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Abstract: Link prediction is a task predicting whether there is a link between two nodes in a
network. Traditional link prediction methods that assume handcrafted features (such as common
neighbors) as the link’s formation mechanism are not universal. Other popular methods tend to
learn the link’s representation, but they cannot represent the link fully. In this paper, we propose
Edge-Nodes Representation Neural Machine (ENRNM), a novel method which can learn abundant
topological features from the network as the link’s representation to promote the formation of the
link. The ENRNM learns the link’s formation mechanism by combining the representation of edge
and the representations of nodes on the two sides of the edge as link’s full representation. To predict
the link’s existence, we train a fully connected neural network which can learn meaningful and
abundant patterns. We prove that the features of edge and two nodes have the same importance in
link’s formation. Comprehensive experiments are conducted on eight networks, experiment results
demonstrate that the method ENRNM not only exceeds plenty of state-of-the-art link prediction
methods but also performs very well on diverse networks with different structures and characteristics.

Keywords: link prediction; full representation; formation mechanism; neural network

1. Introduction

Many parts of the world can be considered as an enormous network where all the people and
objects are the nodes, the relationships between people and objects are the edges. In the big world
network, there are plenty of small networks such as social network [1], power network [2] and
protein network [3]. In recent years, researchers pay abundant effort on the evolution of the network,
where the most fundamental and vital task is link prediction [1] that predicts whether there is a link
between two nodes in a network. Link prediction has appealed large amounts of attention in the data
mining and machine learning fields, since link prediction can apply in lots of situations such as friend
recommendation in social network [4], product recommendation in e-commerce system [5], relationship
discovery in knowledge graphs [6], finding some interesting interactions among proteins [7].

In the past few decades, many methods are developed to improve the performance of link
prediction, some methods are very complicit such as probabilistic matrix factorization [8] and stochastic
block models (SBM) [9]. Other simple methods of link prediction tend to learn a heuristic score to
measure the similarity or connectivity of two nodes, namely two nodes have a high probability to be
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connected if they are similar to each other. For instance, common neighbors (CN) [1] heuristic assumes
that the more common neighbors two nodes have, the more likely there is a link between them. It is
obvious that this heuristic is easy-understanding and simple, but surprisingly it performs very well on
social networks. Besides, other heuristics including Adamic-Adar (AA) [4], preferential Attachment
(PA) [10], resource allocation (RA) [11], Katz [12], PageRank (PR) [1], SimRank (SR) [13], resistance
distance (RD) [14] also have good performance on different networks.

However, none of these methods are suitable for all kinds of networks with different structures
and characteristics. For example, the common neighbors [1] heuristic has good performance when
predicting the co-authorships in collaboration networks and the friendships in social networks,
but it performs poorly when predicting links on the biological networks and power networks [15].
Meanwhile, the resistance distance [14] heuristic works surprisingly well on the power grids and
router-Level networks but has low accuracy when predicting links on social networks. A paper [15]
compares 20 heuristics and concludes that none of these heuristics can have good performance on all
kinds of networks. In that case, people need to choose these methods manually based on experience
and prior knowledge when predicting links on different networks.

Due to the limitation of above methods, Zhang et al. proposed a meaningful and universal
method named Weisfeiler-Lehman Neural Machine (WLNM) [16], which learns topological features in
the form of graph patterns that promote the formation of the link. WLNM firstly extracts an enclosing
subgraph for each target link and encodes the subgraph to an adjacency matrix as link’s representation.
Then WLNM trains a neural network to predict whether the target link exists. To speak more clearly,
WLNM tends to use the link’s surrounding environment to represent the link. Actually, the link is
equal to the edge to some extents. So WLNM can be considered as generating edge’s representation to
represent the link. However, as shown in Figure 1, a link’s formation may be related to edge E; and two
nodes A and B on the two sides of the edge. Actually, WLNM only employs the edge’s representation
of the target link when predicting the link’s existence. Thus, the method may lose the most critical
node’s information, leading to poor performance on some networks.

Figure 1. A link’s formation.

Recently, many graph embedding methods are proposed to represent the graph more effectively,
such as deepwalk [17], Node2vec [18] and LINE [19]. These methods generate the node’s embedding,
all the nodes are represented in the form of vectors produced by the learning models such as skip-gram
model. After generating the node’s embedding, researchers combine the two nodes’ representations in
different manners such as summing to represent link for the link prediction task. However, the method
loses the link’s surrounding environment information which can be considered as edge’s representation
in this paper.

