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Abstract: In this paper, a robust guaranteed-cost preview repetitive controller is proposed
for a class of polytopic uncertain discrete-time systems. In order to improve the tracking
performance, a repetitive controller, combined with preview compensator, is inserted in the forward
channel. By using the L-order forward difference operator, an augmented dynamic system is
constructed. Then, the guaranteed-cost preview repetitive control problem is transformed into
a guaranteed-cost control problem for the augmented dynamic system. For a given performance
index, the sufficient condition of asymptotic stability for the closed-loop system is derived by using
a parameter-dependent Lyapunov function method and linear matrix inequality (LMI) techniques.
Incorporating the controller obtained into the original system, the guaranteed-cost preview repetitive
controller is derived. A numerical example is also included, to show the effectiveness of the proposed
method.

Keywords: robust control; preview control; repetitive control; controller design; uncertain systems

1. Introduction

In some control systems, it is hoped that the output can track the reference signal without
steady-state error, even in the presence of uncertainty and/or exogenous disturbances. Preview
control [1,2] is one of the many ways to solve this kind of control problem. The basic idea of preview
control is to use known future information of the reference or disturbance signals. It was found that
preview control can enhance performance of the closed-loop system [3]. In recent years, the problem
of preview control has received considerable attention and various control structures and algorithms
have been proposed [4–7].

As a typical regulator method, the linear quadratic regulator optimal control is a powerful
technique for designing preview controllers [8–10]. In [8], a preview-based linear quadratic design
method was investigated for reference-tracking motion control. In this way, the explicit implementation
formulas for feedforward controllers were derived that can be applied to a range of rigid-body
motion systems. In [9], a preview control using a feedforward-imperfect forecast measurement
of a disturbance signal was proposed, in the context of discrete-time linear quadratic Gaussian
control. In [10], the constrained optimal preview control of dual-stage actuators was proposed,
and the problem was solved in terms of quadratic programming. In [11], using the reference and
disturbance signal preview information, an optimal feed-forward preview controller was presented
for single-input single-output systems. In order to estimate the unmeasurable state vector, a state
observer-based optimal preview controller was developed in [12]. Other relevant work may refer
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to [13]. However, as well known, the classical LQR-based optimal preview control cannot be directly
applied to uncertain systems.

For uncertain systems, it will become difficult to design preview controller. In [14], a robust
tracking problem for a polytopic uncertain system subject to a previewable reference signal was
considered. In [15], a linear matrix inequality (LMI)-based robust preview tracking problems for
discrete systems with polytopic uncertainties was provided. In [16], the problem of multi-model
adaptive preview control was proposed for discrete-time systems with unknown piecewise constant
coefficients. In [17], the author overviewed the preview control research achievements and discussed
the main existing problems. Very recently, for a class of polytopic uncertain discrete systems, by
combining parameter-dependent Lyapunov function method with LMI techniques, a static output
feedback preview tracking controller was presented in [18]. For a class of uncertain discrete-time
systems, an LMI-based preview controller was proposed in [19]. The proposed method can be extended
completely to preview control for time varying systems.

Repetitive control (RC), which was first developed in the early 1980s [20], is a very useful strategy
for tracking periodic reference signals [21–23]. Although the repetitive control method was originally
proposed in continuous-time systems, it was realized by a digital computer in the actual applications.
The direct design of a repetitive controller in the discrete time domain is of practical significance.
In [24], a discrete-time variable-structure repetitive control was proposed. The presented control
scheme ensures robust stability of the resultant quasi-sliding-mode dynamics to parameter variations
and exogenous disturbances. The authors in [25] have investigated a positive realness problem,
raised in discrete repetitive control. The sufficient condition of the repetitive control stability can be
satisfied through constructing a discrete positive real transfer function. Based on two-dimensional
system theory, the problem of designing discrete-time repetitive-control systems was studied in [26,27].
By the same argument, the observer-based repetitive controller design method for discrete-time
systems with uncertainties was presented in [28]. Iterative learning control (ILC) [29] which imposes
a special boundary condition on the system, is closely related to repetitive control. In the case of
discrete linear dynamics, there are many methods for the ILC design. Recently, an innovative ILC
law which was augmented by a state feedback controller with a dynamic feedforward controller was
developed in [30,31]. The experimental results show that feedforward control can improve tracking
accuracy significantly.

On the other hand, for many control systems, when a system is dependent on uncertain parameters
it is desirable to design a control system that is not only asymptotically stable, but also guarantees
an adequate level of control performance. This kind of control problem is called guaranteed-cost
control [32,33]. For a class of uncertain discrete-time systems, a guaranteed-cost preview controller
was proposed in [19]. For discrete-time linear systems with uncertainties, a method of designing a
guaranteed-cost robust discrete repetitive controller based on two-dimensional model was proposed
in [34]. For continuous-time linear systems, the design of non-fragile guaranteed-cost repetitive control
was studied in [35]. It should be noted that guaranteed-cost preview repetitive control problems have
not been considered, so far.

