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Abstract: Images may be corrupted by salt and pepper impulse noise during image acquisitions or
transmissions. Although promising denoising performances have been recently obtained with sparse
representations, how to restore high-quality images remains challenging and open. In this work,
image sparsity is enhanced with a fast multiclass dictionary learning, and then both the sparsity
regularization and robust data fidelity are formulated as minimizations of L0-L0 norms for salt and
pepper impulse noise removal. Additionally, a numerical algorithm of modified alternating direction
minimization is derived to solve the proposed denoising model. Experimental results demonstrate
that the proposed method outperforms the compared state-of-the-art ones on preserving image
details and achieving higher objective evaluation criteria.
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1. Introduction

Images may be corrupted by the salt and pepper noise when they are acquired by imperfect sensors
or transmitted in unideal channels [1]. This noise introduces the sharp and sudden disturbances in the
images and the noise value usually equals to either the minimal or maximal pixel value. To remove
the impulse noise, traditional methods include spatial domain approaches such as median [1] or
adaptive median filtering (AMF) [2], and transform domain approaches such as wavelet denoising [3,4].
The former ones try to distinguish noise from meaningful image structures with some pre-defined
filtering, owing fast computation but limited performance. The latter ones explore the image sparsity
in transform domains, e.g., wavelets and contourlets, to distinguish noise but has to carefully
choose appropriate basis functions to represent different image features. More comparisons can
be found in a recent review on impulse noise removal [5]. Recently, the transform domain sparsity
is incorporated into sparse image reconstruction models [6–8] to significantly improve the image
quality. The improvement on denoising, however, is still unsatisfactory since the sparsity is limited by
pre-defined dictionaries or transforms which may not capture different image structures [8–11].

The state-of-the-art approaches introduce the adaptive dictionary learning [8–11] to provide
sparser representations, leading to boosted performance for salt and pepper noise removal. However,
the commonly used redundant dictionary learning algorithm, K-SVD [12], is relatively time
consuming [13], which may slow down the iterative image reconstruction [8,9,14,15] or lose optimal
sparsity when partial image patches are used for fast training [12]. By exploring the intrinsic
self-similarity in images, patch-based nonlocal operator (PANO) [16], which is originated from
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the well-known block-matching and 3D filtering [17], has been shown to provide adaptive sparse
representations and achieve high quality image reconstructions in impulse noise removal [10,11,16].
Yet, PANO may be suboptimal since similar patches are sparsified with pre-defined wavelets. Therefore,
it is highly expecting to find new dictionary (or transform) that enables adaptive sparse representation
and fast computation while performs well in impulse noise removal.

Even with a proper dictionary, the sparse image reconstruction model for impulse noise removal
should be carefully defined. Generally, a restored image is obtained by minimizing a model that
balance the sparsity and data fidelity [10,11,18]. For instance, as a convex approximation of the
sparsity, the commonly used L1 norm may bias to penalize small sparse coefficients than large ones,
and, thus, suffers from losing weak signal details in the reconstruction problems, such as image
reconstruction [19–21], biological spectrum recovery [22–24], and fault detection [25]. Therefore, it is
meaningful to incorporate other norms to restore more weak signals.

Beyond the sparsity constraint in the sparse image reconstruction models [8–11,16], the data
fidelity, which models the impulse noise with the L1 norm, may not be appropriate. It was recently
found that the L0 norm, that model the impulse noise, can be interpreted from the Bayesian view of
maximum a posteriori probability [18] and can further improve the denoising performance.

To overcome these limitations of current approaches, in this paper, salt and pepper noise removal is
improved from two aspects: (1) sparser representation with fast transform; and (2) better regularization
of the sparsity and data fidelity. Accordingly, three contributions are made: (1) adaptive sparse image
representations with fast orthogonal dictionary learning will be introduced to improve the denoising
performance with updated reference images; (2) L0 norms are introduced to regularize not only sparsity
but also the data fidelity, resulting in stronger sparse constraint for images and robustness to outliers
introduced by salt and pepper noise; and (3) the impulse denoising model is solved with a feasible
numerical algorithm.

The rest of this paper is organized as follows: The typical L1-L1 regularization model is reviewed
in Section 2.1. The proposed method is presented in Section 2.2. Experimental results are analyzed in
Section 3. Discussions are made in Section 4. Finally, Section 5 presents the conclusions.