To get better performance, its necessary to represent each target link entirely, including edge’s
representation and nodes’. Therefore, we propose a new link prediction method Edge-Nodes
Representation Neural Machine (ENRNM) which learns each target link’s representation fully. For each
target link, ENRNM learns the edge’s representation through the WLNM [16] and two nodes’
representations which can be learned in the network embedding models [20] simultaneously. Then
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ENRNM joints edge and two nodes’ representations vertically as link’s representation. Since the neural
network has powerful ability to learn patterns automatically from the input sequent data, we train a
fully connected neural network where the input is the target link’s representation and the output is a
probability indicating the possibility of the target link’s existence. We show the framework of ENRNM
in Figure 2. For an observed or unobserved link, we learn the edge and two nodes’ representations,
then link’s representation and label are fed into the neural network together.

[ edge’s representation

[ nodes’ representations

Neural
network

S 7

= 0

Figure 2. The ENRNM framework, the green strips indicate the edges’ representations generated
from the subgraphs and the yellow strips indicate the nodes’ representations. For each target link, we
combine the edge and two nodes’ representations as link’s representation namely formation mechanism.
A neural network is used to predict whether the link exists.

The contributions of our paper are summarized as follows.

e  We propose Edge-Nodes Representation Neural Machine (ENRNM), a novel link prediction
framework to learn the link’s representation from the given network automatically.

o  We propose a new method to represent the link fully by combining the edge’s representation with
the two nodes’ representations on the two sides of the edge, so that the neural network can learn
abundant, meaningful patterns and link formation mechanism.

The rest of the paper is organized as follows. In Section 2, we discuss the related work, and
in Section 3, we introduce our framework ENRNM in detail. The experiments and the results are
presented in Section 4. Finally, we draw a conclusion and discuss the future work in Section 5.

2. Related Work

In the past few decades, link prediction has drawn lots of researchers’ attention. Many useful
methods have been proposed for link prediction task, which can be divided into three categories:
topological feature-based, latent feature-based and link embedding-based. The details are explained in
the following.

Topological feature-based method extracts the features hidden inside the nodes and edges
structures. A heuristic score is used to measure the similarity and connectivity between two nodes.
Many heuristic methods perform very well on improving the accuracy of link prediction. Common
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neighbors (CN) [1] predicts link’s existence by the amounts of common neighbors of two nodes.
Jaccard [21] considers that a link may exist when the common neighbors account for a high percentage
of all neighbors of two nodes. Adamic-Adar (AA) [4] assumes that the common neighbors play an
important role in a link’s formation if the neighbors” number of these common neighbors is small.
Besides, there are many other popular heuristic methods as shown in Table 1, empirical comparisons
of these heuristics on different networks can be found in [22].

Table 1. Popular heuristics for link prediction. I'(x) is the neighbors set of node x. I, is the (x,y) entry
of the pseudoinverse of the graph’s Laplacian matrix. [nx]y is the stationary distribution probability of
y under the random walk from x. § is a damping factor whose value is less than 1. walks' (x, y) denotes
the number of /-length paths from x to y.

Method Formula
common neighbors IT(x)NT(y)]|
IT(x) NT(y)]
Jaccard W T
IT(x) UT(y)|
preferential attachment IT(x)| % |T(y)]

. 1
Adamic-Adar Y2eT(x)NT(y) 10g(T(2)

L
IC(z)]

resource allocation Yzer(x)nr(y)

1

resistance distance —_
l;fx + ljy — 2ljy

PageRank (7], + [7ty]

Katz Y521 BHlwalks! (x,y)]

Latent feature-based method tends to get the representations and properties of nodes, which are
often obtained in the way of factorizing a matrix [23] such as the adjacency matrix or the Laplacian
matrix. Through factorizing a matrix, we can get the representation of each node in the form of
a low-dimension vector. Then we can conduct the link prediction task by combining two nodes’
low-dimension vectors as link’s representation for each link. Latent feature-based methods focus on
the individual nodes and miss the structural similarities between nodes, high-dimension vectors are
needed if we want to utilize the heuristic information.

