
algorithms

Article

On Fast Converging Data-Selective Adaptive Filtering

Marcele O. K. Mendonça 1, Jonathas O. Ferreira 1, Christos G. Tsinos 2, Paulo S. R. Diniz 1,*
and Tadeu N. Ferreira 3

1 Signals, Multimedia, and Telecommunications Lab., Universidade Federal do Rio de Janeiro DEL/Poli &
PEE/COPPE/UFRJ, P.O. Box 68504, Rio de Janeiro RJ 21941-972, Brazil;
marcele.kuhfuss@smt.ufrj.br (M.O.K.M.); jonathas.ferreira@smt.ufrj.br (J.O.F.)

2 SnT-Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg,
4365 Luxembourg City, Luxembourg; christos.tsinos@uni.lu

3 Tadeu N. Ferreira, Fluminense Federal University, Engineering School, R. Passo da Patria, 156, Room E-406,
Niteroi RJ 24210-240, Brazil; tadeu_ferreira@id.uff.br

* Correspondence: diniz@smt.ufrj.br; Tel.: +55-21-39388211

Received: 30 November 2018; Accepted: 18 December 2018; Published: 21 December 2018 ����������
�������

Abstract: The amount of information currently generated in the world has been increasing
exponentially, raising the question of whether all acquired data is relevant for the learning algorithm
process. If a subset of the data does not bring enough innovation, data-selection strategies can be
employed to reduce the computational complexity cost and, in many cases, improve the estimation
accuracy. In this paper, we explore some adaptive filtering algorithms whose characteristic features
are their fast convergence and data selection. These algorithms incorporate a prescribed data-selection
strategy and are compared in distinct applications environments. The simulation results include both
synthetic and real data.

Keywords: adaptive signal processing; adaptive filters; parameter estimation; system identification;
equalization; prediction; learning systems; data processing; LMS-Newton; conjugate gradient

1. Introduction

In many practical applications, the number of data-acquisition devices is growing at an
exponential rate, such as in distributed networks, massive multiple-input multiple-output (MIMO)
antennas, and for social networks. This trend calls for the parsimonious use of the acquired data
when considering the overwhelming resources required such as storage capacity, device-to-device
communications, power consumption, among others. In the era of Big Data, we face the challenge of
efficiently utilizing a large amount of data to extract the critical information. In the context of adaptive
filtering, the recently proposed strategy to perform data-selection approximating a prescribed update
rate appears to be promising [1].

This new data-selection method prescribes a probability of updating utilizing a threshold based
on the mean squared error (MSE) which determines if the acquired data sample contains enough
information to justify a change in the parameter estimate. Utilizing a statistical model for the MSE, it is
possible to prescribe the probability of updating inherent to the learning algorithm. Also, an additional
threshold value can be utilized to verify if the data represents an outlier, i.e., abnormal data.

Previous work [1] addressed the classical Least Mean Square (LMS), the Affine Projection (AP),
and the Recursive Least Squares (RLS) algorithms. Among these algorithms, the RLS has the fastest
convergence in stationary environments, and the highest computational complexity, while facing
numerical stability issues. In this work, we consider fast converging adaptive filtering algorithms with
data selection and apply them to process real data in order to verify their effectiveness in addressing
practical problems. The proposed algorithms are the LMS Newton (LMSN) [2], the LMS Quasi-Newton
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(LMSQN) [3] and the online conjugate gradient (CG) [4–9]. Like the RLS algorithm, the LMSN has
fast convergence even when the input signal is highly correlated. By employing an estimate of the
Hessian matrix, the LMSQN methods [10–13] have a similar computational complexity to the RLS and
LMSN algorithms without sacrificing the performance. In fact, one version of the LMSQN algorithm
exhibits improved robustness to quantization errors [3]. A low complexity algorithm originates from
the Conjugate Gradient (CG) method [4] which does not require the computation of the Hessian matrix
inverse as the LMSN, LMSQN, and RLS algorithms. The CG algorithm is attractive since it updates
the adaptive filter coefficients based on conjugate directions leading to faster convergence than the
gradient-based algorithms such as the LMS.

