
algorithms

Article

Application of Angle Related Cost Function
Optimization for Dynamic Path Planning Algorithm

Mingbin Zeng 1, Xu Yang 2,*, Mengxing Wang 2 and Bangjiang Xu 2

1 School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100049, China;
dgzmb@163.com

2 School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
2220160645@bit.edu.cn (M.W.); xbjtdcq@gmail.com (B.X.)

* Correspondence: yangxu@tsinghua.edu.cn; Tel.: +86-010-68913467

Received: 19 July 2018; Accepted: 9 August 2018; Published: 15 August 2018
����������
�������

Abstract: In recent years, Intelligent Transportation Systems (ITS) have developed a lot. More and
more sensors and communication technologies (e.g., cloud computing) are being integrated into cars,
which opens up a new design space for vehicular-based applications. In this paper, we present the
Spatial Optimized Dynamic Path Planning algorithm. Our contributions are, firstly, to enhance the
effective of loading mechanism for road maps by dividing the connected sub-net, and building a
spatial index; and secondly, to enhance the effect of the dynamic path planning by optimizing the
search direction. We use the real road network and real-time traffic flow data of Karamay city to
simulate the effect of our algorithm. Experiments show that our Spatial Optimized Dynamic Path
Planning algorithm can significantly reduce the time complexity, and is better suited for use as a
real-time navigation system. The algorithm can achieve superior real-time performance and obtain
the optimal solution in dynamic path planning.

Keywords: Intelligent Transportation System; advanced driver assistance systems; dynamic path
planning; optimization

1. Introduction

Traffic problems are common problems faced by cities all over the world. Common traffic
problems include traffic congestion, exhaust pollution, traffic accidents, parking difficulties and so
on [1]. At present, the main traffic problems in urban traffic are traffic congestion, the increase of
energy consumption and the aggravation of environmental pollution. Traffic jams not only cause a
huge waste of time and environmental damage, but also hinder the development of urbanization
and become the blocking factor to economic development. In the face of these severe urban traffic
problems, how to solve the traffic congestion problem better under the condition of limited traffic
resources has become a hot topic.

Researchers are beginning to try to use modern science and technology to solve traffic problems,
integrating sensing, information, communication, computer technology, and intelligent transportation
systems [2]. Intelligent transportation system technology, represented by the car network, can help
users plan the optimal route and reduce vehicle travel time by strengthening the traffic distribution
of the urban road network and conducting traffic guidance in real-time. It is an effective method to
optimize the capacity of the urban road network and to reduce traffic congestion and traffic accidents.

As the core technology of intelligent transportation system, the development of dynamic path
planning technology is becoming more and more mature and perfect [3]. In this paper, we present
the Spatial Optimized Dynamic Path Planning (SODPP) algorithm which is based on the road-map
loading mechanism and search direction optimization.

Algorithms 2018, 11, 127; doi:10.3390/a11080127 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a11080127
http://www.mdpi.com/journal/algorithms
http://www.mdpi.com/1999-4893/11/8/127?type=check_update&version=2

Algorithms 2018, 11, 127 2 of 15

Our contributions are as follows:

(1) We enhance the effect of the loading mechanism for road maps by dividing the connected sub-net
and building an spatial index;

(2) We enhance the effect of dynamic path planning by optimizing the search direction.

The following is organized as follows: In Section 2, we discuss related works, while in Section 3,
we discuss the motive behind our algorithm; the whole algorithm is discussed in Section 4; Section 5
gives experiment results and discussions; the conclusions are given in Section 6.

2. Related Works

A number of works have been published on the topic of path searching in congested systems.
Cascetta provided a comprehensive and systematic presentation of the mathematical models for the
simulation of transportation systems and the methodologies for the analysis and design of these
systems. Theoretical and operational aspects were presented in a rigorous and exhaustive framework,
addressing a broad range of applications performed by researchers and practitioners [4]. Another
study about transport modeling and its practical applications was presented by Ortuzar in 2011 [5].

Path search and route choice are the main components for any path searching algorithm.
Ben Akiva et al. developed and tested innovative models of driver’s route choice behavior [6].
The approach they exploited was to define choice sets of “labelled” paths to transform a large number
of physical routes into a smaller number of routes, each representing a specific “label”. A labelled path
is defined as the optimal physical path with respect to some criterion function. The criteria that might
be relevant to route choice include travel time, distance, scenery, congestion, signposting, etc. The
label functions are estimated by maximizing the proportion of observed routes included in the sets of
labelled paths.