In this paper, motivated by the above results, a new configuration of repetitive control system with
preview feedforward compensation, as well as the guaranteed-cost preview repetitive controller design
method is presented. Using the lift technique, an augmented state-space dynamic system is constructed.
The robust guaranteed-cost preview repetitive controller design problem is then transformed into the
guaranteed-cost control problem of the augmented system. By combining a parameter-dependent
Lyapunov function method with LMI techniques, the guaranteed-cost preview repetitive controller
is obtained.

The rest of this paper is organized as follows: Section 2 presents the problem formulation and
preliminaries. Section 3 describes the construction of an augmented dynamic system. The design
of the guaranteed-cost preview repetitive controller is explained in Section 4. Section 5 presents a
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numerical example, to demonstrate the effectiveness of the method. Finally, Section 6 gives some
concluding remarks.

Throughout this paper, Rn denotes n-dimensional Euclidean space, Rn×m is the set of all n×m
real matrices, I is the identity matrix of appropriate order, 0p×p is the p× p zero matrix (the subscript is
omitted, if the dimension is clear), and ∗ indicates the entries below the main diagonal of a symmetric
block matrix. The notation X > 0 (< 0) means that matrix X is positive (negative) definite.

2. Problem Formulation and Preliminaries

Consider the following uncertain SISO discrete-time system:{
x(k + 1) = A(θ)x(k) + B(θ)u(k) + Ed(k),
y(k) = Cx(k),

(1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input, d(k) ∈ Rp is the periodic disturbance, and
y(k) ∈ Rq is the output of the plant. E and C are constant matrices with appropriate dimensions. A(θ)

and B(θ) are uncertain matrices with appropriate dimensions, and are given by

[A(θ) B(θ)] =
s

∑
i=1

θi [Ai Bi] , (2)

where Ai and Bi, (i = 1, 2, . . . , s), are constant matrices with appropriate dimensions, and θ =

[θ1, θ2, · · · , θs]T is the uncertain constant parameter vector satisfying

θ ∈ Θ :=

{
θ ∈ Rs| θi ≥ 0, (i = 1, 2, . . . , s),

s

∑
i=1

θi = 1

}
. (3)

Let r(k) ∈ Rq be a periodic reference signal to be tracked by y(k) ∈ Rq, and

e(k) = r(k)− y(k) (4)

be the tracking error.
Throughout this paper, two assumptions are made:
A1: The reference signal r(k) and disturbance signal d(k) are periodic, both of period L.
A2: The preview lengths of the reference signal r(k) and disturbance signal d(k) are Mr and Md

(Mr, Md are less than L), respectively. That is, at each time k, the Mr (Md) future values, r(k + 1),
r(k + 2), . . ., r(k + Mr) (d(k + 1), d(k + 2), . . ., d(k + Md)), as well as the present and past values of the
reference signal, are available.

Remark 1. In fact, the disturbance signal and the reference signal are not necessarily the same period. In this
case, the period of the repetitive controller can be set as the minimum common multiple of the period of reference
signal and interference signal.

Remark 2. Assumption A2 implies that the reference and the disturbance signals are previewable. Conventional
discrete-time feedback control systems and the dynamic feedforward control scheme do not take full advantage of
the known future values; that is, Mr = 0 and Md = 0. Moreover, assumption A2 indicates that the previewable
reference and the disturbance signals have significantly impacted performance in the control system only for
a certain time period, during which the reference signal exceeds the preview length, and the impact is very
small [2,4,5].

Remark 3. The future values of the disturbance signal are assumed to be measured in assumption A2.
Admittedly, it is a very strong assumption. In most cases, the complete future disturbance signal cannot
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be measured directly. For some given control systems, the detailed mathematical modeling and estimation of
future disturbance signal can refer to [36,37].

The basic configuration of a discrete-time repetitive control system [38] is shown in Figure 1,
where P(z) is the compensated plant, r(k) is a periodic reference input with period L, and

CR(z) =
1

1− z−L (5)

is a repetitive controller. The output of the repetitive controller, v(k), is

v(k) =

{
v(k− L) + e(k), k ≥ L,
e(k), k < L.

(6)

C  (z)
R

P (z)−r(k) v(k) y(k) e (k)

z−L

Figure 1. Basic discrete-time repetitive-control system.