We explore the data-selective version of the LMSN, LMSQN and CG algorithms, showing their
cost function in different applications, such as equalization and signal enhancement, which were not
previously considered in [1,14,15]. For each configuration, we describe how to estimate the MSE to
allow the prescription of the update rate.

The performance of the data selective algorithms is evaluated via simulations utilizing synthetic
and real data in different adaptive filtering applications. The results indicate that the data selection
strategy can indeed be applied to any type of applications of adaptive filters.

This paper is organized as follows. In Section 2, the data-selection strategy is discussed along
with the calculation of the threshold parameter required to achieve a target probability of update.
Section 3 describes the data-selective LMSN (DS-LMSN), LMSQN (DS-LMQSN), and the CG (DS-CG)
algorithms. Section 4 compares the proposed algorithms. Some concluding remarks are provided in
Section 5.

2. Problem Description

This section describes how to apply the data selection approach for distinct application set-ups.
Regardless of the application, the filter output can be formulated as

y(k) = wT(k)x(k) (1)

where x(k) = [x0(k) x1(k) . . . xN−1(k)]T is the input applied to the adaptive filter and w(k) =

[w0(k) w1(k) . . . wN−1(k)]T represents the adaptive filter coefficients. We can compute the a priori error
signal e(k) as

e(k) = d(k)−wT(k)x(k) (2)

where d(k) is the desired signal.
Basically the error signal e(k) is used by the adaptive algorithm to determine the updating of the

filter coefficients. Given the error distribution, it is possible to infer the degree of innovation the current
data carries; an illustration is provided in Figure 1. Observe that the central interval (in light blue) is
equivalent to lower error values, whereas the edge intervals in red correspond to higher error values,
indicating the presence of possible outliers that damage the estimation. The data-selection strategy
relies on updating the filter coefficients only when the current data are informative, i.e., generate an
error that does not belong to any of those intervals. Hence, the overall computational cost is reduced,
since the coefficients are no longer updated 100% of the time.
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Figure 1. Data selection strategy.

The adaptive algorithms require an objective function of the error in order to perform the
coefficient updating. A common objective function considered in the adaptive filtering theory is
the instantaneous squared error,

J(w(k)) =
1
2
|e(k)|2 (3)

where | · | denotes the absolute value.
If the error distribution is assumed to be Gaussian, then

e ∼ N (0, σ2
e ) (4)

where σ2
e is the error variance. By normalizing the error distribution, we obtain

e
σe
∼ N (0, 1). (5)

The updating of the adaptive filter coefficients occurs if the normalized error |e(k)|σe
is greater than

a given threshold
√

τ(k). However, if |e(k)|σe
is greater than another threshold

√
τmax, an outlier is

identified and thus, no update should be performed. These conditions can be incorporated to the
minimization of the function

J′(w(k)) =

{
1
2 |e(k)|2, if

√
τ(k) ≤ |e(k)|σe

<
√

τmax

0, otherwise.
(6)

Hence, the coefficient updating follows the rule,

w(k + 1) =

{
w(k) + u(k),

√
τ(k) ≤ |e(k)|σe

<
√

τmax

w(k), otherwise.
(7)

where the term u(k) depends on the adaptive algorithm employed. The desired probability of
coefficient update Pup(k) represents how often the first statement in Equation (7) is performed and is
modeled as

Pup(k) = P
{
|e(k)|

σe
>
√

τ(k)
}
− P

{
|e(k)|

σe
>
√

τmax

}
. (8)
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By considering the distribution in (5), Equation (8) in steady-state becomes,

Pup = 2Qe
(√

τ
)
− 2Qe (

√
τmax) , (9)

where Qe(·) is the complementary Gaussian cumulative distribution function, given by Qe(x) =

1/(2π)
∫ ∞

x exp(−t2/2)dt [16]. Even when outliers are present in the dataset, the probability