Link embedding-based method is an emerging approach, it learns a link’s formation mechanism
from the network by itself other than assuming a particular mechanism (such as common neighbors).
A typical method is WLNM [16] which extracts an enclosing subgraph for each link and encodes the
subgraph to an adjacency matrix as link’s surrounding environment, namely the link’s representation.
A neural network is trained to predict the link’s existence. The method is universal for the reason
that it works well on almost all kinds of networks, and it outperforms many other methods. Another
method SEAL [24] also performs pretty well on all kinds of networks. SEAL learns link’s formation
mechanism from subgraph, node embedding, attributes and trains a graph neural network(GNN) for
link prediction.

Another link embedding-based method does not acquire link embedding directly but represents
the link by combining the two nodes’ representations on the two sides of the edge in different manners.
Network embedding has been a hot topic recently because of the pioneering work DeepWalk [17].
DeepWalk uses random walks beginning from a node as a node sentence which is similar to a word
sentence, then it trains a skip-gram model [25] to learn the node embedding of a specific network.
Different from word embedding whose input is a significant corpus and output is almost all the
words’ embeddings, network embedding method needs to learn node’s embedding for each network
since these networks are isolated from each other. On the basis of the DeepWalk, Node2vec [18] and
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LINE [19] are developed to improve the performance of network embedding. And the low-dimension
node embedding is useful in the tasks of visualization, network classification, community detection
and link prediction.

3. Edge-Nodes Representation Neural Machine (ENRNM)

In this section, we introduce the ENRNM in detail as shown in Figure 3. It includes four stages:
edge pattern encoding, node pattern encoding, link pattern encoding and neural network learning.

Edge pattern encoding

B edge’s representation
[ node’s representation

0
0 Q%
Graph labeling Adjacency matrix
i Neural
i = | network
| learning
1[45-dimensional vector]
2[45-dimensional vector] L
3[45-dimensional vector] g
' [45-dimensional vestor] < 2 B
|45—dimcn‘s‘wv<ma| vector|
' [45-Gimensional vectol Link
Network removing pattern
testing links Node2vec model Node embedding encoding
Node pattern encoding

Figure 3. Illustration of the method ENRNM including edge pattern encoding, node pattern encoding,
link pattern encoding and neural network learning. Due to the space limitation of matrix in the figure,
I expound the 45-dimensional vector here. For instance, the vector representation of the node 1 is
{0.28701, —0.1449, —0.26971........ —0.61898,0.031769, —041929} for dataset USAir.

ENRNM includes the following four main steps:

Edge pattern encoding, which learns edge’s representation by WLNM.
Node pattern encoding, which learns node’s representation by network embedding model.
Link pattern encoding, which joints the edge’s representation and two nodes’ on the two sides of
the edge as link’s representation for each link.

e  Train a fully connected neural network, which learns nonlinear graph topological structures and
link’s formation mechanism for link prediction.

Our proposed method ENRNM is explained in the Algorithm 1.

The paper mainly focuses on the undirected and unweighted network. A network can be
represented as an undirected and unweighted graph G(V, E) where V = {vy, v, v3...v;,} indicates
the set of nodes and E C V x V indicates the set of edges observed. Nodes v1, v3,vs. .. v, are integer
numbers set manually and edges are presented in the form of (v;, v;). In the graph, there is no self-loop
and there is at most an edge between two nodes. A graph can be represented as an adjacency matrix
A, Ajj = 1if there is a link between node v; and node v; and A;; = 0 otherwise. Adjacency matrix A is
symmetric since the graph is undirected. We use I'(x) or T'!(x) to indicate the set of all the neighbors
of node x, in other words, T'! (x) is the set of the nodes whose distances to node x are equal to 1. We
use I'(x) to indicate the set of the nodes whose distances to node x are less than or equal to .
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Algorithm 1 ENRNM
Input: network G
Output: AUC

: devide the observed and unobserved links of network G into two parts: training and testing links
: for each link (x,y) do

learn the edge’s representation edgevec(x, y)

learn the nodes’ representations nodevec(x) and nodevec(y)

1
2
3
4
5: linkvec(x,y) = joint(edgevec(x,y), nodevec(x), nodevec(y))
6: end for

7: feed linkvec(x,y) and label (1: (x,y) € E,0: (x,y) ¢ E) to neural network for the training data
8: feed linkvec(x,y) of the testing data to the pre-trained neural network

9: compare the predicted labels with real labels

10: return AUC value

3.1. Edge Pattern Encoding

To acquire the full representation for each link, we need to represent edges and nodes firstly.
Traditional edge embedding methods tend to combine the representations of nodes on the two sides
of the edge in different manners as link’s representation. But recently there are many new methods
such as WLNM, it pays attention to get the surrounding environments of the edge. WLNM extracts a
subgraph for each edge firstly then transforms the unordered subgraph to an ordered subgraph which
can be represented as an adjacency matrix. The edge pattern encoding method is explained in the
Algorithm 2, and the detail is elaborated in the following.