This paper concerns the repetitive-control system configuration in Figure 2, where G(z) is the
controlled plant as described in System (1). Kr(j), (j = 0, 1, 2, . . . , Mr), and Kd(j)(j = 0, 1, 2, . . . , Md)

are the gains of the reference signal and disturbance signal preview compensator, respectively. Ke(j),
(j = 0, 1, 2, . . . , L − 1), and Ky are the gains of the repetitive controller and the output feedback
controller, respectively.

The objective is to design a guaranteed-cost preview control law, with the form

u(k) =
L−1

∑
j=0

Ke(j)v(k− j) + Kyy(k) +
Mr

∑
j=0

Kr(j)r(k + j) +
Md

∑
j=0

Kd(j)d(k + j). (7)
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Figure 2. Configuration of repetitive-control system with preview compensation.

Remark 4. The preview repetitive controller (7) consists of four parts: The first part is repetitive control,
the second term represents output feedback, the third and the fourth represent the preview action based on the
future values of the previewable reference signal and the disturbance signal. Besides, considering that the system
states are not measurable, the static output feedback is used instead of taking the state feedback.

Remark 5. Based on a state feedback controller with integral action and a dynamic feedforward controller, a new
ILC structure was proposed in [31]. Similarly, the future values of the reference trajectory r(k) and the integral
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of the learning action are contained in the preview repetitive controller (7), which can be viewed as a feedforward
controller and help the system reduce static errors.

For an uncertain discrete-time system (1), we introduce a quadratic cost function

J =
∞

∑
k=0

[
e(k)TQee(k) + ∆u(k)T R∆u(k)

]
, (8)

where ∆u(k) = u(k) − u(k − L), Qe, and R are the given symmetric, positive definite
weighting matrices.

A guaranteed-cost preview controller is defined as follows.

Definition 1. For the uncertain discrete-time system (1) and the cost function (8), if there exists a preview
repetitive-control law (7) that produces a control input u∗(k), a positive constant J∗ such that lim

k→∞
e(k) = 0,

and, for all admissible uncertainties, the closed-loop system is robustly stable and the value of the cost function (8)
satisfies J ≤ J∗, then J∗ is said to be a guaranteed cost and u∗(k) is said to be a guaranteed-cost preview
repetitive-controller for the cost function (8).

To obtain our main results, the following lemmas will be used.

Lemma 1 (Schur complement [39]). For a real matrix Σ = ΣT , the following assertions are equivalent:

i. Σ :=

[
Σ11 Σ12

? Σ22

]
> 0.

ii. Σ11 > 0, and Σ22 − ΣT
12Σ−1

11 Σ12 > 0.
iii. Σ22 > 0, and Σ11 − Σ12Σ−1

22 ΣT
12 > 0.

Lemma 2 ([40]). For the matrices L ∈ Rn×n, H ∈ Rn×n, and H > 0, one has

− LT H−1L ≤ −L− LT + H. (9)

Lemma 3 ([41]). For appropriately dimensioned matrices T, S, R, N, and scalar β, T + ST RT + RS < 0 if the
following condition holds: [

T (βRT + NST)T

βRT + NST −βN − βNT

]
< 0. (10)

3. Construction of Augmented Dynamic System

In this section, we will construct an augmented dynamic system that includes previewed information,
error vectors, and states of the system by using the L-order forward difference operator. Moreover,
the augmented performance index will be also given.

For all the system variables, define the L-order forward difference operator as

∆ξ(k) = ξ(k)− ξ(k− L), ξ ∈ {x, y, u, r, d}. (11)

Taking the L-order difference operator on both sides of the state Equation (1) and error Equation (4),
we derive 

e(k + 1) = e(k + 1− L) + ∆r(k + 1)− CA(θ)∆x(k)
− CB(θ)∆u(k)− CE∆d(k),

∆x(k + 1) = A(θ)∆x(k) + B(θ)∆u(k) + E∆d(k),
∆y(k) = C∆x(k).

(12)
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Defining {
xe(k) = [eT(k) eT(k− 1) · · · eT(k− L + 1)]T ,
x(k) = [xT

e (k) ∆xT(k)]T ,
(13)

and combining (12) and (13), we have

x(k + 1) = A(θ)x(k) + B(θ)∆u(k) + Gr∆r(k + 1) + Gd∆d(k), (14)

where

A(θ) =


0 · · · 0 I −CA(θ)

I · · · 0 0 0
...

...
...

...
0 · · · I 0 0
0 · · · 0 0 A(θ)

 ,

B(θ) =


−CB(θ)

0
...
0

B(θ)

 , Gr =


I
0
...
0
0

 , Gd =


−CE

0
...
0
E

 .

From (2), the uncertain matrices A(θ) and B(θ) can be rewritten as

A(θ) =



0 · · · 0 I −C
s
∑

i=1
θi Ai

I · · · 0 0 0
...

