results

Let us consider the special case of the erasure relay channel. In Figure 4, we compare the
achievable rate (36) of our scheme with the existing upper and lower bounds, i.e., the cut-set upper
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bound (3) (which coincides with the improved bound (5)), the decode-and-forward lower bound
(16) and the compress-and-forward lower bound (27). We consider two pairs of choices for εSD and
εSR: (εSD, εSR) = (0.85, 0.5) for the plot on the left (see Figure 4), and (εSD, εSR) = (0.4, 0.2) for the
plot on the right. We plot the various bounds as functions of CRD. Our scheme outperforms both
decode-and-forward and compress-and-forward for an interval of values of CRD in both settings. As CRD

increases, the improvement guaranteed by our strategy decreases, until eventually the performance of
our scheme is matched by compress-and-forward.

For a general primitive relay channel, it is not immediate how to compare the partial
decode-compress-and-forward rate given in (28) with our new rate given in (33)—the partial
decode-compress-and-forward scheme involves three auxiliary random variables (U, V, ŶSR) and the
complex joint distribution expressed in (29) to maximize over. Thus, one immediate advantage of
our new rate is that it is easier to compute. In fact, the proposed lower bound involves only one
auxiliary random variable (ŶSR). Even if we simplify the partial decode-compress-and-forward rate as
in (31), the formula remains harder to evaluate (two auxiliary random variables: U, ŶSR). Although a
full optimization over all parameters is very challenging, we have specialized (31) to the setting of
the erasure relay channel and, for fairness of comparison with the other schemes, we have considered
the case in which ŶSR is obtained from YSR via an EEC(ε̂R). Then, by performing the maximization
numerically over ε̂R and over all the auxiliary random variables U s.t. |U| ≤ 2, the achievable
rate of partial decode-compress-and-forward does not improve upon decode-and-forward and
compress-and-forward. Therefore, in this setting, partial decode-compress-and-forward is strictly
worse than our proposed scheme.

In [25], for εSD = 0.85, εSR = 0.5 and CRD = 0.99125, the proposed soft decode-and-forward
strategy based on LDPC codes achieves a rate of 0.507, while both decode-and-forward and
compress-and-forward achieve a rate of 0.5. Our new coding strategy is reliable for rates up to
0.545, hence it outperforms all existing lower bounds. As a reference, note that in this setting the
cut-set bound is 0.575.
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(a) εSD = 0.85 and εSR = 0.5 (b) εSD = 0.4 and εSR = 0.2

Figure 4. Comparison between the achievable rate provided by our strategy and the existing upper and lower
bounds. We use “CF" and “DF" as abbreviations for “compress-and-forward” and “decode-and-forward”,
respectively.
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5. Conclusions

We have proposed a new coding paradigm for the primitive relay channel that combines
compress-and-forward and decode-and-forward by means of a chaining construction. The achievable
rates obtained by our scheme surpass the state-of-the-art coding approaches (compress-and-forward,
decode-and-forward, and the soft decode-and-forward strategy of [25]). Our coding paradigm
is general in the sense that we treat decode-and-forward and compress-and-forward as existing
primitives. For this reason, any coding scheme that can be used to implement decode-and-forward/
compress-and-forward can also be used to implement our new strategy. Polar codes are one notable
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example, since polar coding schemes for decode-and-forward and compress-and-forward have been
developed; see [20–24]. This leads to a scheme with the typical attractive features of polar codes,
i.e., quasi-linear encoding/decoding complexity and fast decay of the error probability. A detailed
analysis of the finite length performance of polar codes for our strategy (as well as of polar codes for
decode-and-forward and compress-and-forward) is an interesting direction for future research.

In the numerical simulations, we consider the special case of the erasure relay channel. In this
setting, the upper bounds presented in Section 2.2 do not provide an improvement over the cut-set
bound. An interesting avenue for future work is to study the performance of our strategy in scenarios
where the cut-set bound is not tight (e.g., as in [11,12,35]). For example, in [35], the model also includes
a state sequence, and the partial decode-compress-and-forward strategy crucially takes advantage of
it by optimally adapting its transmission to the dependence of the orthogonal channels on the state
sequence. In this paper, we do not consider such a state sequence, and it is not obvious how to adapt
our results to the model of [35].
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