De Maio et al. explored route choice on road networks [7]. The route choice model is divided into
three levels: the generation of alternatives, the perception of alternatives and choice set, and finally, the
choice of alternatives belonging to the choice set. A deterministic, selective, multi-criteria approach is
used to generate the routes. A covering measure is calculated by comparing observed and generated
paths to take into account which routes are currently chosen.

Vitetta presented the Quantum Utility Model (QUM) [8], which is derived from quantum
mechanics models. In QUM, it is possible to simulate the sequence of decisions in cases of unique or
not-unique pre-trip decisions at intermediate levels.

In addition, some researchers are starting to take into account the multi-dimensional attributes
of the road network. Mcginty et al. first put forward the concept of “path quality” and thought that
path quality should be considered in the optimal path selection [9]. Nie et al. presented the concept
of “reliable path” which holds that the reliable path should be one that can guarantee the arrival on
time [10]. Choi et al. introduced the concept of “driver orientation” and chose the appropriate path as
the optimal path [11].

The existing research is focused on transforming different road attributes into unified
dimensionless attributes, transforming the problem into an optimal path solution problem, and
then using various optimal path algorithms to solve the problem. In fact, the optimal path search
algorithm can be summarized as finding the path that meets the minimum target value of an attribute
in a weighted road network. So, in this work, we aim to find a more efficient way to find the optimal
path, and to enhance the real-time performance of the path searching process.

3. Problem Analysis

The design motive behind our SODPP algorithm is presented in this section. We chose three
commonly used and representative algorithms, namely the Dijkstra algorithm, A* algorithm and ant
colony algorithm, to illustrate the motive.

Algorithms 2018, 11, 127 3 of 15

The Dijkstra algorithm was proposed by Professor E. W. Dijkstra to solve the shortest path
problem [12]. It can be used to solve the shortest path from source point to other nodes in directed
graph. It is also the theoretical basis of the routing algorithm and optimal path algorithm in many
systems at present [13]. The main idea of the Dijkstra algorithm is to carry out a breadth-first search
from the source point and expand to the outer layer from the starting point to the end point. The
Dijkstra algorithm is guaranteed to find the optimal path in the given network, but for larger scale
road networks, the processing efficiency is lower [14], and thus, it is not suitable for real-time and high
accuracy dynamic path planning.

There are two main issues for the Dijkstra algorithm, as follows:

(1) Because of the strategy of global search, it is necessary to search all the nodes in the network.
The search space is shown in Figure 1—it takes a lot of computation time and the time efficiency
of the algorithm is low;

(2) Because of the need to store intermediate results, when the network is large, it uses a lot of
storage space.

Figure 1. Search space of the Dijkstra algorithm.

The ant colony algorithm is also a heuristic algorithm that takes advantage of nature law. The ant
colony algorithm is a kind of bionic algorithm which is proposed to simulate the behavior of an ant
colony searching for optimal path after studying the real behavior of ant colony foraging [15]. The
ant colony algorithm is often used to solve complex combinatorial optimization problems, such as the
traveling salesman problem and the optimal path problem. In solving the optimal path problem, the
ant colony algorithm (ACA) leads the behavior of searching for the optimal path by pheromones when
simulating the foraging process of an ant colony in the biological world. The ant colony algorithm is an
iterative algorithm based on empirical control. Its search space decreases with the number of iterations
(increasing or decreasing), as shown in Figure 2. The search process of the ant colony algorithm does
not depend on any mathematical theory, and it has a strong ability to find the global optimal solution.
In the ant colony algorithm, ants tend to choose the path with more pheromones, and the selection of a
path by ants will enhance the pheromone concentration of these paths so that the positive feedback of
information can be realized. Although ants will choose the path with high pheromone concentration,
the probability-based state transfer strategy still gives ants a certain probability of choosing a path
a with low pheromone concentration so that the algorithm can try more paths to find the shortest
path. However, the ant colony algorithm is still an iterative algorithm based on experience, which is
prone to local convergence and slow convergence speed [16]. At the same time, it takes a long time
to construct the solution which results in a long search time. It is not suitable for systems with high
real-time requirements.

Algorithms 2018, 11, 127 4 of 15

Figure 2. Search space of the ant colony algorithm.

