
algorithms

Article

Diagonally Implicit Runge–Kutta Type Method for
Directly Solving Special Fourth-Order Ordinary
Differential Equations with Ill-Posed Problem of a
Beam on Elastic Foundation

Nizam Ghawadri 1 , Norazak Senu 1,2,* , Firas Adel Fawzi 3, Fudziah Ismail 1,2

and Zarina Bibi Ibrahim 1,2

1 Institute for Mathematical Research, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
nizamghawadri@gmail.com (N.G.); fudziah@upm.edu.my (F.I.); zarinabb@upm.edu.my (Z.B.I.)

2 Department of Mathematics, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
3 Department of Mathematics, Faculty of Computer Science and Mathematics, University of Tikrit,

Tikrit P.O. Box 42, Iraq; firasadil01@gmail.com
* Correspondence: norazak@upm.edu.my

Received: 7 December 2018; Accepted: 27 December 2018; Published: 29 December 2018
����������
�������

Abstract: In this study, fifth-order and sixth-order diagonally implicit Runge–Kutta type (DIRKT)
techniques for solving fourth-order ordinary differential equations (ODEs) are derived which are
denoted as DIRKT5 and DIRKT6, respectively. The first method has three and the another one has
four identical nonzero diagonal elements. A set of test problems are applied to validate the methods
and numerical results showed that the proposed methods are more efficient in terms of accuracy and
number of function evaluations compared to the existing implicit Runge–Kutta (RK) methods.
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1. Introduction

Fourth-order ordinary differential equations (ODEs) can be found in several areas of neural
network engineering and applied sciences [1], fluid dynamics [2], ship dynamics [3–5], electric
circuits [6] and beam theory [7,8]. Consider the numerical method to solve special of order four
for initial value problems (IVPs) in the form of

u(4)(t) = f
(
t, u(t)

)
, u(t0) = u0, u′(t0) = u′0, u′′(t0) = u′′0 , u′′′(t0) = u′′′0 , t ≥ t0 (1)

The significance of the implicit methods is due to its high orders of accuracy that can be achieved
for the same stage number which is superior to the explicit methods. This makes it more favorable to
solve stiff problems. However, there are other problem classes, such as differential algebraic equations,
for which implicit Runge–Kutta (RK) methods also have a vital role. In additionally, diagonally implicit
Runge–Kutta (DIRK) methods are characterized by a lower triangular A-matrix with at least one nonzero
diagonal entry and are sometimes referred to as semi-implicit or semi-explicit Runge–Kutta methods.
So, there are two general methods can be used to solve Equation (1). The first method is to convert
Equation (1) to first-order problem and then use any RK method. So, many of implicit RK methods
have been constructed such as Ismail et al. [9] and so on. The second method is to solve Equation (1)
directly utilizing Runge–Kutta Type (RKT) method. Several researchers presented an efficient implicit
RK approach for second order systems (see Ismail [10], Attili et al. [11], Senu et al. [12,13]). Subsequently,
Senu et al. [14] constructed new 4(3) pairs diagonally implicit Runge–Kutta Nyström method for
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periodic IVPs. Wen et al. [15] developed two classes of three-stage diagonally implicit Runge–Kutta
type (DIRKT) methods with an explicit stage for stiff oscillatory problems. Farago et al. [16] presented
the convergence of DIRK methods combined with Richardson extrapolation.

The main purpose of this study is to present DIRKT approach for solving special fourth-order
ODEs which applies to ill-posed problem of a beam on elastic foundation. In addition, when solving
Equation (1) numerically, attention must be paid to the algebraic order of the approach applied, since
this is the major norm for realizing high accuracy.

We organised this paper as follows: The idea of formulation of the DIRKT methods to solve
problem (1) is discussed in Section 2. In Section 3, order conditions of the DIRKT approach are
presented. In Section 4, three-stage of order five and four-stage of order six DIRKT methods are
constructed. In Section 5, the effectiveness of the proposed methods compared with existing implicit
RK methods. Lastly, in Section 6, a conclusion is given.