Algorithm 2 Edge pattern encoding

Input: network G, edge (x,y), integer K

Output: edge’s representation edgevec(x, y)
1 Vi =A{xy}
2. temp={x,y}

: while | Vx| < K and |temp| >0 do

temp = (Uoetempl (v))\V

Vk = Vg Utemp

: end while

: calculate d(v) := /(d(v,x)d(v,y)) forall v € Vi

: get initial symbols ¢(v) = f(d(v)) forallv € Vg

o]

9: while ¢(v) not converge do
10: calculate hashing values h(v) for all v € Vg
11:  update symbols ¢(v) = f(d(v))
12: end while
13: convert the labeled subgraph to an adjacency matrix
14: joint all the columns of upper triangle of adjacency matrix vertically and record as edgevec(x, y)

15: return edgevec(x,y)

For each target edge between node x and node y, we extract a subgraph which can be considered
as the edge’s surrounding environment and the nodes” amount of the subgraph is K, a number set
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manually. Then we add node x, node y, T'(x), T'(y), T'(x), T'(y), T%(x), T?(y)... into the subgraph
until the nodes” number of the subgraph is more than K or there are no more nodes to add.

After the subgraph extraction, we need to transform the unordered subgraph to an ordered
subgraph by a graph labeling algorithm, then we can represent the subgraph as an adjacency matrix.
Each node of the subgraph is given an initial symbol according to the distances to node x and node y,
then we update the symbol iteratively determined by the hash function / and the mapping function f
which can map a hash value to an integer.

The hash function is shown as Equation (1) [16]:

Yocr(x) log(p(c(2)))
Yy, 10g(p(c(z)))

The hashing function is based on the Weisfeiler—Lehman algorithm [26], a color refinement
algorithm which transforms an unordered graph to an ordered graph. In the Equation (1), c(x) is
the current symbol of node x, p(n) indicats the nth prime number, p(1) = 2, p(2) = 3, p(3) = 5,
p(4) =7... After getting an ordered subgraph, we can represent the subgraph as an adjacency matrix
whose order is decided by the integer symbols. Generally, we often set A;; = 1/0 to indicate that there
is a link between the corresponding two nodes i and j or not. To learn more meaningful patterns, we
set A;j = function(d((i,j), (x,y))) , where d((i,j), (x,y)) is the shortest distance between edge (i, )
and edge (x,y). In the end, we splice the upper triangle of the adjacency matrix vertically to a vector
as the edge’s representation.

h(x) = c(x) + 1

3.2. Node Pattern Encoding

In this section, we introduce the method of generating node’s representation. Node2vec works
well in link prediction, therefore, we use Node2vec to generate node embedding in the node pattern
encoding part of our method. Indeed, other network embedding methods are suitable too.

Node2vec changes the way of the random walk compared with DeepWalk. It uses two parameters,
Return parameter p and In-out parameter g to control the next step of the walk, and the parameters
settings can lead to different node sentences so the node embeddings. The parameter p controls the
probability of visiting the previous node, and parameter g controls that the next step will visit a node
which is close to the previous node or far away to it. As shown in Figure 4, the current node is node v,
the previous node is node t, now we need to determine the next walk to which node selected from
node ¢, node x; and node x;. We choose the next node according to the distance between the node x
and the previous node t. The transition probability is shown in Equation (2) [18].

Figure 4. Illustration of the random walk procedure in node2vec. The walk just transitioned from ¢ to
v and is now evaluating its next step out of node v. Edge labels indicate search biases «.

The transition probability a,(t, x) is as following Equation (2).
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1/p, if dtx =0
apg(t,x) =41, ifdiy =1 ()
1/q, ifdy =2.
After random walk getting a node sentence for each node, we feed these node sentences to the

skip-gram model to learn the node embedding. We illustrate the node pattern encoding algorithm in
Algorithm 3. In the end, we get the embedding of each node in the form of vector.