The A* algorithm is a simple and practical heuristic search method which was proposed by Hart,
Nilssno, and Raphael in 1968. The so-called heuristic search is a knowledge-based search strategy
which refers to the evaluation of all the nodes that can be searched in a search tree by evaluating
the best nodes and then searching for the target nodes from the best nodes. The heuristic search can
effectively reduce the search area, avoid a large number of unnecessary search paths, and improve
the efficiency. Compared with blind search methods, like the Dijkstra algorithm, the heuristic search,
in principle, only needs part of the search space to get the solution of the problem, and the efficiency of
the search can be improved effectively [17,18]. In heuristic searches, it is very important to evaluate the
location. The evaluation method can control the size of search space and search time which directly
affects the efficiency and accuracy of the algorithm. Different evaluation methods will achieve different
results. For the A* algorithm, according to the control of its evaluation function, the search space is as
shown in the blue part of Figure 3, and the search space is much smaller than the space of Dijkstra
algorithm, as shown in Figure 1.

Figure 3. Search space of the A* algorithm.

According to our analysis, we summarize the three algorithms in Table 1. It can be concluded
from Table 1 that the A* algorithm can obtain the optimal solution, and the search space for A* is the
smallest. Also, A* has the lowest time complexity, with better robustness and convergence, and can
better meet the needs of real-time systems [19].

Algorithms 2018, 11, 127 5 of 15

Table 1. Comparison of the three algorithms.

Time Efficiency Complexity Convergence Robustness Optimal Solution

Dijkstra Wose Easy No Good Yes
A* Good Easy Yes Good Yes

ACA Worst Complex Yes Good Not

So, in this paper, we present the Spatial Optimized Dynamic Path Planning algorithm based on
the optimization of the A* algorithm.

4. The Spatial Optimized Dynamic Path Planning Algorithm

The optimization of the Spatial Optimized Dynamic Path Planning algorithm was mainly
concentrated on two aspects:

(1) The scale of the road network was controlled. The urban road network was decomposed into
different sub-nets. According to the location of the starting point, different sub-nets were chosen
as the search space to avoid searching the whole road network, thus reducing the scale of
network information updated in real time;

(2) The search direction wwas restricted. The evaluation function was optimized, considering both
the distance and search direction. More heuristic information was used to reduce the search area
and search time to speed up the convergence of the algorithm.

4.1. Control the Scale of the Road Network

A common method for controlling the scale of the road network is to frame a search area in the
road network by ellipse, circle, and polygon according to the coordinates of the starting node, which
can be regarded as the search area of the algorithm. However, there is no guarantee that all nodes in
the designated area are connected to each other for those methods [20], so a common shortcoming
of these methods is that they may not find an optimal path in the selected search area. For example,
as the A* algorithm is heuristic, it cannot consider some of the best paths that, to avoid congestion,
move to an area not explored by A*.

In order to solve this problem, this paper proposes taking the connected sub-graph of the divided
road network to be the search area when controlling the scale of the road network to ensure that there
is at least one path in the search area. Therefore, the efficiency of the algorithm is guaranteed, and the
robustness of the algorithm is ensured at the same time.

4.1.1. Road Sub-Net Partition Considering Connectivity

According to graph theory, the urban road network can be regarded as a directed graph (G), and
the sub-net of the urban road network is a sub-graph of the directed graph (G). Because the urban
road network system itself is a connected system, there must be a path between every two nodes in
the road network. According to the definition of the strongly connected graph, we know that urban
road network is a strongly connected graph. For a sub-net of a network, if there is a path between
any two nodes in the sub-net, the sub-net is a connected sub-net. The problem of dividing a complete
network into a connected sub-net can be transformed into solving the strongly connected components
in a directed graph. The digraph is the complete network, and the strong connected component is the
connected sub-net of the network.

The Kosaraju algorithm or Tarjan algorithm is generally used to solve the strongly connected
components of digraphs. The principle of the Kosaraju algorithm is simple. In order to obtain all
strong connected components of graph G, we first need a Depth First Search (DFS) of graph G. Then,
the inverse graph (GT) of graph G is calculated, and then another DFS is carried out for the inverse
graph (GT); thus, the connected component of graph G is obtained. Although the Kosaraju algorithm
has a simple process, it has a high time complexity due to the need for two DFS searches.

Algorithms 2018, 11, 127 6 of 15

The Tarjan algorithm is a DFS algorithm implemented by recursion. The theoretical basis of the
Tarjan algorithm is to perform a DFS search for a directed graph (G) from any node. Every strongly
connected component in a directed graph is a sub-tree in a search tree. The core idea of the algorithm
is to add the unprocessed node in the current search tree to the stack when DFS and to determine
whether the node is a strongly connected component when backtracking. Compared with the Kosaraju
algorithm, the DFS is performed only once in the Tarjan algorithm, and the inverse graph is not needed,
so the time complexity of Tarjan algorithm is lower.