2. Derivation of the DIRKT Methods

The general type of implicit Runge–Kutta type technique with m-stage for solving the IVPs (1)
can be written as follows:

un+1 = un + h u′n +
h2

2
u′′n +

h3

6
u′′′n + h4

m

∑
i=1

biki,

u′n+1 = u′n + h u′′n +
h2

2
u′′′n + h3

m

∑
i=1

b′iki,

u′′n+1 = u′′n + h u′′′n + h2
m

∑
i=1

b′′i ki,

u′′′n+1 = u′′′n + h
m

∑
i=1

b′′′i ki,

where

ki = f

(
tn + cih, un + ci h u′n +

h2

2
c2

i u′′n +
h3

6
c3

i u′′′n + h4
m

∑
j=1

aijk j

)
(2)

for i = 1, 2, 3, . . . , m.
DIRKT method parameters bi, b′i, b′′i , b′′′i , aij and ci for i, j = 1, 2, . . . , m are assumed to be real, m is the

number of stages of the method. The technique is diagonally implicit when aij = 0 for i < j. The latter
class contains of singly DIRKT methods where the matrix A is lower triangular and all the entries in the
diagonal of A are equal. The DIRKT method is presented by the Butcher tableau (see Table 1).

Table 1. The Butcher tableau DIRKT method.

c1 a11
c2 a21 a22
c3 a31 a32 a33
. . .
. . .
. . .

cm am1 am2 ... am,m
b1 b2 ... bm

b
′
1 b

′
2 ... b

′
m

b
′′
1 b

′′
2 ... b

′′
m

b
′′′
1 b

′′′
2 ... b

′′′
m
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3. Order Conditions of the DIRKT Method

The algebraic order conditions for the RKT formula up to order seven given in Hussain et al. [17]
as follows:

The order terms for y:
4th-order

∑ bi =
1

24
, (3)

5th-order

∑ bici =
1

120
, (4)

6th-order

∑ bic2
i =

1
360

, (5)

7th-order

∑ bic3
i =

1
840

, (6)

The order terms for y′:
3rd-order

∑ b′i =
1
6

, (7)

4th-order

∑ b′ici =
1
24

, (8)

5th-order

∑ b′ic
2
i =

1
60

, (9)

6th-order

∑ b′ic
3
i =

1
120

, (10)

7th-order

∑ b′ic
4
i =

1
210

, ∑ b′i aij =
1

5040
(11)

The order terms for y′′:
2nd-order

∑ b′′i =
1
2

, (12)

3rd-order

∑ b′′i ci =
1
6

, (13)

4th-order

∑ b′′i c2
i =

1
12

, (14)

5th-order

∑ b′′i c3
i =

1
20

, (15)

6th-order

∑ b′′i c4
i =

1
30

, ∑ b′′i aij =
1

720
, (16)

7th-order

∑ b′′i c5
i =

1
42

, ∑ b′′i aij cj =
1

5040
, ∑ b′′i ciaij =

1
1008

(17)
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The order terms for y′′′:
1st-order

∑ b′′′i = 1, (18)

2nd-order

∑ b′′′i ci =
1
2

, (19)

3th-order

∑ b′′′i c2
i =

1
3

, (20)

4th-order

∑ b′′′i c3
i =

1
4

, (21)

5th-order

∑ b′′′i c4
i =

1
5

, ∑ b′′′i aij =
1

120
, (22)

6th-order

∑ b′′′i c5
i =

1
6

, ∑ b′′′i aijcj =
1

720
, ∑ b′′′i ciaij =

1
144

, (23)

7th-order

∑ b′′′i c6
i =

1
7

, ∑ b′′′i ciaijcj =
1

840
, (24)

∑ b′′′i aijc2
j =

1
2520

, ∑ b′′′i c2
i aij =

1
168

(25)

4. Construction of the DIRKT Methods

By the order conditions stated in Section 3 above which derived by Hussain et al. [17] we proceed
to construct diagonally implicit Runge–Kutta type method. The local truncated error for the p order
DIRKT technique is defined as follows:

‖ τ
(p+1)
g ‖2=

np+1

∑
i=1

(
τ
(p+1)
i

)2
+

n′p+1

∑
i=1

(
τ′i

(p+1)
)2

+

n′′p+1

∑
i=1

(
τ′′i

(p+1)
)2

+

n′′′p +1

∑
i=1

(
τ′′′i

(p+1)
)2
 1

2

(26)

where τ(p+1), τ′(p+1), τ′′(p+1) and τ′′′(p+1) are the local truncation error terms for u, u′, u′′ and u′′′

respectively, τg
(p+1) is the global local truncation error.

4.1. A Fifth-Order Three-Stage DIRKT Method

In this section, the derivation of a fifth-order three-stage DIRKT technique by utilizing the algebraic
order conditions up to order five will be considered. The resulting system consists of 15 nonlinear
equations with 21 unknown variables, letting a21 = 0, a31 = 0, b1 = 0 and b′1 = 0 and solving the
system together yields the family of solution in terms of a32 as follows:

a33 =
1

120
− 5

9
a32 +

5
18

a32 (
2
5
−
√

6
10

), b2 =
1
48

+

√
6

144
, b3 =

1
48
−
√

6
144

,

b′2 =
1

12
+

√
6

48
, b′3 =

1
12
−
√

6
48

, b′′2 =
1
4
+

√
6

36
, b′′3 =

1
4
−
√

6
36

, b′′′1 =
1
9

,

b′′′2 =
4
9
−
√

6
36

, b′′′3 =
4
9
+

√
6

36
, c1 = 1, c2 =

2
5
−
√

6
10

, c3 =
2
5
+

√
6

10
.
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Thus, by using minimize command in Maple we obtain a32 = 0.0213713155186054 which yields
the minimum local truncation error is 3.1876× 10−3. For the optimized value in fractional form then
we choose a32 = 1

50 and subtituting the value of a32 = 1
50 into a33 = 1

120 −
5
9 a32 +

5
18 a32 (

2
5 −

√
6

10 ),

we obtained a33 = − 1
1800 −

√
6

1800 . But a11 = a22 = a33. Lastly, all the coefficients of DIRKT method of
order five three-stage denoted by DIRKT5 can be written as follows (see Table 2).

Table 2. The DIRKT5 Method.

1 − 1
1800 −

√
6

1800

2
5 −

√
6

10
0 − 1

1800 −
√

6
1800

2
5 +

√
6

10
0 1

50 − 1
1800 −

√
6

1800

0 1
48 +

√
6

144
1
48 −

√
6

144

0 1
12 +

√
6

48
1
12 −

√
6

48

0 1
4 +

√
6

36
1
4 −

√
6

36

1
9

4
9 −

√
6

36
4
9 +

√
6

36

4.2. A Sixth-Order Four-Stage DIRKT Method

In this section, the derivation of four-stage DIRKT technique of order six by utilizing the algebraic
order conditions up to order six will be considered. The resulting system consists of 22 nonlinear
equations with 27 unknown variables, letting a21 = 0, a31 = 0, b4 = 0, b′4 = 0 and b′′4 = 0 and solving
the system together and the family of solutions in terms of a32 and a42 are given as follows:

a41 = a32 − 4 a42 + 5 a42 (
1
2
−
√

5
10

), a43 = 3 a42 +
1

15
− 5 a42 (

1
2
−
√

5
10

),

a44 = − a32

6
+

1
360

, b1 =
1

72
+

√
5

180
, b2 =

1
72
−
√

5
180

, b3 =
1

72
,

b′1 =
1

16
+

√
5

48
, b′2 =

1
16
−
√

5
48

, b′3 =
1

24
, b′′1 =

5
24

+

√
5

24
,

b′′2 =
5

24
−
√

5
24

, b′′3 =
1

12
, b′′′1 =

5
12

, b′′′2 =
5

12
, b′′′3 =

1
12

, b′′′4 =
1

12
,

c1 =
1
2
−
√

5
10

, c2 =
1
2
+

√
5

10
, c3 = 0, c4 = 1.