2. Methods

2.1. Typical Sparsity-Based Impulse Noise Removal Method

The target image is usually assumed to be sparse under a certain dictionary or transform
representation. The sparsity is usually indicated by measuring the L1 norm of the representation
coefficients [6–8] and this norm can be used as feature selection criteria in the sparse
representation-based image fusion [26–28]. In addition, the salt and pepper noise are often treated
as the outlier in images and the L1 norm is employed to constraint the data consistency [29]. Thus,
a L1-L1 regularization model is defined to remove impulse noise according to:

min
x
‖Ψx‖1 + λ‖y− x‖1 (1)

where λ balances the sparsity of an image x (under the transform Ψ) and the data fidelity that is robust
to outliers in the noisy image y.

How to sparsify the image with a proper Ψ heavily affects the denoising results. A typical choice
is a fixed sparse representation, e.g. the finite difference, a basic form of total variations (TV) [18,30]
that models the piece-wise constant signals, and wavelets which characterize the piecewise smooth
signals [6]. To better captures the image features, a dictionary [8,9] or transform [10,11] may be
adaptively trained from the noisy image itself. Unlike the typical dictionary learning, which is time
consuming in the iterative image reconstruction [8,9], the recently-proposed PANO not only saves the
training time (only several seconds) but also provides adaptively sparse representation to the image
by learning the self-similarity [11]. Similar patches are grouped into 3D cubes and then sparsified
with 3D wavelets. For removing salt and pepper noise, PANO significantly improved the denoising
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performance [11] and obtained better results with impulse detection [10]. With PANO, Equation (1) is
turned into:

min
x ∑ J

j=1‖Ajx1‖+λ‖W(y− x)‖1 (2)

where ∑J
j=1 ‖Ajx‖1 promotes the sparsity on J groups of similar patches and W is a diagonal matrix

whose entries stands for weights on pixels. A reasonable weight penalizes the noisy pixels much
heavier than the noise-free ones [10]. It is worth noting that the penalty function ∑J

j=1 ‖Ajx‖1 promotes
the intrinsic group sparsity [31], which is not only important in image denoising [32,33], but also in
other applications [34].

Although the model in Equation (2) has shown promising performance in salt and pepper
noise removal, it has two limitations: (1) sparsity is insufficient since 3D wavelets in PANO are still
pre-defined basis; and (2) the L1 norm term is only approximation of the sparsity which may lose
weak image structures, e.g., small edges, in the reconstruction [19–21] or lack robustness to impulse
noise [18].

2.2. Proposed Method

In this work, we propose an approach to remove the impulse noise with fast adaptive
dictionary learning to provide sparsity of images and formulate the denoising problems with the L0

norms regularizations.
The flowchart of the whole scheme is summarized in Figure 1. First, a reference image is initially

obtained from a noised image using the AMF. Then, the geometric directions are learnt from the
reference image to get the adaptive sparse transform is via fast dictionary training. Next, a denoised
image is reconstructed using the proposed L0 norms regularization model.

In the following, the essential part of the approach will be given in more details.
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2.2.1. Adaptive Dictionary Learning in Salt and Pepper Noise Removal

We first introduce the Fast Dictionaries Learning Method on Classified Patches (FDLCP) [13]
into salt and pepper noise removal. FDLCP not only inherits fast learning to form orthogonal
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dictionaries, but also provides sparser representations by training comprehensive dictionaries for
different geometrical image patches. As shown in Figure 2, patches that share the same geometric
direction are grouped together to form one class, and then this class is used to learn a specific dictionary.
Therefore, the dictionary of each class effectively captures the underlying image structures (Figure 2c).
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Mathematically, within a class of patches Xω that shares a same geometric direction ω, an
orthogonal dictionary is trained by solving the optimization problem [15]:

min
Dω ,Z
‖Xω −DωZ‖2

F + η2‖Z‖0 s.t. DT
ωDω = I (3)

where Dw is the dictionary and ‖.‖F is the Frobenius norm. We choose the orthogonal dictionary
learning because it enables the significant reduction of computation [13,15] than the commonly
redundant dictionary trained in the K-SVD. For example, it has been shown that the computational
time of learning orthogonal dictionary will be approximately 1% than that of the redundant dictionary
in K-SVD [13].