P
{
|e(k)|

σe
>
√

τmax

}
tends to be very small. Therefore, the parameter τ can be obtained from

Equation (9) as
√

τ = Q−1
e

(
Pup

2

)
, (10)

where Q−1
e (·) is the inverse of the Qe(·) function. Basically, to apply the threshold τ in the coefficient

updating (7), we need to calculate σ2
e . At this point, it should be mentioned that in the system

identification application with sufficient order, the minimum MSE in steady-state is σ2
n , the variance of

the measurement noise n(k). Hence, it is convenient to express σ2
e as a function of the noise variance

σ2
e = (1 + ρ)σ2

n (11)

in which the excess MSE is rewritten as ρσ2
n . The expression of ρ depends on the adaptive algorithm

and is key to establish the prescribed probability of update Pup.
As a result, the coefficient updating is performed based on a scaled power noise, τ(k)σ2

n [1,14,15]
so that an equivalent expression to Equation (8) can be rewritten as

Pup(k) = P
{
|e(k)|

σn
>
√

τ(k)
}
− P

{
|e(k)|

σn
>
√

τmax

}
(12)

resulting in the following modifications in Equations (9) and (10)

Pup = 2Qe

(
σn
√

τ

σe

)
− 2Qe

(
σn
√

τmax

σe

)
and
√

τ =
√
(1 + ρ)Q−1

e

(
Pup

2

)
for τmax → ∞. (13)

If the presence of outliers is known, a possible strategy to eliminate them consists of employing
the first 20% of the data without taking into consideration the threshold τmax, hence obtaining an
estimate of the error behavior. For the remaining iterations, it is calculated by

√
τmax = E[e(k)/σe] + 3Var[e(k)/σe]. (14)

Since the expression (5) represents a Gaussian distribution, we can use the empirical rule given by
Equation (14) to identify the values that exceed the threshold as outliers.

Under the considered assumptions regarding the error distribution, E{e(k)} = 0 and thus,

σ2
e = E[e2(k)] = ξ(k) (15)

where ξ(k) for , k → ∞ is the steady-state MSE obtained by employed algorithm. The expression
of ξ(k) depends on the filter application and the algorithm employed. In the following subsections,
we compute the steady-state MSE for some adaptive filter applications.

Alternatively, the error variance can be estimated by

σ2
e = (1− b)e2(k) + (b)e2(k− 1), (16)

where b is a forgetting factor.
Although not discussed here, for the cases the error distribution is not Gaussian we can determine

the threshold based on measured data through the evaluation of tail probabilities, see [17]. It is
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also worth mentioning that in particular applications, such as in medical data like ECG, the outlier
threshold might affect the main feature to be observed since it resembles an outlier behavior.

2.1. Equalization

In the equalization application, the desired signal is a delayed version of the input

d(k) = s(k− l) (17)

where l represents the delay. The adaptive filter output is written as

y(k) = wT(k)x(k) = wT(k)(Hs(k) + n(k)) (18)

where H ∈ RN×L is the finite impulse response (FIR) channel convolution matrix, s(k) =

[s0(k) s1(k) . . . sL−1(k)] ∈ RL is the received signal and the channel noise, n(k) =

[n0(k) n1(k) . . . nN−1(k)] ∈ RN , is drawn from an independent Gaussian distribution with zero mean
and variance σ2

n . Therefore we can express the MSE as

ξ(k) = E[e2(k)] = E[(s(k− l)− y(k))2]

= σ2
s − 2E[s(k− l)(wT(k)(Hs(k) + n(k)))] +E[(wT(k)(Hs(k) + n(k)))2]

= σ2
s − 2wT(k)HE[s(k− l)s(k)] + wT(k)HE[s(k)sT(k)]HTw(k) + wT(k)E[n(k)nT(k)]w(k)

= σ2
s − 2wT(k)Hrl + wT(k)(HRHT + INσ2

n)w(k)

≈ σ2
s (1− 2wT(k)hl + wT(k)HHTw(k)) + σ2

nwT(k)w(k)

(19)

where R is the autocorrelation matrix of the input signal, rl is the l-th column of the autocorrelation
matrix, and hl = Hrl . We are assuming that the inputs and the additional noise are uncorrelated.

Assuming the channel model is unknown, the practical way to compute the data-selection
threshold is to estimate the output error variance through (16).