Thus, by using minimize command in Maple we obtain a32 = −0.0115518456859873 and
a42 = −0.219999431451238 which gives the minimum local truncation error is 6.0021× 10−3. For the
optimized value in fractional form we choose a32 = − 1

100 and a42 = − 1
50 and subtituting these values

of a32 and a42 into above systems. Lastly, all the coefficients of DIRKT method of four-stage sixth-order
denoted by DIRKT6 can be written as follows (see Table 3).
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Table 3. The DIRKT6 Method.

1
2 −

√
5

10
1

225

1
2 +

√
5

10
0 1

225

0 0 − 1
100

1
225

1 0 − 1
50

17
300 −

√
5

100
1

225

1
72 +

√
5

180
1
72 −

√
5

180
1

72 0

1
16 +

√
5

48
1
16 −

√
5

48
1

24 0

5
24 +

√
5

24
5
24 −

√
5

24
1

12 0

5
12

5
12

1
12

1
12

5. Numerical Results

In this section, the methods discussed on Sections 4.1 and 4.2 were tested on six problems.
The numerical results for the proposed methods are compared with other existing implicit RK methods
of the same order. The methods chosen in the numerical experiments are as follows:

• DIRKT6: The new sixth-order four-stage diagonally implicit Runge–Kutta type method which
was derived in this paper.

• DIRKT5: The new fifth-order three-stage diagonally implicit Runge–Kutta type method which
was derived in this paper.

• RKRI5: The fifth-order three-stage implicit Runge–Kutta Radau I method given by Lambert [18].
• RKRIIA5: The fifth-order three-stage implicit Runge–Kutta Radau IIA method as given by

Butcher [19].
• DIRK5: The five-stage diagonally implicit Runge–Kutta method of order five given by

Ababneh et al. [20].
• RKLIIIC6: The sixth-order four-stage implicit Runge–Kutta Lobatto IIIC method as given by

Lambert [18].

Problem 1. Consider the homogeneous linear problem given in Hussain et al. [17]

u(4)(t) = −4 u(t), u(0) = 0, u′(0) = 1, u′′(0) = 2, u′′′(0) = 2.

The exact solution is u(t) = et sin(t), 0 ≤ t ≤ 5.

Problem 2. Consider the homogeneous linear problem with non constant coefficients given in
Hussain et al. [17]

u(4)(t) = (16 t4 − 48 t2 + 12)u(t), u(0) = 1, u′(0) = 0, u′′(0) = −2, u′′′(0) = 0.

The exact solution is u(t) = e−t2
, 0 ≤ t ≤ 3.

Problem 3. Consider non linear problem given in Hussain et al. [17]

u(4)(t) =
3 sin(u)(3 + 2 sin2(u))

cos7(u)
, u(0) = 0, u′(0) = 1, u′′(0) = 0, u′′′(0) = 1.

The exact solution is u(t) = arcsin(t), 0 ≤ t ≤ π
4 .
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Problem 4. Consider the linear system homogeneous given in Hussain et al. [17]

u(4)
1 (t) = e3 tu4(t), u1(0) = 1, u′1(0) = −1, u′′1 (0) = 1, u′′′1 (0) = −1,

u(4)
2 (t) = 16 e− tu1(t), u2(0) = 1, u′2(0) = −2, u′′2 (0) = 4, u′′′2 (0) = −8,

u(4)
3 (t) = 81 e− tu2(t), u3(0) = 1, u′3(0) = −3, u′′3 (0) = 9, u′′′3 (0) = −27,

u(4)
4 (t) = 256 e− tu3(t), u4(0) = 1, u′4(0) = −4, u′′4 (0) = 16, u′′′4 (0) = −64,

The exact solution are

u1(t) = e−t, u2(t) = e−2 t, u3(t) = e−3 t, u4(t) = e−4 t, 0 ≤ t ≤ 1.