Therefore, in this paper, the Tarjan algorithm was selected to solve the connected sub-net of road
network, and the appropriate sub-net was selected to be used as the search area.

4.1.2. Sub-Net Query Optimization Based on the Spatial Index

In order to optimize and control the size of the network, an effective method is also needed
to quickly match the appropriate sub-nets from all sub-nets once the location of the initial point of
navigation has been determined. If the matching time of sub-net is too long, it will directly affect the
solution time of the algorithm. Since all sub-nets in this study were stored in spatial databases, the
sub-net matching problem was how to query spatial objects efficiently in spatial databases.

In spatial databases, spatial query efficiency is an important indicator to measure their
performance [21]. Because of the huge amount of data processed by spatial databases and the
complexity and diversity of spatial objects processed, in order to deal with these complex data
more efficiently, queries are often optimized by using spatial indexes.

In this paper, we used the R-Tree index as the spatial index. The R-Tree index is an object-based
indexing method. The R-Tree index divides the geographic space according to the Minimum Bounding
Rectangle of the spatial object. The spatial index information of the object is organized into a tree
structure, and the index information of the spatial object is managed by the index tree.

4.2. Restrict Search Direction

4.2.1. Analysis of the A* Algorithm Evaluation Method

The evaluation function of the A* algorithm (f (i)) is defined as

f (i) = g(i) + h(i), (1)

where g(i) is the actual cost of searching from the source to the current node (i), while h(i) is the
estimated cost from the current node (i) to the destination. As a heuristic search based on empirical
information judgment, the more heuristic information included in the valuation function (h(i)), the
smaller the search space is, and the more efficient the search algorithm is. On the one hand, the more
information contained in the evaluation function, the more nodes that can be excluded and the smaller
the search scale of the algorithm is. On the other hand, an increase in heuristic information will increase
the amount of computation required and reduce the time efficiency of the algorithm. Thus, the design
of the evaluation function is of critical importance [22].

In the A* algorithm, the evaluation function is designed to estimate the distance between the
current node and the target node, as shown in Figure 4.

Algorithms 2018, 11, 127 7 of 15

Figure 4. Illustration of the A* evaluation function.

If the current node is Vi, when picking next node, the evaluation function needs to be performed
for nodes Vj0 and Vj1. If it is assumed that the Euclidean distance is used as a measurement for distance,
then the evaluation functions for those two nodes are calculated with

f (Vj0) = g(Vj0) + h(Vj0) = (3 + 4) + (2 + 11) = 20 (2)

f (Vj1) = g(Vj1) + h(Vj1) = (3 + 8) + 11 = 22. (3)

In this case , the algorithm would pick Vj0 as next node, thus Vj1 and all its successors would
be excluded from searching list, thus restricting the search range. However, this method only takes
into account the distance relationships between nodes, and does not take into account the directional
relationships between nodes. According to actual life experience, if the chosen path is closer to the
direction of the ray formed by the starting point and the end point, the smaller the angle is, the shorter
the distance of the final path is. We can prove this.

As shown in Figure 5, the current node is Vi. Suppose the angle between the rays from Vi to Vj0
and the rays from Vi to Vend is β, and the angle between the rays from Vi to Vj1 and the rays from Vi
to Vend is α. The distance from Vi to Vj0 is g0, while the distance from Vi to Vj1 is g1. The estimated
distance from Vi to Vend is p.

Figure 5. The influence of the search direction on the evaluation function.

Algorithms 2018, 11, 127 8 of 15

According to the cosine theorem, for the following triangles (shown in Figure 6), there are

b2 = a2 + c2 − 2ac× cos(B). (4)

Figure 6. Cosine theorem.