Algorithm 3 Node pattern encoding

Input: network G, dimension d, walks per node r, walk length I, context size k, return p, in-out q
Output: every node’s representation nodevec

1: calculate transition probability a,,(t, x) according to p, g and di

2: 11 = PreprocessModifiedWeights(G, a)

3 G = (V,E, )

4: initialize walks to empty

5: fori = 1tor do

6: for all nodes u € V do

7: walk = node2vecWalk(G', u, 1)
8: append walk to walks
9: end for

10: end for

11: nodevec = SGD(k,d, walks)

12: return nodevec

3.3. Link Pattern Encoding

After we get the edge’s representation edgevec(x,y) and nodes’ representations nodevec(x),
nodevec(y) for target link (x,y), then we can acquire the link’s representation by combining the
edge and nodes’ representations. In our experiment, we convert edgevec(x, y), nodevec(x), nodevec(y)
to column vectors respectively and splice the three column vectors vertically to a long column vector as
link’s full representation. The order of the three column vectors is edgevec(x, y), nodevec(x), nodevec(y)
and the integer value of x is small than that of y.

3.4. Neural Network Learning

3.4.1. Training

After getting the link’s representation, the last step is training a classifier which can predict the
existence of the link. We choose a fully connected neural network to learn complicated nonlinear
patterns for the reason that the neural network has powerful learning ability to fit our training data.

For the given network G = (V,E), the training dataset includes positive samples which are
randomly selected from the observed links and negative samples which are randomly chosen from the
unobserved links, as same as the testing dataset. And the number of negative samples is twice of the
number of positive samples. For a given training link (x, i), regardless of positive or negative, ENRNM
firstly learns the edge (x, y), node x and node y’ representations respectively by the corresponding
methods, then combines them vertically as link’s representation. In the end, the training links’ vector
representations are fed into neural network together with their labels(1 : (x,y) € E,0: (x,y) € E) to
train the model.
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3.4.2. Testing (Link Prediction)

After training the neural network and getting a nonlinear classifier, we can use the classifier to
predict the existence of a testing link by representing its corresponding edge and nodes, combining the
three representations vertically and feeding it into the pre-trained neural network. Then the classifier
outputs two scores whose values are between 0 and 1, and the sum of them is 1. The two scores
indicate the probability of link’s existence or not. In the end, we compare the predicted labels with the
actual labels of the testing samples and use the area under the ROC curve (AUC) to evaluate the link
prediction’s effect.

4. Experiments and Results

In this section, we conduct comprehensive experiments to evaluate the performance of
ENRNM, we compare it with 14 baselines on eight real-world networks. The result indicates that
ENRNM combining edge and two nodes’ representations as link’s representation outperforms many
other methods.

4.1. Datasets

In our experiments, there are eight datasets with different structures and characteristics including
C.ele [2], USAir [27], PB [28], NS [29], E.coli [30], Yeast [3], Power [2] and Router [31]. The numbers of
edges and nodes of each dataset are shown in Table 2. C.ele is a neural network of C. elegans, whose
nodes indicate neurons, synapses and edges indicate that there are excitement signals between neurons
and synapses. USAir is a network of United States Airlines, whose nodes indicate different cities and
edges indicate the airlines between these cities. PB is a network of America political blogs, whose
nodes indicate political blogs and edges are automatically extracted from a crawl of the front page
of the blog. NS is a collaboration network of researchers in network science, whose nodes indicate
different researchers and edges indicate that two researchers have published papers cooperatively.
E.coli is a pairwise reaction network of metabolites in E.coli, whose nodes indicate metabolites of
E.coli and edges indicate reaction among metabolites. Yeast is a protein-protein interaction network in
yeast, whose nodes indicate proteins of yeast and edges indicate that there are interactions between
proteins. Power is an electrical network of western US, whose nodes indicate transformers, substations,
generators and edges indicate high-voltage transmission lines. Router is a router-Level internet, whose
nodes indicate various routing devices and edges indicate that there are data transmissions between
these routing devices.

Table 2. The nodes and edges’ numbers of all the datasets.

Datasets VI IEI
C.ele 297 2148
USAir 332 2126
PB 1222 16,714
NS 1589 2742
E.coli 1805 14,660
Yeast 2375 11,693
Power 4941 6594
Router 5022 6258

4.2. Baselines and Experimental Setting

Supposing that the numbers of nodes and edges of a network are n and m respectively, there are
at most n x (n — 1) /2 links in the network, and m links of them are observed and n* (n —1)/2 —m
links are unobserved. For each dataset, we divide the observed links called positive samples into two
parts. Training set accounts for ninety percent and testing set accounts for ten percent. For the training
set, we sample negative training samples from the unobserved links and set its number to be twice of
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the number of positive training samples, as same as the testing set. We remove these testing links from
the network, and we try to find out these missing links especially these positive testing links.