...
...

...
0 · · · I 0 0

0 · · · 0 0
s
∑

i=1
θi Ai



=
s

∑
i=1

θi


0 · · · 0 I −CAi
I · · · 0 0 0
...

...
...

...
0 · · · I 0 0
0 · · · 0 0 Ai

 =
s

∑
i=1

θi Ai,

(15)

B(θ) =



−C
s
∑

i=1
θiBi

0
...
0

s
∑

i=1
θiBi


=

s

∑
i=1

θi


−CBi

0
...
0
Bi

 =
s

∑
i=1

θiBi. (16)

For the uncertain system (14), we specify the observation equation as

e(k) = Cx(k), (17)

where C = [Iq 0q×[(L−1)q+n]].
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Defining

Xr(k) =


∆r(k)

∆r(k + 1)
...

∆r(k + Mr)

 , Xd(k) =


∆r(k)

∆r(k + 1)
...

∆r(k + Md)

 , (18)

it follows from assumptions A1 and A2 that Xr(k), Xd(k) satisfy

Xr(k + 1) = ArXr(k), (19)

Xd(k + 1) = AdXd(k), (20)

where Ar ∈ Rq(Mr+1)×q(Mr+1), Ad ∈ Rp(Md+1)×p(Md+1), and

Ar =



0 I 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . 0
0 · · · · · · 0 I
0 · · · · · · 0 0


, Ad =



0 I 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . 0
0 · · · · · · 0 I
0 · · · · · · 0 0


.

Now, defining the augmented state vector

x̂(k) =

 x(k)
Xr(k)
Xd(k)

 , (21)

from (14), (19) and (20), we obtain the augmented system

x̂(k + 1) = Â(θ)x̂(k) + B̂(θ)∆u(k), (22)

where

Â(θ) =


s
∑

i=1
θi Ai Gxr Gxd

0 Ar 0
0 0 Ad

 =
s

∑
i=1

θi

 Ai Gxr Gxd
0 Ar 0
0 0 Ad

 =
s

∑
i=1

θi Âi, (23)

B̂(θ) =


s
∑

i=1
θiBi

0
0

 =
s

∑
i=1

θi

 Bi
0
0

 =
s

∑
i=1

θi B̂i, (24)

Gxr =
(

0 Gr 0 · · · 0
)

, Gxd =
(

Gd 0 0 · · · 0
)

. (25)

For the augmented system (22), the observation equation can be written as

Z(k) = CZ x̂(k), (26)

where

CZ =


IL

C
IMr+1

IMd+1

 .
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From (22) and (26), we get{
x̂(k + 1) = Â(θ)x̂(k) + B̂(θ)∆u(k),
Z(k) = CZ x̂(k).

(27)

In terms of the augmented state vector x̂(k), the performance index (8) can be rewritten as

Ĵ =
∞

∑
k=0

[
x̂(k)TQx̂ x̂(k) + ∆u(k)T R∆u(k)

]
, (28)

where Qx̂ ∈ R[L×q+n+(Mr+1)×q+(Md+1)×p]×[L×q+n+(Mr+1)×q+(Md+1)×p], and

Qx̂ =


Qe

0
. . .

0

 ,

and R is the same as in performance index (8).

4. Design of the Guaranteed-cost Preview Repetitive Controller

Note that the proposed preview repetitive controller (7) can be written as

∆u(k) =
L−1

∑
j=0

Ke(j)e(k− j) + Ky∆y(k)

+
Mr

∑
j=0

Kr(j)∆r(k + i) +
Md

∑
j=0

Kd(j)∆d(k + j). (29)

Set

Ke(j) =
s

∑
i=1

αiKei(j), Ky =
s

∑
i=1

αiKyi,

Kr(j) =
s

∑
i=1

αiKri(j), Kd(j) =
s

∑
i=1

αiKdi(j), (30)

where αi (i = 1, 2, . . . , s) are adjustable variables and αi ≥ 0,
s
∑

i=1
αi = 1. Furthermore, denoting

Ki = [Kei(0), Kei(1), · · · , Kei(L− 1), Kyi,

Kri(0), Kri(1), · · · , Kri(Mr),

Kdi(0), Kdi(1), · · · , Kdi(Md)], (31)

it follows from (29)–(31) that we have

∆u(k) = (
s

∑
i=0

αiKi)Z(k). (32)

If we denote α = (α1 α2 . . . αs)T ∈ Rs and K(α) =
s
∑

i=1
αiKi, then

∆u(k) = K(α)Z(k). (33)
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Therefore, the guaranteed-cost preview repetitive control problem is transformed into the
guaranteed-cost static output feedback control problem for the augmented dynamic system (27).