Thus, we have

F(β) = h2
0 = g2

0 + p2 − 2g0 p× cos(β). (5)

The derivation of function F(β) is

F′(β) = 2g0 p× sin(β). (6)

Since the value of function sin(β) is [0, 1] in the [0, π] interval, the value of derivative F′(β) in the
[0, π] interval is also greater than or equal to 0. That is,

F′(β) = 2g0 p× sin(β) ≥ 0. (7)

From the nature of the derivative of the function, we can conclude that function F′(β) in the
interval [0, Π] monotonically increases, and we can prove that when there is a common edge (p) and
α ≤ β, there must be a third side (h1 ≤ h0) which is proved as follows:

g1 + h1 ≤ g0 + h0. (8)

It can be concluded that when the cost is equal for g0 and g1, the search can find a shorter path by
choosing the direction closer to the current node and the end line. At the same time, selecting a small
angle in the search can reduce the number of nodes that need to be searched and the search range, thus
further reducing the solution time of the algorithm and improving the efficiency of the algorithm.

4.2.2. Search Direction Restricted Evaluation Method

According to previous analyses, in this paper, both the distance and search direction were used as
heuristic information to design the valuation function as follows:

h(i) = hr(i)× hd(i), (9)

where hr(i) evaluates the influence of search direction, while hd(i) evaluates the influence of distance.
Here, distance is measured as the Euclidean distance. If the coordinate of current node is (x, y), and
the coordinate of the destination is (xend, yend), then hd(i) is calculated as

Algorithms 2018, 11, 127 9 of 15

hd(i) =
√
(x− xend)2 + (y− yend)2. (10)

In order to design hr(i), two conditions need to be satisfied:

(1) hr(i) needs to be a function increasing monotonously with the angle. According to the previous
discussion, if we choose a search direction with a smaller angle to the current node and the end
point (set the angle to α), we can find the shortest path as soon as possible. In addition, the
smaller the angle (α), the smaller the search area is. Therefore, it is necessary to design the hr(i)
function as a function that increases monotonously with α. Thus, the less α is, less the hr(i) is,
and the less h is. The algorithm can select a smaller search area with a greater opportunity to
limit the direction of search;

(2) The value of the evaluation function for the current node must be less than or equal to the actual
distance from the current node to the destination which can be expressed as hr(i)× hd(i) ≤ hd(i).
That is, the value of hr(i) must be less than or equal to 1, and since the estimated distance cannot
be negative, the range of value of hr(i) must fall within the interval [0, 1].

If we set the value of the angle in [0, π] interval, we can choose the monotone increasing
trigonometric function in that interval:

f (α) = − cos(α). (11)

This function satisfies the first condition of monotone increment on [0, π], and its value range is
[−1, 1], which is shown in Figure 7. However, this function does not satisfy the second condition.

Figure 7. − cos(α).

So, we use min-max normalization method to map f (α) onto the interval of [0, 1]:

g(α) = f (α)−min(f (α))
max(f (α))−min(f (α))

×[max(g(α)−min(g(α)) + min(g(α)]

= − cos(α)−cos(0)
cos(π)−cos(0) × 1 + 0

= 1−cos(α)
2

. (12)

This function is shown in Figure 8. It can be seen from Figure 8 that the g(α) function does not
only satisfy the monotone increments in the [0, π] interval, but also satisfies the requirement that the
value in this interval be located in [0, 1] interval. Therefore, this function can be used as hr(i).

Algorithms 2018, 11, 127 10 of 15

Figure 8. Image for hr(i).

Thus, the evaluation function for our algorithm is

h(i) =
1− cos(α)

2

√
(x− xend)2 + (y− yend)2. (13)

5. Experiments

5.1. Experiment Framework

In this paper, Eclipse was used to realize the coding and development of the system, SUMO
was used to realize the path drawing and analysis of navigation, and MySQL (including spatial
extension Spatial) was used for database management. SUMO is a road traffic simulation software for
continuous traffic conditions. The software was originally developed by the German Aerospace Center
in 2000. Because of its perfect function and open source features, it has been widely used in the field of
intelligent transportation research [23]. SUMO is well suited for traffic simulation and supports the
analysis and evaluation of traffic related algorithms. The graphical interface of SUMO is shown in
Figure 9.

Figure 9. Interface for SUMO.

Algorithms 2018, 11, 127 11 of 15

We chose the Dijkstra algorithm, A* algorithm and ant colony algorithm to compare our Spatial
Optimized Dynamic Path Planning (SODPP) algorithm with. In addition, we chose the urban road
network of Karamay. The network contains 846 road nodes, 1928 roads, and 5375 sets of road
connectivity data. The urban road network of Karamay is shown in Figure 10.

Figure 10. Karamay city.

5.2. Results and Discussion

In this paper, multi-time experiments were carried out, and the number of nodes, running times,
and path information of different algorithms were recorded and analyzed in detail.