2.2. Signal Enhancement

In the signal enhancement case, the desired signal is a signal of interest corrupted by noise,

d(k) = s(k) + n1(k). (20)

By using another noise correlated with the noise that impairs s(k) as the adaptive filter input,

x(k) = n2(k), (21)

the conventional error signal e(k) will be an enhancement version of d(k) and the adaptive filter output
y(k) will be the actual error. For this reason, in this signal enhancement case, the MSE is calculated
based on the variance of y(k) instead of e(k). Hence, the MSE expression for signal enhancement is
obtained as

ξ(k) = σ2
y = E[y2(k)] = E[(wT(k)n2(k))2] = σ2

n2
(k)||w(k)||22. (22)

2.3. Signal Prediction

In the signal prediction case, the desired signal is a delayed version x(k + L) of the input signal
x(k). Therefore, the error signal is

e(k) = x(k + L)−wT(k)x(k), (23)
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and the MSE expression

ξ(k) = E[e2(k)] = E[(x(k + L)−wT(k)x(k))2] (24)

give rise to a expression for the minimum MSE:

ξmin(k) = r(0)−wT
o


r(L)

r(L + 1)
...

r(L + N)

 (25)

where wo is the optimal coefficients of the predictor and r(l) = E[x(k)x(k− l)]. Since in the prediction
case ξ(k) = σ2

e ≈ ξmin, Equation (25) can be used to obtain an estimate of σ2
e at iteration k by replacing

wT
o by w(k) which are the coefficients of the adaptive filter at iteration k. We can estimate r(l) through

r(l) = ζr(l − 1) + (1− ζ)x(k)x(k− l) in which ζ is a forgetting factor.

2.4. System Identification

In the system identification, the desired signal can be formulated as

d(k) = wo
Tx(k) + n(k) (26)

where wo is the optimal coefficient, x(k) is the input vector and n(k) is the noise drawn from AWGN
with zero mean and variance σ2

n . Therefore, the MSE can be expressed as:

ξ(k) = E[e2(k)] = E[n2(k)]− 2E[n(k)∆wT(k)x(k)]

+E[∆wT(k)x(k)xT(k)∆w(k)]
(27)

where we define ∆w(k) = w(k) −wo. Assuming that the noise and coefficients are uncorrelated,
the second term in (27) is zero and we get the following expression

ξ(k) = σ2
n + ξexc(k) (28)

where ξexc(k) is the excess MSE and E[n2(k)] = σ2
n . As excess MSE tends to zero, the MSE expression

for system identification, previously mentioned in (11), is rewritten as

ξ(k) = σ2
e = (1 + ρ)σ2

n . (29)

3. Data-Selective Adaptive Filtering Algorithms

We consider the Newton-based methods LMSN and LMSQN as well as the online CG algorithm
to solve the objective function

ξ =
1
2
E[e2(k)]. (30)

The Newton-based methods follow a second-order approximation of the objective function and
hence perform the coefficient updating as

w(k + 1) = w(k)− µ(k)R̂−1ĝw(k), (31)

where R̂ and ĝw(k) are estimates of the Hessian and gradient of the objective function, respectively.
In fact, the LMSN and LMSQN minimize the objective function in (3).
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The CG method, on the other hand, falls in between steepest descent and Newton methods. In the
CG algorithm, the search is performed along conjugate directions which produces generally faster
convergence than steepest descent methods. The coefficient updating is performed as

w(k + 1) = w(k)− α(k)c(k), (32)

where the conjugate directions c(k) will be explained in more details in Section 3.2.

3.1. LMSN and LMSQN

Considering the same estimate of the gradient, ĝw(k) = −e(k)x(k), used in the LMS algorithm
and also a variable step-size, we end-up with the following recursive coefficient updating formula [2]

w(k + 1) = w(k) +
ν

xT(k)R̂−1(k)x(k)
R̂−1(k)x(k)e(k), (33)

where µ(k) = ν/(xT(k)R̂−1(k)x(k)) is a step-size parameter in which ν is a positive constant and
e(k) = d(k)−wT(k)x(k) is the a priori error.