In the following, we will give some sufficient conditions for the existence of a guaranteed-cost
static output feedback controller (33) for the augmented dynamic system (27).

Theorem 1. For the augmented dynamic system (27) with performance index (28), if there exists a positive

defined parameter-dependent matrix P(θ) and an invertible matrix G(α) =
s
∑

i=1
αiGi such that

 Π11 ∗ ∗[
Â(θ) + B̂(θ)K(α)CZ

]
G(α) −P(θ)−1 ∗

R
1
2 K(α)CZG(α) 0 −I

 < 0, (34)

where
Π11 = −G(α)T − G(α) + P(θ)−1 + G(α)TQx̂G(α),

Qx̂ and R are the weighting matrices in performance index (28), then the static output feedback controller (33) is
a guaranteed-cost controller and the performance index satisfies Ĵ ≤ x̂T

0 P(θ)x̂0, where x̂0 is the initial state of
augmented error system (27).

Proof. The proof is given in the Appendix A.

The following result is equivalent to Theorem 1.

Theorem 2. For the dynamic system (27) with performance index (28), if there exists a positive defined
parameter-dependent matrix X(θ); invertible matrices W, U, and G(α); and a scalar β, such that

Π(θ, α) =


Ψ11 ∗ ∗ ∗
Ψ21 −X(θ) ∗ ∗

R
1
2 L(α)Qx̂ 0 −I ∗

CzG(α)−UQx̂ Ψ42 βWT L(α)T R
1
2 Ψ44

 < 0, (35)

where

Ψ11 = −G(α)− G(α)T + X(θ) + G(α)TQx̂G(α),

Ψ21 = Â(θ)G(α) + B̂(θ)L(α)Qx̂,

Ψ42 = βWT L(α)T B̂(θ)T ,

Ψ44 = −βUW − βUTWT ,

and Qx̂ and R are the weighting matrices in performance index (28), then the conclusion of Theorem 1 holds.

Proof. The proof is given in the Appendix B.

It should be pointed out that the condition (35) in Theorem 2 is not a convex problem.
The following theorem can translate it into an LMI problem.

Theorem 3. Given a scalar β and matrix W, if there exists Xi > 0, U, Li, and Gi, (i = 1, 2, 3 . . . , s), with
appropriate dimensions such that

Πij < 0 (i, j ∈ 1, 2, · · · , s), (36)
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where

Πij =



−Gj − GT
j + Xi ∗ ∗ ∗ ∗

ÂiGj + B̂iLjQx̂ −Xi ∗ ∗ ∗
R

1
2 LjQx̂ 0 −I ∗ ∗

CziGj −UQx̂ βWT LT
j B̂T

i βWT LT
j R

1
2 Ψ44 ∗

Q
1
2
x̂ Gj 0 0 0 −I


, (37)

Ψ44 is defined in Theorem 2, and Qx̂ and R are the weighting matrices in performance index (28), then the
augmented system (27) is robustly asymptotically stable under the guaranteed-cost controller (32), and the gain
matrix can be obtained by Ki = LiU−1. Moreover, the corresponding closed-loop performance index satisfies

Ĵ ≤
s
∑

i=1
x̂T

0 X−1
i x̂0.

Proof. Setting X(θ) =
s
∑

i=1
θiXi, from (23), and taking into account the definition of K(α)andG(α),

one gets

Π(θ, α) =
s

∑
i=1

s

∑
j=1

θiαjΠij. (38)

In fact, inequality (36) implies Π(θ, α) < 0. As a result, the condition of Theorem 2 holds.
The proof is completed.

Remark 6. Note that the controller is still generated, based on the traditional LQR approach. With different
weighting matrices Qe and R, various gain matrices can be obtained, which indicates that the controller is
non-optimal in a true sense. In recent studies, plenty of methods have been reported to solve this type of
optimization problem, such as the adaptive particle swarm optimization method [42] and genetic algorithms [43].

Based on Theorem 3, the following conclusion can be obtained easily.

Corollary 1. Given a scalar β and matrix W, if there exist X > 0, U, L, and G, with appropriate dimensions
such that

Ψi < 0 (i ∈ 1, 2, 3, . . . , s), (39)

where

Ψi =


−G− GT + X ∗ ∗ ∗ ∗
ÂiG + B̂iLQx̂ −X ∗ ∗ ∗

R
1
2 LQx̂ 0 −I ∗ ∗

CziG−UQx̂ βWT LT B̂T
i βWT LT R

1
2 Ψ44 ∗

Q
1
2
x̂ G 0 0 0 −I

 < 0,

then the augmented system (27) is robustly asymptotically stable under the guaranteed cost controller

∆u(k) = KZ(k) = LU−1Z(k). (40)

Moreover, the corresponding closed-loop performance index satisfies Ĵ ≤ x̂T
0 X−1 x̂0.