Equation (3) can be fast solved by alternatively computing the sparse coding Z and updating the
dictionary Dω in each iteration [13,15] as follows:

(1) Given the current dictionary Dω, update sparse coefficients Z via hard thresholding:

Z = Hc

(
DT

ωXω

)
(4)

where the hard threshold Hc(Q) for a matrix Q is an element-wise operator that performs on the

element Qij according to Hc(Qij) =

{
0, i f abs(Qij) ≤ c

Qij, i f abs(Qij) > c
with a threshold c.

(2) Given the coefficients Z, compute dictionary Dω according to:

min
Dω

‖Xω −DωZ‖2
F s.t. DT

ωDω = I, (5)

where η is a parameter to decide the sparsity and I is an identity matrix. The solution of Equation (5) is:

Dω = PVT , (6)

where P and V are orthogonal matrices of the following singular value decomposition:

XωZT = PΛVT , (7)
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where T denotes the matrix transpose. The solutions in Equations (7) and (8) are called the
orthogonal Procrustes solutions, which were first considered in dictionary learning before [35]. In our
implementation, the parameter η is set to 0.2 in all experiments.

A good feature of the FDLCP [15] is that it balances the fast learning via orthogonal dictionary,
comparing with the relatively slow learning in the classic K-SVD [12], and sparse representation for
each classes, comparing with the sole orthogonal dictionary for all image patches [13]. FDLCP has
been observed to outperform K-SVD in the medical image reconstruction [15], but not yet applied to
impulse denoise so far.

To further derive the mathematical property of FDLCP, let Rj denote the operator that extract a
patch owned with jth geometric direction from an image x, and then the FDLCP transform is simplified
as ΨT = [RT

1 Dω1 , RT
2 Dω2 , · · · , RT

j Dωj · · · , RT
J DωJ ]

T for the total J geometric directions. The forward
and inverse transform satisfies:

ΨTΨ =
[
RT

1 Dω1 , RT
2 Dω2 , · · · , RT

J DωJ ]
T [RT

1 Dω1 , RT
2 Dω2 , · · · , RT

J DωJ ]= cI, (8)

where I is an identity matrix and the variable c is the overlapping factor for image patches [15].
By further setting ΦT = 1√

c ΨT , the transform Φ obeys:

ΦΦT = I, (9)

meaning that the modified FDLCP transform Φ is a tight frame for image reconstruction [36].
Then, how to train the representations with FDLCP in the salt and pepper noise removal?

We suggest learning the FDLCP from a reasonable pre-reconstructed image, e.g., which is obtained
with AMF. This strategy has been found to achieve sparse representations under fast computing not
only in impulse noise removal [10,11], but also other image reconstruction problems [15,16,37].

2.2.2. FLCLP-Based Image Reconstruction with The L0 Norm Regularizations

Two L1 norm terms are defined in Equation (2) for impulse noise removal, and they play different
roles and can be replaced by two L0 norms for a better reconstruction. The first term enforces the
image sparsity, and the L1 norm may lose weak signals in the reconstruction, thus, researchers
tend to minimize the sparsity by the L0 norm. This modification has been observed to improve the
reconstruction [8,15,20,21] including impulse denoise removal [18]. The second term maintains the
data fidelity, and L1 norm may reduce robustness to impulse noise [6,29,30], while using the L0 norm
has been observed to significantly improve rejecting the outliers and good edge preserving in the
reconstruction [18]. Therefore, both the L0 norm terms on the sparsity and data fidelity are adopted in
this work.

The FLCLP-based image reconstruction with the L0 norm regularizations is proposed as follows:

min
x
‖ΦTx‖0 + λ‖W(y− x)‖0 (10)

where the ‖α‖0 is the total number of nonzero entries in the α. For simplicity, we name the proposed
method as FDLCP-L0 in the following descriptions. The two L0 norms significantly boost the
FDLCP-based impulse noise removal as shown in Figure 3.
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Figure 3. Comparisons on the denoised Barbara images using different norms. (a) is the noise-free
image, (b) is the noisy image, (c) and (d) are denoised images using FDLCP with L1 and L0 norm
minimizations, respectively. Note: The noise level is 0.5, meaning that 50% pixels are contaminated by
salt and pepper noise.

To better understand the model, we will illustrate L0 norm regularizations from the Bayesian view.
Given the observed noisy image y, the maximize posterior probability for the reconstructed image

x can be obtained by maximize posterior probability:

max
x
{logp(y|x) + logp(x)}. (11)

Since a given x corresponds to the unique transform coefficients ΦTx, then p
(

y|ΦTx
)
= p(y|x).