In order to select the representative experimental data for analysis, this paper selected the results
of three experiments with the theoretical shortest path lengths, which had different numbers of search
nodes and increments. The detailed data recorded in these three experiments were as follows.

In the first experiment, the node ID 34,091 was the starting point, the node ID 34,201 was the
end point, the four algorithms sought solutions, and the shortest path length was 2290.95 m, The data
records of the algorithm solution are shown in Table 2.

Table 2. Comparison of results for Experiment 1.

Evaluation Standard Dijkstra A* ACA SODPP

Start Point 34,091 34,091 34,091 34,091
End Point 34,201 34,201 34,201 34,201

Total Points 826 826 826 826
Load Points 826 826 826 42
Load Time 851 ms 836 ms 801 ms 151 ms

Construct Time 1162 ms 1167 ms 1087 ms 126 ms
Search Points 76 37 82 23

Total Time 17 ms 9 ms 63 ms 5 ms
Path Length 2290.95 m 2290.95 m 2295.08 m 2290.95 m

In the second experiment, node ID was the 33,898 is starting point, node ID 34,100 was the end
point, the four algorithms sought solutions, and the shortest path length is 2832.47 m, The data records
of the algorithm solution are shown in Table 3.

Algorithms 2018, 11, 127 12 of 15

Table 3. Comparison of results for Experiment 2.

Evaluation Standard Dijkstra A* ACA SODPP

Start Point 33,898 33,898 33,898 33,898
End Point 34,100 34,100 34,100 34,100

Total Points 826 826 826 826
Load Points 826 826 826 156
Load Time 890 ms 860 ms 801 ms 210 ms

Construct Time 1208 ms 1162 ms 1093 ms 172 ms
Search Points 204 147 224 92

Total Time 176 ms 152 ms 2438 ms 85 ms
Path Length 2832.47 m 2832.47 m 3086.84 m 2832.47 m

In the third experiment, the node ID was 33,766 for the starting point, the node ID was 33,966
for the end point, the four algorithms sought solutions, and the shortest path length was 21415.83 m,
The data records of the algorithm solution are shown in Table 4.

Table 4. Comparison of results for Experiment 3.

Evaluation Standard Dijkstra A* ACA SODPP

Start Point 33,766 33,766 33,766 33,766
End Point 33,966 33,966 33,966 33,966

Total Points 826 826 826 826
Load Points 826 826 826 257
Load Time 860 ms 875 ms 801 ms 410 ms

Construct Time 1186 ms 1167 ms 1109 ms 264 ms
Search Points 348 212 394 134

Total Time 2564 ms 2110 ms 18,057 ms 1142 ms
Path Length 21,415.83 m 21,415.83 m 22,365.50 m 21,415.83 m

Compared with the experimental data, the ant colony algorithm had the lowest time efficiency,
but our algorithm was the best. In the road network load scale, besides the SODPP algorithm, the
other three algorithms need to load all of the nodes. Loading nodes is time consuming and the time
taken to build a road network is relatively large. In terms of the number of algorithm search nodes, the
number of nodes searched by the Dijkstra algorithm is larger, and the number of nodes searched by
the A* algorithm and SODPP algorithm are less. In regard to the path quality, apart from ant colony
algorithm, the other algorithms are able to find the shortest path.

Based on the analysis of the principle of the algorithm and the experimental data, we found
that when the SODPP algorithm was used to load the nodes and build the network, the time was
greatly reduced, indicating that the improvement of the sub-net is effective. In the analysis of the
experimental data of the SODPP algorithm with three experimental datasets, we found that the size of
the road network, the number of search nodes, and the time-consumption required to seek the shortest
path were significantly reduced. In contrast, compared with the Dijkstra algorithm, A* algorithm
and ant colony algorithm, the SODPP algorithm was shown to effectively improve the time required
for map loading and choosing the optimal path to solve the real-time requirements of real-time
navigation systems.

5.3. Extension of Our Method

Although distance was used as the weight of paths in this work, actually, any characteristics
(i.e., slope, width, capacity, disturbances, ...) and traffic flow, even the user behaviors could be modeled
into weight of different paths to adopt our SODPP algorithm to find out the optimum path under
certain situations. In Figure 11, when no congestion happens, the path searching result for a request
from the place is denoted as a dot to the place denoted with a star.

Algorithms 2018, 11, 127 13 of 15

Figure 11. Path search result under normal situation.