5. Numerical Example

Consider the discrete-time system (1) with
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A(θ) =

(
0.60 0.10
0.45 0.80

)
θ1 +

(
0.95 0
0.10 0.96

)
θ2,

B(θ) =

(
0.35
0.14

)
θ1 +

(
0.30
0.34

)
θ2, E =

(
0.02
0.05

)
, C =

[
0.9 0.5

]
.

Take the uncertain parameters θ1 = 0.20, θ2 = 0.80. Set the initial value of x(k) as x(0) = [0 0]T .
Assume that the reference signal is

r(k) = sin(
2π

10
k) + 0.25 sin(

4π

10
k) + 0.5 sin(

6π

10
k),

and the disturbance signal is d(k) = sin( 2π
10 k).

As previously highlighted, one of the difficulties in an LQR design is the determination of the
weighting matrices. In this study, we obtained the weighting matrices, after many attempts, and found
that Qe = 10, R = 0.01 is a good alternative.

The simulation results are first presented for the following three situations: Namely,
(i) Mr = 7, Md = 6, (ii) Mr = 5, Md = 4 and (iii) Mr = 2, Md = 1. The adjustable parameters are
given as β = 0.40 and α1 = 0.80, α2 = 0.20, W = 0.3CZCT

Z. By solving the LMIs (36) in Theorem 3, the
feedback gain matrix Ki = LiU−1(i = 1, 2) can be derived, and then the feedback gain K = α1K1 + α2K2

is obtained.
When Mr = 7, Md = 6, the following parameters are obtained:

Ke = [0.0279 − 0.0065 − 0.0013 − 0.0004 − 0.0003 − 0.0007

− 0.0011 0.0001 0.0376 2.3171], Ky = −2.2477,

Kr = [−0.0037 2.3171 0.0377 − 0.0001

− 0.0014 − 0.0010 − 0.0007 − 0.0009],

Kd = [−0.1006 − 0.0005 0.0006 0.0003 0.0002 0.0001 0.0001].

When Mr = 5, Md = 4, Ke, Ky, Kr, and Kd will be:

Ke = [0.0212 − 0.0064 − 0.0013 − 0.0004 − 0.0003 − 0.0007

− 0.0011 0.0002 0.0376 2.3167], Ky = −2.2477,

Kr = [−0.0029 2.3160 0.0372 − 0.0004 − 0.0018 − 0.0015],

Kd = [−0.1005 − 0.0004 0.0006 0.0004 0.0002].

When Mr = 2, Md = 1, the following gain matrices will be obtained:

Ke = [0.0445 − 0.0046 − 0.0018 − 0.0008 − 0.0008 − 0.0013

− 0.0018 − 0.0005 0.0397 2.3239], Ky = −2.2532,

Kr = [−0.0008 2.3233 0.0386], Kd = [−0.1005 − 0.0002].

Figure 3 shows the reference signal r(k) and the output y(k) of the closed-loop system (1).
The tracking errors and control inputs are depicted in Figures 4 and 5, respectively. It can be seen
from Figures 3 and 4 that all of the outputs can track the reference signal accurately. Particularly, the
repetitive control with preview compensator can effectively reduce the tracking error. In addition, the
tracking error peak decrease is faster with an increase of the preview length.

Note that a perfect estimation of the disturbance signal can hardly be available in practical
applications. Next, the robustness of the proposed controller, with respect to the previewed disturbance
signal, will be checked. To this end, in the case of Mr = 7, Md = 6, we added an exogenous disturbance
ω(k) = 0.5 cos( 2π

5 k) in the forward control input channel. Figure 6 illustrates that the output can track
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the reference signal effectively, even with the exogenous disturbance. The preview repetitive controller
guarantees the robustness of the closed-loop system.

As pointed out in [2,4,5], the previewable reference and the disturbance signals have significantly
impacted performance in the control system only for a certain time period, during which the reference
signal exceeds the preview length, and the impact is very small. In the following, the limited
performance with respect to the preview length will be inspected. To simplify this discussion, we set
Md = 0, and let the preview length of Mr be Mr ∈ {1, 2, 7, 8, 9}.
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Figure 3. The reference signal and the outputs of the closed-loop system with different preview length.
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By solving the LMIs (36) in Theorem 3, the gain matrices are obtained in Table 1. The tracking
error curves, corresponding with the preview length Mr = 7, 8, 9, are shown in Figure 7. From Table 1
and Figure 7, we see that the gain matrices have little change when the preview length exceeds 7.
The closed-loop control system achieves the best performance when Mr = 7. It indicates that, when
the preview length reaches a certain degree, there is almost no effect on the output response, which is
consistent with Remark 6 and the conclusion of preview control theory [9,12,19].