By plugging in the salt and pepper noise model:

yj =


0, with probability q

2
1, with probability q

2
xj, with probability 1− q

(12)

where q is the probability that jth pixel is contaminated by noise, then the first term in Equation (11) is
modified as [18]:

p(y|x) = e1−q = 1− ‖y− x‖0

N
(13)

Therefore, ignoring the constant in Equation (13), maximizing the posterior probability of x means
minimizing ‖y− x‖0, which is the same as our data consistency term in Equation (10) by setting W as
the identity matrix.

We then use a transform domain prior as p(x) = 1
v e−g[ΦTx] where α = ΦTx and g

(
αj
)

={
1− h, if αj = 0
h, otherwise

and h is a probability of a coefficient being in nonzero value. Then, maximizing

the log function of p(x) leads to minimizing ‖ΦTx‖0 which is the same as our sparsity constraint term.
The above analysis implies that the L0 norm in data consistency specifically works for impulse

noise removal, and the L0 norm that directly counts the number of non-zero coefficients in sparsity
constraint evaluates the sparsity better the L1 norm.

2.2.3. Numerical Algorithm

Directly solving Equation (10) is very hard since its L0 norm terms are non-smooth and
non-differential. In this work, we adopt the alternating direction minimization with continuation
algorithm (ADMC) [10,16,37] to solve Equation (10). ADMC is chosen since it enables to obtain the
solution with much easier sub-problems that have analytical solutions as discussed below.
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By introducing the continuation parameter β and augmented variables α and d, a relax form of
Equation (10) is:

min
α,d,x

(
‖α‖0 +

β

2
‖α−ΦTx‖2

2

)
+ λ

(
‖d‖0 +

β

2
d−W‖(y− x)‖2

2

)
(14)

where α and d are two augmented variables. When β→ ∞ , the solution of Equation (14) approaches
that of Equation (10) since any non-zero values of ‖α−ΦTx‖ (or ‖d−W(y− x)‖) will lead β

2 ‖α−
ΦTx‖2

2 (or β
2 ‖d −W(y− x)‖2

2) to be infinite. Therefore, in order to minimize the cost function of
Equation (14), both α = ΦTx and d = W(y− x) must be simultaneously satisfied, meaning that
Equation (14) is equivalent to Equation (10) when β→ ∞ . In the implementation, we gradually
increase β.

While β is fixed at the kth iterations, the solution of Equation (14) is obtained by alternatively
solving the following sub-problems where each one has the analytical solution.
(1) Fixed d(k) and x(k), solve:

α(k+1) = argmin
α
‖α‖0 +

β

2
‖α−ΦTx(k)‖2

2, (15)

whose solution is achieved by hard thresholding according to:

α(k+1) = H√ 2
β

(
ΦTx

)
. (16)

(2) Fix x(k) and α(k+1), solve:

d(k+1) = argmin
d
‖d‖0 +

β

2
‖d−W(y− x(k))‖2

2, (17)

whose solution is also achieved by hard thresholding as follows

d(k+1) = H√ 2
β

(
W
(

y− x(k)
))

(18)

(3) Fix α(k+1) and d(k+1), solve:

x(k+1) = argmin
x
‖α(k+1) −ΦTx‖2

2 + λ‖d(k+1) −W(y− x)‖2
2, (19)

and have the solution as follows:

x(k+1) =
(

I + λWTW
)−1(

Φα(k+1) + λWT
(

Wy− d(k+1)
))

. (20)

The algorithm is summarized in Algorithm 1. It is worth noting that the existing ADMC
algorithms solve either a reconstruction model with minimization of L1 norm (sparsity regularization)
and L2 norm (data fidelity) in compressive image recovery [16,38,39], or a denoising model with
minimization of L1 norm (sparsity regularization) and L1 norm (data fidelity) for impulse noise
removal [10,11]. The ADMC algorithm derived in the work solves the denoising model with
minimization of L0 norm (sparsity regularization) and L0 norm (data consistency) as Equation (14)
and has totally different sub-problems and solutions from previous ones.
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Algorithm 1. ADMC Algorithm for the L0 Norm Minimizations.

Input: The noise image y, diagonal matrix W, adaptive dictionaries Φ, and the regularization λ

Initialize: β = 1, βmax = 210, k = 1, and x(1) = y.
Main:
While β ≤ βmax, repeat steps (a)~(d) until convergence:

(a) Update α(k+1) by computing α(k+1) = H√ 2
β ,

(
ΦTx(k)

)
(Hc(·) denotes the hard thresholding operator with

a threshold c [20].) according to Equation (16).