The only difference between LMSN and the LMSQN algorithms is the way of matrix R̂−1(k) is
estimated. In the LMSN method, matrix R̂(k) is estimated via a Robbins-Monro procedure resulting in
the following update of its inverse, given by [2]

R̂−1(k) =
1

1− θ

{
R̂−1(k− 1)− R̂−1(k− 1)x(k)xT(k)R̂−1(k− 1)

1−θ
θ + xT(k)R̂−1(k)x(k)

}
, (34)

where θ is a weight factor. The LMSQN algorithm updates matrix R̂−1(k) by using the approach in [3]
which ensures that R̂−1(k) remains positive definite and bounded for a bounded input signal. As a
result, the estimate R̂−1(k) is obtained as

R̂−1(k) =R̂−1(k− 1) +
(

ν

2xT(k)R̂−1(k− 1)x(k)
− 1
)

ν
R̂−1(k− 1)x(k)xT(k)R̂−1(k− 1)

xT(k)R̂−1(k− 1)x(k)
. (35)

These algorithms have been analyzed more deeply through the use of theory and simulations
in [2,3]. Although the estimate obtained by LMSN is accurate enough, it is not free of possible instability
behavior. On the other hand, the LMSQN guarantees stability but can lead to poor estimations of R−1.

Since the LMSN and LMSQN algorithms update the filter coefficients in the same manner,
both utilizing estimates of R−1, the excess MSE is also the same [3]. Hence, as proposed in [14],
the expression of the excess MSE at steady-state for both DS-LMSN and DS-LMSQN algorithms can be
written as the following approximation

ξexc(k) ≈
νPup

2− νPup
σ2

n , k → ∞. (36)

As a result, we use a similar procedure to the one described in [18], in which the coefficient update
of the DS-LMSN and DS-LMSQN algorithms are equivalent concerning their expected values. Hence,
using this new update and by following the theoretical analysis demonstrated in [2], we obtain an
approximation of the excess MSE at the steady-state in both algorithms. Thus, the value ρ can be
obtained from the expression (36).

The steps of both DS-LMSN and DS-LMSQN algorithms are summarized in Algorithm 1, where
the quantities t(k) and ψ(k) are included to simplify some steps in the computations.
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Algorithm 1 Data-Selective LMSN and LMSQN algorithms

DS-LMSN and DS-LMSQN algorithms

Initialize

0 < ν ≤ 1, 0 < θ ≤ 1 (for LMSN), γ small positive constant,

w(0) = random vectors or zero vectors and R̂−1(0) = γIL+1

Prescribe Pup and choose τmax
√

τ =
√
(1 + ρ)Q−1(

Pup
2 )

For prediction and equalizer use ρ = 0

For system identification use ρ =
νPup

2 − νPup
.

Do for k > 0

acquire x(k) and d(k)

e(k) = d(k)−wT(k)x(k)

δ(k) =


0, if −

√
τ ≤ e(k)

σe
≤
√

τ

0, if |e(k)|σe
≥ √τmax

1, otherwise

if δ(k) = 0

w(k + 1) = w(k)

if |e(k)|σe
≥ √τmax

e(k) = 0

d(k) = 0

end if

else

t(k) = R̂−1(k− 1)x(k)

ψ(k) = xT(k)t(k)

w(k + 1) = w(k) + ν
t(k)e(k)

ψ(k)

R̂−1(k) = 1
1 − θ

[
R̂−1(k− 1)− t(k)tT(k)

1 − θ
θ + ψ(k)

]
, for LMSN

R̂−1(k) = R̂−1(k− 1) + ν
ν

2ψ(k) − 1

ψ(k) t(k)tT(k), for LMSQN

end if

3.2. Online Conjugate Gradient

Minimizing the objective function in (30) is equivalent to

min
w

1
2

wT(k + 1)Rw(k + 1)− pTw(k + 1) (37)

in which R = E[x(k)xT(k)] is the N×N autocorrelation matrix of the input signal and p = E[d(k)x(k)]
is the cross-correlation vector between the input and reference signals. Similarly, our goal is to solve
the linear equation

Rw(k + 1) = p. (38)