If we include the traffic flow characteristics into the weight of any path, we can take the impact
of congestion into account when looking for the best path. Figure 12 shows the path searching result
for the same request when there is congestion detected in places denoted by A through analyzing
real-time traffic data.

Figure 12. Path search result under congestion situation.

6. Conclusions and Future Work

The innovative feature of this paper was the proposal of the SODPP algorithm which can improve
the time efficiency of current algorithms by using the connected sub-net instead of dividing the network
area of the traditional navigation that cannot find the path. Experiments showed that our spatially
optimized dynamic path planning algorithm can significantly reduce the time complexity and is better
suited for real-time navigation systems. The algorithm can achieve superior real-time performance
and obtain the optimal solution in dynamic path planning.

Although distance was used as the weights of paths in this work, actually, any characteristics (i.e.,
slope, width, capacity, disturbances, ...) and traffic flow, even the user behaviors, could be modeled as
the weight of different pathes to adopt our SODPP algorithm to find the optimum path under certain
situations. In fact, in future work, we will generate a path searching algorithm based on the SODPP
algorithm with respect to the minimization of carbon dioxide emission.

Algorithms 2018, 11, 127 14 of 15

Also, a traffic forecasting method was presented in our previous work [24]. We aim to integrate it
into our SODPP algorithm as a future work to solve dynamic instability problems considering that the
same information is shared by users and they travel in the same network area independently from the
present or future congestion. By considering history data and real data at the same time, we could get
more accurate predictions about the road situation to provide more optimized path searching results
with consideration of personal experience.

Author Contributions: Conceptualization, X.Y.; Methodology, B.X.; Software, B.X.; Validation, B.X.; Formal
Analysis, B.X.; Writing-Original Draft Preparation, M.W.; Writing-Review & Editing, M.Z.; Visualization, M.W.;
Supervision, X.Y.; Funding Acquisition, X.Y.

Funding: This research was funded by the National Key R&D Program of China No. 2016YFC0904902, the
National Natural Science Foundation of China under Grant No. 61502032, the Core Electronic Devices, High-End
General Purpose Processor, and Fundamental System Software of China under Grant No. 2012ZX01034-001-002,
Tsinghua National Laboratory for Information Science and Technology (TNList), and Samsung Tsinghua
Joint Laboratory.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Tang, B.; Chen, Z.; Hefferman, G.; Pei, S.; Wei, T.; He, H.; Yang, Q. Incorporating intelligence in fog computing
for big data analysis in smart cities. IEEE Trans. Ind. Inf. 2017, 13, 2140–2150. [CrossRef]

2. Ball, J.E.; Anderson, D.T.; Chan, C.S. A comprehensive survey of deep learning in remote sensing: theories,
tools and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [CrossRef]

3. Hu, X.; Chen, L.; Tang, B.; Cao, D.; He, H. Dynamic path planning for autonomous driving on various roads
with avoidance of static and moving obstacles. Mech. Syst. Signal Process. 2017, 100, 482–500. [CrossRef]

4. Cascetta, E. Transportation Systems Analysis: Models and Applications, 2nd ed.; Springer: New York, NY,
USA, 2009.

5. De Dios OrtÃozar, J.; Willumsen, L.G. Modelling Transport, 4th ed.; John Wiley Sons: Hoboken, NJ, USA, 2011.
6. Ben-Akiva, M.; Bergman, M.J.; Daly, A.J.; Ramaswamy, R. Modeling inter-urban route choice behaviour.

In Proceedings of the 9th International Symposium on Transportation and Traffic Theory, Delft,
The Netherlands, 11–13 July 1984; pp. 299–330.

7. De Maio, M.L.; Vitetta, A. Route choice on road transport system: A fuzzy approach. J. Intell. Fuzzy Syst.
2015, 28, 2015–2027. [CrossRef]

8. Vitetta, A. A quantum utility model for route choice in transport systems. Travel Behav. Soc. 2016, 3, 29–37.
[CrossRef]

9. Mcginty, L.; Smyth, B. Personalised route planning: A case-based approach. In Proceedings of the 5th
European Workshop on Advances in Case-Based Reasoning, Trento, Italy, 6–9 September 2000; pp. 431–442.

10. Nie, Y.M.; Wu, X. Shortest path problem considering on-time arrival probability. Transport. Res. Part B Method
2009, 43, 597–613. [CrossRef]

11. Choi, W.K.; Kim, S.J.; Kang, T.G.; Jeon, H.T. Study on method of route choice problem based on user
preference. In Proceedings of the International Conference of Knowledge-Based Intelligent Information and
Engineering Systems, Vietri sul Mare, Italy, 12–14 September 2007; pp. 645–652.