(b) Update d(k+1) by solving d(k+1) = H√ 2
β

(
W
(

y− x(k)
))

according to Equation (18).

(c) Compute x(k+1) via Equation (20).

(d) Evaluate the difference of successive reconstruction ξ = ‖x(k+1)−x(k)‖2

‖x(k)‖2
,

(e) If ξ > 10−4, go to (a); else set β← 2β and k← k + 1 .
End While
Output: Reconstructed image x.

3. Results

The proposed method, FDLCP-L0, is compared with basic AMF [2], the state-of-the-art
PANO-L1 [9] and total variation (TV)-L0 methods [17]. Two objective evaluation criteria, the peak
signal-to-noise ratio (PSNR) and the mean measure of structural similarity (MSSIM) [40], which are
most widely used in image denoising and reconstruction [15,17,37,41,42], are adopted to quantitatively
measure the denoising performance here. The PSNR measures average pixel distortion of the denoised
image and the MSSIM specifically cares about the preserved image structures, e.g., local luminance
and contrast, which are important for human visual systems [40]. Higher PSNR and MSSIM mean
better denoising performance. All the computations were performed on four cores 3.6 GHz CPU
desktop computer with 16 GB RAM. The typical reconstruction time of a 512 × 512 image with AMF,
PANO-L1, TV-L0, and FDLCP-L0 are 0.25 s, 55.7 s, 6.74 s, and 473.22 s, respectively. The test images are
downloaded from website [43].

3.1. Denoising Performance under a Fixed Noise Level

At the typical noise level of 0.5 (50% pixels are contaminated by salt and pepper noise), both
PANO-L1 and TV-L0 remove noise much better than the classic AMF. However, the two state-of-the-art
approaches still lose some straight lines (Figure 4d,e) or weaken some textures (Figure 5d,e).
The proposed method reconstructs these image features much better than others. As listed in Table 1,
evaluation criteria including both PSNR and MSSIM indicate that the proposed method reconstructs
the most consistent images to the noise-free ones.

Table 1. Quantitative measures at the salt and pepper impulse noise level of 0.5.

Images Quantitative Measure
Methods

AMF PANO-L1 TV-L0 FDLCP-L0

Boat
PSNR 36.32 37.95 38.29 40.26

MSSIM 0.8715 0.9375 0.9307 0.9631

Lena
PSNR 37.42 38.87 39.48 41.01

MSSIM 0.8878 0.9360 0.9382 0.9531

Barbara
PSNR 34.61 36.28 35.63 39.44

MSSIM 0.8080 0.9293 0.8746 0.9644
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3.2. Denoising Performance under Different Noise Levels

The denoising performances under different noise levels were evaluated in Figure 6. The AMF is
inferior to other compared methods. The TV-L0 outperforms the PANO-L1 although PANO provides
adaptive sparse representation. This observation implies that the L0 norm is more robust than the
L1 norm to the outliers introduced by the impulse noise. The proposed method not only makes use
of adaptive sparsity in the representation but also incorporates the robust L0 norm to better remove
outliers in the data fidelity term. Therefore, improved denoising performance by the proposed method
are consistently observed in all experiments with different noise levels.
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4. Discussions

To further confirm the advantage of using the L0 norm over the L1 norm, FDLCP-L1 is compared
with the proposed method FDLCP-L0. Typical denoised images are shown in Figure 7 and quantitative
measures are shown Figure 8, Tables 2 and 3. Image features are preserved much better using FDLCP-L0

than that using FDLCP-L1. Consistent improvements at all noise levels are observed for FDLCP-L0.
Therefore, replacing the L1 norm with the L0 norm is valuable to improve the quality of the images
that are contaminated by the salt and pepper noise.
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Figure 7. Comparisons on denoised images using FDLCP-L1 and FDLCP-L0. (a) and (b) are noise-free
and noisy images, (c) and (d) are denoised images using FDLCP-L1 and FDLCP-L0, respectively.
The first row and the second row are Boat and Lena images. Note: The salt and pepper noise level is 0.5
and the denoised Barbara images is shown in Figure 3.



Algorithms 2019, 12, 7 11 of 14
Algorithms 2018, 11, x FOR PEER REVIEW  11 of 14 

 
Figure 8. Comparisons on quantitative measure using FDLCP-L1 and FDLCP-L0. (a)–(c) are PSNRs of 
Boat, Lena, and Barbara images, respectively; (d)–(f) are MSSIMs of Boat, Lena, and Barbara images, 
respectively. 