We adopt AUC (area under the ROC curve) to evaluate the performance of link prediction, which
is used frequently to evaluate the effect of binary classifier. AUC is equivalent to the probability that
a randomly chosen positive example is ranked higher than a randomly selected negative example.
AUC considers the ability of classifying positive and negative samples simultaneously, each sample is
classified correctly if AUC is 1. To speak more intuitively, when we get a higher AUC value, indicating
that the classifier can classify both positive sample and negative sample more accurately. AUC is not
sensitive to whether it is unbalanced between the amounts of positive and negative samples.

For the proposed method ENRNM, we set the nodes” amount of the subgraph as 10, which
performs better than other integer settings when generating the representation of the edge. So the
dimension of the edge’s vector is 10 x (10 — 1) /2 = 45. And when generating the node’s representation,
the dimension of the node’s vector is 45 too. The reason why we make these settings is that we want
to express the idea that edge and nodes on the two sides of the edge have the same importance in
representing a link. Besides, the Return parameter p and the In-out parameter q both is equal to 1.
In the setting, node2vec randomly walks in the graph and gives the same chance to the nodes which
are near to the current node to be added into the node sentence.

For the same training data, classifiers trained by various models are different. Before we determine
using the neural network to learn link’s formation mechanism, we conduct a series of experiments
to find the most suitable classifier. The classifiers we use include logistic regression [32], decision
tree [33], random forest [34], adaboost [35] and neural network. For random forest classifier, there are
100 trees in the forest. For the neural network, we use the structure of three fully connected layers with
32, 32, 16 hidden units, respectively. And in the end, we use SoftMax layer to output two probability
values indicating whether there is a link or not. The activation function in the neural network we use
is Rectified Linear Unit (ReLU). And we adopt the Adam update rule [36] for optimization with a
learning rate of 0.001 at the beginning whose drop ratio is 0.9, a mini-batch size of 128, the training
epochs of 200. To avoid overfitting, we use Dropout [37] and Early-stopping to learn more useful
patterns. All the above are implemented by the neural network tool of MATLAB. The AUC results
of different classifiers are shown in Table 3, we can see that the neural network is the most suitable
classifier. Therefore, in the next experiments, we use the neural network as our classifier to learn
meaningful and abundant patterns.

Table 3. AUC results of different classifiers for ENRNM.

Datasets  Logistic Regression  Decision Tree Random Forest Adaboost Neural Network

C.ele 0.8429 0.7186 0.757 0.7581 0.870
USAir 0.958 0.8697 0.8803 0.8756 0.968
PB 0.937 0.7992 0.8663 0.8488 0.9453
NS 0.937 0.9273 0.9345 0.9218 0.9832
E.coli 0.9563 0.8762 0.9212 0.889 0.9787
Yeast 0.9378 0.8861 0.9066 0.8878 0.9618
Power 0.7968 0.6534 0.6924 0.6693 0.866
Router 0.9134 0.6158 0.623 0.7768 0.921

In our experiments, we compare our method ENRNM with twelve heuristics including common
neighbors (CN) [1], Jaccard (Jac.) [21], Adamic-Adar (AA) [4], resource allocation (RA) [11], preferential
attachment (PA) [10], Katz [12], resistance distance (RD) [14], PageRank (PR) [1], SimRank (SR) [13],
Stochastic block model (SBM) [9], matrix factorization using a classification loss function (MF-c) [23],
matrix factorization using a regression loss function (MF-r) [23], and two popular methods including
WLNM [16] which employs edge’ representation as link’s formation mechanism and Node2vec [18]
which combines two nodes” embeddings on the two sides of the edge as link’s formation mechanism.
For some methods, different parameter settings lead to unequal results and we often use the best
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results. For Katz, we set the damping factor § to 0.001 and for PageRank, we set the damping factor to
0.85, which is suggested in the [16]. For SBM, we adopt the implementation straightly in [38], where
the number of latent groups is chosen in {4, 6,8,10,12}. For MF, we utilize the libFM [39] software,
where the number of latent factors of MF is searched in {5, 10, 15,20, 50}. For WLNM, we set the nodes’
number K of subgraph to 10, which is presented to have good performance on different networks.
For Node2vec, we generate 45-dimension vector as node embedding.