The CG method can solve this problem by expressing the solution

wo =
N−1

∑
i=0

α(i)c(i) (39)
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in a basis formed by a set of vectors ci, i ∈ {0, . . . N− 1} that present R-conjugacy, that is, cT(i)Rc(j) =
0 for all i 6= j. By premultiplying Equation (39) by cT(k)R and using conjugate definition:

cT(k)Rwo = cT(k)R

(
N−1

∑
i=0

α(i)c(i)

)

=
N−1

∑
i=0

α(i)
(

cT(k)Rc(i)
)

= α(k)
(

cT(k)Rc(k)
)

. (40)

By replacing Rwo = p in (40), we obtain an expression for the constant α at the kth iteration:

α(k) =
cT(k)p

cT(k)Rc(k)
. (41)

Equation (39) can be evaluated as an iterative process in which a portion α(k)c(k) is added at the
kth step:

w(k + 1) = w(k) + α(k)c(k). (42)

As observed in [19], the estimation of the matrix R and vector p can be both computed using the
exponentially decaying window, giving rise to Equations (43) and (44), respectively.

R(k) = λR(k− 1) + x(k)xT(k) (43)

p(k) = λp(k− 1) + d(k)x(k) (44)

Both estimations are also employed in RLS algorithm where λ represents a forgetting factor.
By applying the line search method as done in [19], another expression for α(k) can be achieved:

α(k) = η
cT(k)g(k− 1)

cT(k)Rc(k)
(45)

with (λ − 0.5) ≤ η ≤ λ to assure convergence. From Equations (42)–(44), we can obtain another
expression for the negative gradient g(k):

g(k) = p(k)− R(k)w(k + 1)

= λp(k− 1) + d(k)x(k)

−[λR(k− 1) + x(k)xT(k)][w(k) + α(k)c(k)]

= λg(k− 1)− α(k)R(k)c(k) + x(k)e(k) (46)

where e(k) = d(k)− xT(k)w(k).
The next conjugate direction c(k + 1) can be obtained as the current negative gradient g(k)

corrected by a term comprising a linear combination of the previous direction vectors:

c(k + 1) = g(k) + β(k)c(k) (47)

in which

β(k) =
(g(k)− g(k− 1))Tg(k)

gT(k− 1)g(k− 1)
(48)

is a constant calculated to guarantee R-conjugacy and improve performance as well.
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As analyzed in [15], the CG and RLS algorithms are equivalent in steady-state and hence the
excess MSE is also equivalent,

ξexc(k) ≈ (N + 1)
Pup(1− λ)

2− Pup(1− λ)
σ2

n , k→ ∞. (49)

in which the derivation is detailed in [1]. Thus, we can obtain ρ from Equation (36). As a result,
we obtain the DS-CG summarized in Algorithm 2.

Algorithm 2 Data-Selective Conjugate Gradient algorithm

DS-CG algorithm
Initialize
λ, η with (λ− 0.5) ≤ η ≤ λ, w(0) = random vectors or zero vectors
R0 = I, g(0) = c(1) = zeros(N + 1,1), γ = small constant for regularization
Prescribe Pup, and choose τmax√

τ =
√
(1 + ρ)Q−1(

Pup
2 )

For prediction and equalizer use ρ = 0

For system identification use ρ = (N + 1) Pup(1 − λ)

2 − Pup(1 − λ)
.

Do for k > 0
acquire x(k) and d(k)
e(k) = d(k)−wT(k)x(k)

δ(k) =


0, if −

√
τ ≤ e(k)

σe
≤
√

τ

0, if |e(k)|σe
≥ √τmax

1, otherwise
if δ(k) = 0

w(k + 1) = w(k)
if |e(k)|σe

≥ √τmax

e(k) = 0
d(k) = 0

end if
else

R(k) = λR(k− 1) + x(k)xT(k)

α(k) = η
cT(k)g(k − 1)

[cT(k)R(k)c(k) + γ]

w(k + 1) = w(k) + α(k)c(k)
g(k) = λg(k− 1)− α(k)R(k)c(k) + x(k)e(k)