Table 2. PSNR performance under the salt and pepper noise using FDCLP with L1 or L0 norms. 

Images Methods 
Noise Level 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Boat 
L1 43.07 40.58 38.60 36.99 35.20 33.54 31.58 27.35 

L0 46.07 43.68 41.78 40.26 38.67 37.04 35.21 33.59 

Lena 
L1 43.75 41.58 39.80 38.17 36.71 35.18 33.12 28.04 

L0 46.09 43.97 42.32 41.01 39.63 38.49 37.07 35.27 

Barbara 
L1 42.06 39.67 37.65 35.74 34.08 32.38 30.45 26.21 

L0 45.62 43.27 41.35 39.44 37.48 35.63 33.52 32.22 

Table 3. MSSIM performance under the salt and pepper noise using FDCLP with L1 or L0 norms. 

Images Methods 
Noise Level 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Boat 
L1 0.9856 0.9743 0.9601 0.9407 0.9055 0.8571 0.7752 0.5537 

L0 0.9900 0.9830 0.9745 0.9631 0.9461 0.9139 0.8501 0.7178 

Lena 
L1 0.9822 0.9711 0.9569 0.9391 0.9159 0.8819 0.8232 0.6458 

L0 0.9849 0.9759 0.9650 0.9531 0.9376 0.9188 0.8856 0.8208 

Barbara 
L1 0.9867 0.9769 0.9624 0.9385 0.9001 0.8220 0.7058 0.4427 

L0 0.9909 0.9849 0.9766 0.9644 0.9412 0.8987 0.7709 0.6736 

5. Conclusions 

A new salt and pepper impulse noise removal method is proposed by simultaneously exploring: 
(1) The adaptively sparse representation of images; (2) better regularizing the sparsity of 
representation and the data fidelity under impulse noise. The former is accomplished via fast 

Figure 8. Comparisons on quantitative measure using FDLCP-L1 and FDLCP-L0. (a)–(c) are PSNRs
of Boat, Lena, and Barbara images, respectively; (d)–(f) are MSSIMs of Boat, Lena, and Barbara
images, respectively.

Table 2. PSNR performance under the salt and pepper noise using FDCLP with L1 or L0 norms.

Images Methods
Noise Level

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Boat
L1 43.07 40.58 38.60 36.99 35.20 33.54 31.58 27.35
L0 46.07 43.68 41.78 40.26 38.67 37.04 35.21 33.59

Lena
L1 43.75 41.58 39.80 38.17 36.71 35.18 33.12 28.04
L0 46.09 43.97 42.32 41.01 39.63 38.49 37.07 35.27

Barbara
L1 42.06 39.67 37.65 35.74 34.08 32.38 30.45 26.21
L0 45.62 43.27 41.35 39.44 37.48 35.63 33.52 32.22

Table 3. MSSIM performance under the salt and pepper noise using FDCLP with L1 or L0 norms.

Images Methods
Noise Level

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Boat
L1 0.9856 0.9743 0.9601 0.9407 0.9055 0.8571 0.7752 0.5537
L0 0.9900 0.9830 0.9745 0.9631 0.9461 0.9139 0.8501 0.7178

Lena
L1 0.9822 0.9711 0.9569 0.9391 0.9159 0.8819 0.8232 0.6458
L0 0.9849 0.9759 0.9650 0.9531 0.9376 0.9188 0.8856 0.8208

Barbara
L1 0.9867 0.9769 0.9624 0.9385 0.9001 0.8220 0.7058 0.4427
L0 0.9909 0.9849 0.9766 0.9644 0.9412 0.8987 0.7709 0.6736

5. Conclusions

A new salt and pepper impulse noise removal method is proposed by simultaneously exploring:
(1) The adaptively sparse representation of images; (2) better regularizing the sparsity of representation
and the data fidelity under impulse noise. The former is accomplished via fast orthogonal dictionary
learning within multiclass geometric image patches while the latter is enforced by regularizing L0

norms on both the sparsity and data fidelity constraints. Experimental results demonstrate that this
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proposed approach outperforms the compared ones in terms of better preserving image structures and
higher objective denoising performance evaluation criteria. The theoretical prof of the advantage of L0

norm over L1 norm in impulse noise removal would be an interesting future work.
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