To show our results more intuitively, we draw a line chart according to the corresponding result
table. We conduct two groups experiments. The first group experiments compare the heuristic methods
with the proposed method ENRNM as shown in Table 6 and Figure 8, the second group experiments
compare the Node2vec, WLNM and ENRNM as shown in Table 7 and Figure 9. Moreover, we analyze
the characteristics of heuristics, Node2vec, WLNM and ENRNM in Table 4. In Figure 5, we compare
the link’s representation of Node2vec, WLNM and ENRNM.

Table 4. Characteristics comparison of differnent link prediction methods.

Features Heuristics Node2vec WLNM ENRNM
Graph structure feature Yes Yes Yes Yes
Node’s information No Yes No Yes
Edge’s information No No Yes Yes
Model / NN NN NN

link’s
representation

WLNM ‘ Ie ‘ Neural

Network

Node2vec # - Neural

y Network

Neural

ENRNM - ‘ Network

Figure 5. Link’s representation comparisons of WLNM, Node2vec and ENRNM.

We draw a weight graph for the dataset USAir to prove that the edge and two nodes have the same
importance in the formation of the link. The dimension of edge and two nodes’ vector representations
is 45, and there are 32 units in the first hidden layer, so the size of weight matrix from the input layer
to the first hidden layer is 135 x 32. As shown in Figure 6, the horizontal axis denotes the first hidden
layer with 32 units, the vertical axis denotes the sum of absolute values of 45 weights of each feature
to the corresponding hidden unit. We can observe that almost all the weights are more than 2, and
the tendencies of the three lines are similar. Moreover, the weights of the three features are similar
indicating that the three feature representations play the same important role in link’s formation. So
combining the edge and two nodes’ representations as link’s formation is useful to improve the link
prediction performance.
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Weight graph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

—Edge Nodel Node2
Figure 6. Weight graph from the input layer to the first hidden layer.
4.3. Time and Computational Complexity

We compare the computational complexity and time needed in the process of link representation
of the methods WLNM, Node2vec and ENRNM in Table 5. Since our method combines the edge and
nodes’ representations so we need to spend a little more time to build link’s representation, and our
method is a bit more complex than WLNM and Node2vec. Actually, the time needed of ENRNM to
encode link pattern is less than 1 min. Fortunately, our method achieves the best batch accuracy and the
smallest batch loss quicker (shown in Figure 7) in the process of training due to the full representation
of link. Therefore we always set max epoch as 100 or 150 which is enough to learn a useful model,
shortening the time of training largely for ENRNM.

Table 5. The processes and computational complexity per sample. And we calculate the time needed
in the process of link representaion for dataset USAir. K indicates the nodes” amount of subgraph. /
denotes the walk length, k indicates the context size. n denotes the amount of nodes of the network.

Methods Process Computational Complexity/Sample Time Needed (s)
WLNM edge (link) pattern encoding O(K®) 44912
node pattern encoding O(l/k(l—k)) 10.326
Node2vec link pattren encoding O (n) 0.500
node pattern encoding O(l/k(1—k)) 10.628
ENRNM edge pattern encoding O(K3) 46.646
link pattren encoding O (n) 1.000

Figure 7. Batch accuracy (a) and batch loss (b) varying along with the epoch of dataset USAir.
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4.4. Results

From the Table 6 and Figure 8, we can get the conclusion as follows. Compared with other 12
heuristic methods, our proposed method ENRNM achieves unparalleled performance across eight
networks with different structures and characteristics in terms of AUC. Our method performs well
on almost all the datasets indicating that the method is universal and suitable for almost all kind of
networks. Most remarkably, ENRNM performs extremely well on the datasets Power and Router, on
which many other heuristic methods’ performances are just better than random guessing. For the
datasets C.ele and Router, the method PR and RD achieve a bit better performance than our method.
However as noticed in Table 6, the methods RD and PR perform poorly on several datasets, they are
not universal methods. The method we propose is suitable for almost all the datasets since we gain
good effect on all the datasets, although we cannot achieve the best performance on two datasets.
In terms of these eight different kinds of datasets, we believe that our method ENRNM is suitable
for all kinds of networks and it can achieve enough good performance though may not be the best
for some datasets. The red line in Figure 8 indicates the result of our method ENRNM, and we can
observe that the red line is the top of almost all the lines.

Table 6. AUC results of 12 baselines and ENRNM.