β(k) = [g(k) − g(k − 1)]Tg(k)
[gT(k − 1)g(k − 1) + γ]

c(k + 1) = g(k) + β(k)c(k)
end if

4. Simulation Results

In this section, we present simulations utilizing both synthetic and real-world data for the
algorithms explained in the previous section in order to verify the impact on the performance when the
data selection method is applied. Moreover, the desired probability of updating Pup is varied between
0% and 100%, and it is compared to the measured probability of update P̂up.
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4.1. Simulation 1: Equalizer

In this subsection, the channel we want to equalize is one of the FIR channel impulse responses
provided by The Signal Processing Information Base repository [20]. The complex channel taps were
obtained from digital microwave radio systems measurements, and the FIR model frequency response
is illustrated in black in Figure 2a. The transmitted signal s(k), modeled as realizations of a Gaussian
random variable with σ2

s = 1, transverses through the channel and it is corrupted by additive Gaussian
noise with σ2

n = 10−3. The adaptive filter performs the equalization and its output is an equalized
version of s(k). Each complex version of the data-selective algorithm is applied and their frequency
responses try to invert the channel behavior as illustrated in Figure 2a, for Pup = 1 and Pup = 0.45.
We used θ = 9× 10−4, γ = 1 and ν = 0.05 for both LMSN and LMSQN. For CG, we used λ = 0.9995
and η = 0.48. The filter order is N = 100. The error variance was estimated as in Equation (16) for
b = 0.9999. Since the channel coefficients are complex values, the threshold is computed as

τ = 2(1 + ρ)ln
(

1
Pup

)
(50)

where ρ = 0 [1]. The estimated probability of updating obtained by each algorithm is quite close
the prescribed Pup, as depicted in Figure 2b. As can be seen in Figure 3, it is possible to obtain the
transmitted signal with only 45% of the input data with almost the same accuracy obtained when 100%
of the input data are used.
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Figure 2. Simulation 1: (a) Frequency response of the channel and the data-selective filters
(b) Comparison between the desired Pup and achieved P̂LMSN

up , P̂LMSQN
up and P̂CG

up by the
data-selection algorithms.
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Figure 3. Simulation 1: Comparison between the transmitted and the recovered signal by the DS-CG,
DS-LMSQN and DS-LMSN algorithms for (a) Pup = 0.45 and (b) Pup = 1.
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4.2. Simulation 2: Prediction

The dataset used in this subsection is taken from anemometer readings provided by GoogleâAZs
RE < C Initiative [21]. The data consists of the wind’s speed recorded by five sensors on 25 May 2011.
The dataset is split into 40 sets of size 8192 in order to use the Monte Carlo method.

The performance of the MSE is verified in Figure 4a using Pup = 0.4. The parameters for the
DS-CG algorithm is λ = 0.98 and η = 0.48. Both the DS-LMSN and DS-LMSQN algorithms employed
ν = 0.1 and LMSN utilized θ = 0.1. All algorithms obtain a similar convergence with 40 independent
runs, but the DS-LMSQN algorithm achieves better performance due to its faster convergence to the
steady state. The employed adaptive filter order is N = 7.

In Figure 4b, the prescribed and observed probabilities of update are compared. We can observe
that all DS algorithms obtained an observed probability of update close to the prescribed one.
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Figure 4. Simulation 2: (a) Learning curves for the data selection and (b) Comparison between the
desired Pup and achieved P̂LMSN

up , P̂LMSQN
up and P̂CG

up by the data-selection algorithms.

The output of the prediction is illustrated in Figure 5a for Pup = 0.4 and Figure 5b for Pup = 0.7
between iterations 8000 and 8150. In both the cases, it was observed an acceptable performance in the
prediction, leading us to conclude that even if we perform a reduced number of updates, data selection
algorithms achieve an accurate prediction.
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Figure 5. Simulation 2: Comparison between the desired signal and the predicted by the DS-CG,
DS-LMSQN and DS-LMSN algorithms for (a) Pup = 0.4 and (b) Pup = 0.7.