Table 1. Gain matrices with different preview length of Mr.

Mr Ke Ky Kr

1 [0.0563 −0.0045 −0.0019 −0.0009 −0.0009 −0.0013 −2.3632 [−0.0104 2.5237]
−0.0023 −0.0007 0.0397 2.4240]

2 [−0.0451 −0.0073 −0.0014 −0.0004 −0.0008 −0.0008 −2.2864 [−0.0085 2.4135 0.0452]
−0.0026 0.0006 0.0385 2.4005]

7 [0.0300 −0.0062 −0.0014 -0.0005 −0.0004 −0.0007 −2.2472 [−0.0035 2.3169 0.0380 −0.0002 −0.0015 −0.0011
−0.0012 0.0003 0.0378 2.3170] −0.0008 −0.0010]

8 [0.0302 −0.0062 −0.0016 −0.0005 −0.0004 −0.0007 −2.2472 [−0.0038 2.3175 0.0382 −0.0002 −0.0014 −0.0010
−0.0012 0.0001 0.0379 2.3173] −0.0006 −0.0007 −0.0022]

9 [0.0306 −0.0066 −0.0015 −0.0005 −0.0004 −0.0007 −2.2483 [−0.0040 2.3196 0.0378 −0.0001 −0.0013 −0.0009
−0.0012 −0.0001 0.0379 2.3173] −0.0006 −0.0007 −0.0018 −0.0081]
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Figure 7. The tracking errors with different preview length of Mr.

Finally, for comparison, we let Mr = Md = 0, to design a conventional guaranteed-cost
repetitive-controller [34,35]. The best results are shown in Figures 8 and 9. From the comparison,
we can see that the preview repetitive controller provides better performance than the repetitive
controller with no preview compensation.
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6. Conclusions

This paper presented a design method of a guaranteed-cost preview repetitive controller for a
class of polytopic uncertain discrete-time systems. Using the L-order forward difference operator,
an augmented dynamic system was first constructed. Based on that, a guaranteed-cost static output
feedback controller was then designed. By incorporating this controller into the original system,
the guaranteed-cost preview repetitive controller was obtained. Simulation results verified the
proposed method to be very effective. Our future work includes ILC and high-order ILC with
preview compensation. Moreover, the case of continuous dynamics will also be included.
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Appendix A. Proof of Theorem 1

Based on (27) and (33), the following equation will be obtained:

x̂(k + 1) = [Â(θ) + B̂(θ)K(α)CZ]x̂(k). (A1)

Define a Lyapunov functional as

V(x̂(k)) = x̂(k)T P(θ)x̂(k), (A2)
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where P(θ) is a positive definitive matrix. The difference of the Lyapunov function (A2) can be
obtained as

∆V(x̂(k)) = V(x̂(k + 1))−V(x̂(k))
= x̂(k + 1)T P(θ)x̂(k + 1)− x̂(k)T P(θ)x̂(k)
= x̂(k)T [Â(θ) + B̂(θ)K(α)CZ]

T P(θ)[Â(θ)+

B̂(θ)K(α)CZ]x̂(k)− x̂(k)T P(θ)x̂(k).

(A3)

If the following condition

[Â(θ) + B̂(θ)K(α)CZ]
T P(θ)[Â(θ) + B̂(θ)K(α)CZ]

−P(θ) + Qx̂ + CT
ZK(α)T RK(α)CZ < 0

(A4)

holds, then it follows from (A3) that one has

∆V(x̂(k)) < −x̂(k)T(Qx̂ + CT
ZK(α)T RK(α)CZ)x̂(k) < 0. (A5)

Thus, according to Lyapunov’s stability theory, the closed-loop system (A1) is robust asymptotically
stable. Furthermore, from (A5), we have

x̂(k)T(Qx̂ + CT
ZK(α)T RK(α)CZ)x̂(k) < −∆V(x̂(k)). (A6)

Summing both sides of the above inequality from k = 1 to k = ∞, it yields

J̄ =
∞

∑
k=1

[x̂(k)TQx̂ x̂(k) + ∆u(k)T R∆u(k)] ≤ x̂T
0 P(θ)x̂0. (A7)

On the other hand, applying the Schur complement lemma, condition (A4) can be equivalent to −P(θ) + Qx̂ ∗ ∗
Â(θ) + B̂(θ)K(α)CZ −P(θ)−1 ∗

R
1
2 K(α)CZ 0 −I

 < 0. (A8)

Pre- and post-multiplying inequality (A8) by diag
{

G(α)T , I, I
}

and its transpose, respectively,
one gets  Λ11 ∗ ∗[

Â(θ) + B̂(θ)K(α)CZ

]
G(α) −P(θ)−1 ∗

R
1
2 K(α)CZG(α) 0 −I

 < 0, (A9)

where Λ11 = −G(α)T P(θ)G(α) + G(α)TQx̂G(α).
From the Schur complement lemma, the above inequality (A9) is equivalent to

G(α)T [Â(θ) + B̂(θ)K(α)CZ]
T P(θ)[Â(θ) + B̂(θ)K(α)CZ]G(α)

−G(α)T P(θ)G(α) + G(α)TQx̂G(α) + G(α)TCT
ZK(α)T RK(α)CZG(α) < 0.