Problem 5. Application to Problem the Ill-Posed Problem of a Beam on Elastic Foundation given in
Dong et al. [21]

u(4)(t) = −u(t) + 1, u(0) = 1, u′(0) = 0, u′′(0) = 0, u′′′(0) = 0,

The exact solution is u(t) = 1− 1
2 e−

t√
2 (1 + e

√
2t) cos( t√

2
), 0 < t < 1.

6. Discussion

The efficiency of the DIRKT methods developed are presented in Figures 1–5 by plotting the graph
of the decimal logarithm of the maximum global error against the logarithm of function evaluations.
The DIRKT5 and DIRKT6 methods require less function evaluations compared to other existing implicit
RK methods of the same order. This is due to the fact that when the problems are transformed to a
system of the first-order ODEs, the number of equations increased four times. So from the graph plotted
in Figures 1–4, it can be seen that DIRKT5 and DIRKT6 methods have the smallest maximum global
error and number of function evaluations per step compared to other existing implicit RK methods of
the same order. Figure 5 shows that the new methods require less function evaluations than DIRK5,
RKRI5, RKRIIA5 and RKLIIIC6 methods. This is because when an ill-posed problem of a beam on elastic
foundation is solved using DIRK5, RKRI5, RKRIIA5 and RKLIIIC6 methods, it need to be reduced to a
system of first order equations which is four times the dimension. The proposed methods are much more
efficient than the other implicit RK existing methods when solving y(4) = f (x, y).

log
10

(Number of function evaluations)
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r)
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-1

0

 DIRKT5
RKRI5
RKRIIA5
DIRK5
DIRKT6
RKLIIIC6

Figure 1. Accuracy curve for Problem 1 for DIRKT5, DIRKT6, DIRK5, RKRI5, RKRIIA5 and RKLIIIC6
methods with h = 0.1, 0.025, 0.00625, 0.00125.
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Figure 2. Accuracy curve for Problem 2 for DIRKT5, DIRKT6, DIRK5, RKRI5, RKRIIA5 and RKLIIIC6
methods with h = 0.1, 0.025, 0.00625, 0.00125.
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Figure 3. Accuracy curve for Problem 3 for DIRKT5, DIRKT6, DIRK5, RKRI5, RKRIIA5 and RKLIIIC6
methods with h = 0.1, 0.025, 0.00625, 0.00125.
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Figure 4. Accuracy curve for Problem 4 for DIRKT5, DIRKT6, DIRK5, RKRI5, RKRIIA5 and RKLIIIC6
methods with h = 0.1, 0.025, 0.00625, 0.00125.
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log
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log
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Figure 5. Accuracy curve for DIRKT5, DIRKT6, DIRK5, RKRI5, RKRIIA5 and RKLIIIC6 methods for a
Beam on Elastic Foundation with h = 0.1, 0.025, 0.0065, 0.00125.

7. Conclusions

In this study, the new fifth-order three-stage DIRKT5 and sixth-order four-stage DIRKT6 methods
with minimized error norm and number of function evaluations have been presented for the integration
of ODEs. From numerical results in all figures, we noticed that the number of function evaluations
and maximum error of the proposed methods are smaller than that of the other existing implicit RK
methods, and it has shown that the proposed methods are more accurate when solving directly special
ODEs of the fourth order.
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Abbreviations

The following abbreviations are used in this manuscript:

IVPs Initial value problems.
DIRKT Diagonally implicit Runge–Kutta type method.
DIRKT6 The new sixth-order four-stage diagonally implicit Runge–Kutta type method which was derived in this paper.
DIRKT5 The new fifth-order three-stage diagonally implicit Runge–Kutta type method which was derived in this paper.
RKRI5 The fifth-order three-stage implicit Runge–Kutta Radau I method given by Lambert [18].
RKRIIA5 The fifth-order three-stage implicit Runge–Kutta Radau IIA method as given by Butcher [19].
DIRK5 The five-stage diagonally implicit Runge–Kutta method of order five given by Ababneh et al. [20].
RKLIIIC6 The sixth-order four-stage implicit Runge–Kutta Lobatto IIIC method as given by Lambert [18].
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