12. Gass, S.I.; Fu, M.C. Dijkstra’s Algorithm. In Encyclopedia of Operations Research & Management Science;
Springer: New York, NY, USA, 2002; pp. 273–315.

13. Tan, G.Z.; He, H.; Aaron, S. Global optimal path planning for mobile robot based on improved Dijkstra
algorithm and ant system algorithm. J. Cent. South Univ. 2006, 13, 80–86. [CrossRef]

14. Johnson, D.B. A note on dijkstra’s shortest path algorithm. J. ACM 1973, 20, 385–388. [CrossRef]
15. Dorigo, M.; Gambardella, L.M.; Birattari, M.; Martinoli, A.; Poli, R.; Stützle, T. Ant Colony Optimization and

Swarm Intelligence; Springer: New York, NY, USA, 2006.
16. Xie, J.; Cai, C. An ant colony algorithm on continuous searching space. Int. Symp. Multispectral Image Process.

Pattern Recognit. 2015, 9814, 981402.

http://dx.doi.org/10.1109/TII.2017.2679740
http://dx.doi.org/10.1117/1.JRS.11.042609
http://dx.doi.org/10.1016/j.ymssp.2017.07.019
http://dx.doi.org/10.3233/IFS-141375
http://dx.doi.org/10.1016/j.tbs.2015.07.003
http://dx.doi.org/10.1016/j.trb.2009.01.008
http://dx.doi.org/10.1007/s11771-006-0111-8
http://dx.doi.org/10.1145/321765.321768

Algorithms 2018, 11, 127 15 of 15

17. Siregar, B.; Gunawan, D.; Andayani, U.; Lubis, E.S.; Fahmi, F. Food delivery system with the utilization
of vehicle using Geographical Information System (GIS) and A Star algorithm. J. Phys. Conf. Ser. 2017,
801, 012038. [CrossRef]

18. Zhang, Z.; Zhao, Z. A multiple mobile robots path planning algorithm Based on A-star and Dijkstra algorithm.
Int. J. Smart Home 2014, 8, 75–86. [CrossRef]

19. Cheng, L.P.; Liu, C.X.; Yan, B. Improved hierarchical A-star algorithm for optimal parking path planning of
the large parking lot. In Proceedings of the IEEE International Conference on Information and Automation,
Hailar, China, 28–30 July 2014; pp. 695–698.

20. Bast, H.; Delling, D.; Goldberg, A.; Müller-Hannemann, M.; Pajor, T.; Peter, S.; Wagner, D.; Werneck, R.F.
Algorithm Engineering; Springer: New York, NY, USA, 2016; pp. 541–550.

21. Samet, H.; Sankaranarayanan, J.; Alborzi, H. Scalable network distance browsing in spatial databases.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, Vancouver, Canada,
9–12 June 2008; pp. 43–54.

22. Xu, Z.P.; Lin, K. An algorithm based on improved A* restrictions on the path to search regional planning
approach. Comput. Knowl. Tech. 2008, 21, 055.

23. Mainali, M.K.; Mabu, S.; Yu, S.; Eto, S.; Hirasawa, K. Dynamic optimal route search algorithm for car
navigation systems with preferences by dynamic programming. Trans. Electr. Electron. Eng. 2011, 6, 14–22.
[CrossRef]

24. Tang, H.; Liang, Y.; Huang, Z.; Wang, T.; He, L.; Du, Y.; Ding, G. Key technology of real-time road navigation
method based on intelligent data research. Comput. Intell. Neurosci. 2016, 2016, 4. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1742-6596/801/1/012038
http://dx.doi.org/10.14257/ijsh.2014.8.3.07
http://dx.doi.org/10.1002/tee.20601
http://dx.doi.org/10.1155/2016/1874945
http://www.ncbi.nlm.nih.gov/pubmed/27872637
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Problem Analysis
	The Spatial Optimized Dynamic Path Planning Algorithm
	Control the Scale of the Road Network
	Road Sub-Net Partition Considering Connectivity
	Sub-Net Query Optimization Based on the Spatial Index

	Restrict Search Direction
	Analysis of the A* Algorithm Evaluation Method
	Search Direction Restricted Evaluation Method

	Experiments
	Experiment Framework
	Results and Discussion
	Extension of Our Method

	Conclusions and Future Work
	References