(A10)

It follows from Lemma 2 that

− G(α)T P(θ)G(α) ≤ −G(α)T − G(α) + P(θ)−1. (A11)

Therefore, if

G(α)T [Â(θ) + B̂(θ)K(α)CZ]
T Pblue(θ)[Â(θ) + B̂(θ)K(α)CZ]G(α)

−G(α)T − G(α) + P(θ)−1 + G(α)TQx̂G(α) + G(α)TCT
ZK(α)T RK(α)CZG(α) < 0,

(A12)
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then inequality (A10) must hold. Using the Schur complement lemma again, inequality (A12) is
equivalent to (34). The proof is completed.

Appendix B. Proof of Theorem 2

Denote

Ã =

(
Â
0

)
, B̃ =

(
B̂

R
1
2

)
, Φ(θ) =

(
X(θ) 0

0 I

)
. (A13)

Inequality (35) can be written as Ψ11 ∗ ∗
Ã(θ)G(α) + B̃(θ)L(α)Qx̂ −Φ(θ) ∗

CZG(α)−UQx̂ βWT L(α)T B̃(θ)T Ψ44

 < 0, (A14)

or 
(

Ψ11 ∗
Ã(θ)G(α) + B̃(θ)L(α)Qx̂ −Φ(θ)

)
∗

Ξ31 Ψ44

 < 0, (A15)

where
Ξ31 = βWT L(α)T B̃(θ)T

[
0 I

]
+ UWW−1U−1(CZG(α)−UQx̂)

[
I 0

]
.

We further denote

T =

[
−G(α)− G(α)T + X(θ) + G(α)TQx̂G(α) ∗

Ã(θ)G(α) + B̃(θ)L(α)Qx̂ −Φ(θ)

]
,

N = UW, R =

[
0
I

]
B̃(θ)L(α)W,

S = W−1U−1(CZG(α)−UQx̂)
[

I 0
]

.

By Lemma 3, inequality (A15) can guarantee that(
−G(α)− G(α)T + X(θ) + G(α)TQx̂G(α) ∗

Ã(θ)G(α) + B̃(θ)L(α)Qx̂ −Φ(θ)

)

+ sym

([
0
I

]
B̃(θ)L(α)WW−1U−1(CZG(α)−UQx̂)

[
I 0

])

=

(
−G(α)− G(α)T + X(θ) + G(α)TQx̂G(α) ∗

Ã(θ)G(α) + B̃(θ)L(α)Qx̂ −Φ(θ)

)

+ sym

([
0
I

]
B̃(θ)L(α)U−1(CZG(α)−UQx̂)

[
I 0

])
(A16)

=

(
−G(α)− G(α)T + X(θ) + G(α)TQx̂G(α) ∗

Ã(θ)G(α) −Φ(θ)

)

+ sym

([
0
I

]
B̃(θ)L(α)U−1(CZG(α) + UQx̂ −UQx̂)

[
I 0

])
< 0.
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Setting K(α) = L(α)U−1, then inequality (A17) becomes(
−G(α)− G(α)T + X(θ) + G(α)TQx̂G(α) ∗

Ã(θ)G(α) −Φ(θ)

)

+ sym

([
0
I

]
B̃(θ)K(α)(CZG(α))

[
I 0

])

=

(
−G(α)− G(α)T + X(θ) + G(α)TQx̂G(α) ∗

Ã(θ)G(α) + B̃(θ)K(α)CZG(α) −Φ(θ)

)
< 0.

(A17)

By calculation, it can be found that(
−G(α)− G(α)T + X(θ) + G(α)TQx̂G(α) ∗

Ã(θ)G(α) + B̃(θ)K(α)CZG(α) −Φ(θ)

)

=

 −G(α)− G(α)T + X(θ) + G(α)TQx̂G(α) ∗ ∗
Â(θ)G(α) + B̂(θ)K(α)CZG(α) −X(θ) ∗

R
1
2 K(α)CZG(α) 0 −I

 .

(A18)

Setting X(θ) = P(θ)−1, it follows from Theorem 1 that Theorem 2 holds.
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