4.3. Simulation 3: System Identification

In this simulation, our problem is to identify an unknown channel impulse response, described as:

h = [0.1010 0.3030 0 − 0.2020 − 0.4040 − 0.7071 − 0.4040 − 0.2020]T . (51)
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The unknown system output is written as d(k) = hTx(k) + n(k), where n(k) is a Gaussian noise
with zero mean and variance σ2

n = 10−3. We consider two cases of input signals: a first-order and a
fourth-order AR process, given by

x(k) =0.88x(k− 1) + n1(k),

x(k) =− 0.55x(k− 1)− 1.221x(k− 2)− 0.49955x(k− 3)

− 0.4536x(k− 1) + n2(k),

where n1(k) and n2(k) are samples from a Gaussian noise uncorrelated with the additional noise
n(k). The variances σ2

n1
and σ2

n2
are set such as the input signal is of unit variance. The parameters

employed in the system identification problem for conjugate gradient are λ = 0.98 and η = 0.48,
for both DS-LMSN and DS-LMSQN we set ν = 0.1 and for DS-LMSN θ = 0.1. The filter order is N = 7
with the purpose of ensuring the convergence of the filter coefficients to the optimal coefficients due to
channel size.

The learning curves of the algorithms are compared in Figure 6a for a prescribed probability of
update Pup = 0.4 and first-order AR input signal. It can be noted that all algorithms achieve good
performance even with a smaller amount of update. The DS-CG algorithm attains better performance
than the DS-LMSN and DS-LMSQN since it converges faster to the steady-state. The observed P̂up

and the prescribed Pup probabilities of update are depicted in Figure 6b. In all cases, these values are
close, except at low values of Pup where we obtained a bit more updates than the ones prescribed.
By using a fourth-order AR process as input signal in Figure 7, the results are similar to the first-order
AR, confirming the expected robustness with respect to the statistical properties of the input signal,
as long as the rank of its autocorrelation matrix does not become too small.
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Figure 6. Simulation 3 for first-order AR input signal: (a) Learning curves for the data selection
and (b) Comparison between the desired Pup and achieved P̂LMSN

up , P̂LMSQN
up and P̂CG

up by the
data-selection algorithms.

In another example utilizing a fourth-order AR input signal, we included an outlier signal affecting
the reference signal 1% of the time with an amplitude equal to five. The desired Pup = 0.3 was set,

and we measured the misalignment in the adaptive filter coefficients, defined as ‖w(k)−wo‖
‖wo‖ where wo

represents the optimal vector of coefficients, for the algorithms discussed in the paper. As observed
in Table 1, the misalignment is higher when ignoring the outliers and that the level of misalignment
achieved by considering outliers for Pup = 0.1 matches the one for Pup = 0.3 addressing the outliers.
It is also possible to verify that the proposed solutions approach the solution when the algorithms are
updated all the time.



Algorithms 2018, 12, 4 14 of 15

0 1000 2000 3000 4000 5000
-35

-30

-25

-20

-15

-10

-5

CG

LMSN

LMSQN

(a)

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(b)
Figure 7. Simulation 3 for fourth-order AR input signal: (a) Learning curves for the data selection and
(b) Comparison between the desired Pup and achieved P̂LMSN

up , P̂LMSQN
up and P̂CG

up by the data-selection
algorithms.

Table 1. Misalignment with outliers, in dBs.

Outlier Yes Yes Yes No

τmax on yes no yes no

Pup 0.3 0.3 0.1 1

DS-CG −33.29 −15.25 −30.47 −33.37

Average DS-LMSQN −32.75 −15.42 −32.45 −32.80

Misalignment (dB) DS-LMSN −31.17 −13.81 −30.39 −31.91

5. Conclusions

In this work, the data-selective versions of the LMSN, LMSQN and CG algorithms were explored
in different applications. The key idea is providing a systematic form to prescribe the probability of
update through a simple statistical model, where the environment data is classified as innovative,
non-innovative, and outlier. The data-selection can not only reduce the computational complexity but
also enhance the estimation accuracy when outliers are present. Simulation results on both real and
synthetic data show that the data selection strategy works for all types of applications of adaptive
filtering. Future work will address the extension of the data-selection approach to a broader class of
learning algorithms as well as its effectiveness in distributed adaptive networks.
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