Datesets CN Jac AA RA PA Katz RD PR SR SBM MF-c MF-r ENRNM

C.ele 0.849 0793 0.863 0867 0.756 0.865 0.741 0.902 0.761 0.866 0.838 0.843 0.870
USAir 0941 0904 0949 0957 0.893 0930 0897 0943 0.783 0945 0919 0.845 0.968
PB 092 0874 0923 0922 09012 0927 0.882 0934 0.772 0937 0933 0.942 0.9453
NS 0939 0939 0939 0937 0.6823 0941 0583 0941 0941 0921 0.638 0.721 0.9832
E.coli 0.933 0.807 0953 0959 0913 0.928 0.887 0952 0.638 0938 0906 0.918 0.9787
Yeast 0892 0.891 0.892 0893 0.825 0922 0881 0926 0915 0915 0.839 0.883 0.9618
Power 0.592 0591 0592 0591 0442 0.656 0.844 0.665 0.762 0.664 0522 0515 0.866
Router 0561 0562 0.561 0562 0472 0379 0925 0381 0368 0.852 0775 0.782 0.921

09

0.8

AUC

0.6

04

Cele USAir PB NS E.coli Yeast Power Router
Datasets
e CN Jac AA RA  cmmm PA

Katz RD e PR e SR e SBM s MF-C s MF-T s ENRN M

Figure 8. AUC results of 12 baselines and ENRNM.

Observing the Table 7 and Figure 9, we can conclude that the method Node2vec performs well on
several datasets, and WLNM achieves the best performance on the datasets NS and Router. For the
datasets NS and E.coli, the three methods including Node2vec, WLNM and ENRNM achieve good
effects. For six datasets, the method ENRNM has the best performance indicating that we represent
the link fully and the neural network learns the most important and meaningful patterns. For dataset
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Router, the performance of method WLNM is a little better than ours, but the effect of Node2vec is
unsatisfactory, we consider that the node pattern encoding generated by Node2vec method may be
not suitable for Router. All in all, our method achieves quite good performance on diverse networks
with different structures and characteristics. The red line in Figure 9 indicates the result of ENRNM,
and we can see that the red line is the top of almost all the lines.

Table 7. AUC results of Node2vec, WLNM and ENRNM.

Datasets Node2vec WLNM ENRNM
C.ele 0.6604 0.859 0.870
USAir 0.8477 0.958 0.968
PB 0.9168 0.933 0.9453
NS 0.9657 0.984 0.9832
E.coli 0.9691 0.971 0.9787
Yeast 0.9524 0.956 0.9618
Power 0.8567 0.848 0.866
Router 0.640 0.944 0.921

0.95
0.9 \
0.85

0.75

AUC

0.65

Cele USAir PB NS E.coli Yeast Power Router
Datasets

Node2vec WLNM e ENRNM

Figure 9. AUC results of Node2vec, WLNM and ENRNM.

5. Conclusions and Future Work

5.1. Conclusions

In this paper, we propose a novel and universal link prediction method Edge-Nodes
Representation Neural Machine (ENRNM), which learns topological features fully from networks by
combining the representations of edge and nodes on the two sides of the edge as link’s representation,
namely formation mechanism. We represent the link fully so that the neural network can learn
abundant and meaningful patterns. Experiment results show that ENRNM has superb performance
when comparing with fourteen state-of-the-art methods across diverse networks with different
structures and characteristics, especially the WLNM method which just employs edge’s representation
as link’s formation mechanism and the Node2vec method which only applies node’s representation as
link’s formation mechanism.

5.2. Future Work

As shown in Table 7, we can see that the performance of Node2vec is not very perfect on some
networks which may be caused by insufficient representation of node, leading to imperfect performance
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on ENRNM. Therefore in the future, we are committed to finding or creating more effective node
pattern encoding method to improve our method ENRNM.

For the method ENRNM, we need to learn edge and two nodes’ representations respectively for
each link, then combine them as link’s representation. In this way, the process of representing the link
is sort of complicated. In the future, we will contribute to creating a new method to represent each link
that includes edge and two nodes’ information to simplify the computing process. Besides, we will
pay more attention to improve the link prediction performance of the datasets C.ele and Power on
which the ENRNM and other state-of-the-art methods have poor performance.

Author Contributions: G.X., YW., D.L,, X.5. and K.F. conceived and designed the experiments; X.W. performed
the experiments and wrote the paper.

Funding: This research received no external funding.
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