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Abstract: Many tasks in computer vision suffer from missing values in tensor data, i.e., multi-way
data array. The recently proposed tensor tubal nuclear norm (TNN) has shown superiority in
imputing missing values in 3D visual data, like color images and videos. However, by interpreting in
a circulant way, TNN only exploits tube (often carrying temporal/channel information) redundancy in
a circulant way while preserving the row and column (often carrying spatial information) relationship.
In this paper, a new tensor norm named the triple tubal nuclear norm (TriTNN) is proposed to
simultaneously exploit tube, row and column redundancy in a circulant way by using a weighted
sum of three TNNs. Thus, more spatial-temporal information can be mined. Further, a TriTNN-based
tensor completion model with an ADMM solver is developed. Experiments on color images, videos
and LiDAR datasets show the superiority of the proposed TriTNN against state-of-the-art nuclear
norm-based tensor norms.
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1. Introduction

In recent decades, the rapid progress in multi-linear algebra [1] has provided a firm theoretical
foundation for many applications in computer vision [2], data mining [3], machine learning [4], signal
processing [5], and many other areas. Benefiting from its multi-way nature, the tensor has power
against the vector and matrix in exploiting multi-way information in multi-modal data, like color
images [6], videos [7], hyper-spectral images [8], functional magnetic resonance imaging [9], traffic
volume data [10], etc. In many computer vision tasks, the data, like color images or videos, may be
moderately redundant, then it can be interpreted by fewer latent factors [11]. The low-rank tensor
provides a suitable model for such data [12]. The two most well-known low-rank tensor models
are the low-CP-rank model [13], which tries to interpret a tensor in the fewest rank-one tensors [14],
and the low-Tucker-rank model [15], which seeks a tensor proxy that is simultaneously low-rank along
each mode.

In many computer vision applications, like image or video inpainting, one has to tackle the
missing values in the observed data tensor due to many circumstances [2,16], including failure of
sensors, errors or loss in communication, occlusions or noise in the environment, etc. However, it is
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obviously unable to fill in the missing entries perfectly since they can take arbitrary values without
other priors taken into consideration. The most adopted prior is the low-rank prior assuming the
underlying data tensor has low rank. Low-rank tensor completion [2,17] seeks a low-rank tensor to fit
the underlying data tensor. It has been a hot research topic due its wide use [18]. In low-rank tensor
recovery, the rank minimization problem (RMP) is often formulated [2]. However, the general rank
minimization problem and most tensor problems are NP-hard [19,20]. To obtain polynomial-time
algorithms, many different tensor rank surrogates have been proposed [2,7,17,21–24] to substitute
the rank functions in RMP. Surrogates of the tensor CP rank and Tucker rank have been broadly
studied [7,17,23,25–29].

Recently, a novel low-rank tensor model called the low-tubal-rank model was proposed [22,30].
The core of it is to model the 3D data as a tensor that has low tubal-rank [31], which is defined through
a new tensor singular value decomposition (t-SVD) [1,32]. It has been successfully used in modeling
multi-way real-world data, such as color images [6], videos [33], seismic data [34], WiFi fingerprint [35],
MRI imaging [22], traffic volume data [36], etc. As pointed out in [37], compared with other tensor
models, the low-tubal-rank tensor model is superior in capturing a “spatial-shifting” correlation,
which is ubiquitous in real-world data arrays.

This paper focuses on low-tubal-rank models for tensor completion. The recently-proposed
tensor tubal nuclear norm (TNN) [30] based on t-SVD has shown superiority in imputing missing
values in 3D visual data, like color images and videos. Its power lies in exploiting tube (often carrying
temporal/channel information) redundancy in a circulant way while preserving the row and column
(often carrying spatial information) relationship. A simple and successful variant of TNN, dubbed
the twist tubal nuclear norm (t-TNN) [16], instead exploits row redundancy in a circulant way while
keeping the tube relationship. However, both of them only exploit one kind of redundancy in a
circulant way. In this paper, a new tensor norm dubbed the tensor triple tubal nuclear norm (TriTNN)
is proposed to simultaneously exploit the row, column and tube redundancy while preserving the
relative tube, row and column relationship. Based on the proposed TriTNN, a tensor completion model
is studied and optimized by alternating direction multiplier methods (ADMM) [38]. Experimental
results on color images, videos and LiDAR datasets demonstrate that the proposed TriTNN has better
performances than other state-of-the-art nuclear norm-based tensor norms.

The paper is organized as follows. Some notations and preliminaries are presented in Section 2.
The TriTNN is proposed following the introductions of the most related works in Section 3.
The problem formulation and the proposed ADMM algorithm are shown in Section 4. Experimental
results are reported in Section 5. We conclude this work in Section 6.

2. Notations and Preliminaries

In this section, the notations and the basic definitions are introduced.

2.1. Notations

Vectors are denoted by bold lower case letters, e.g., v ∈ Rn, matrices are denoted by bold upper
case letters, e.g., M ∈ Rn1×n2 , and tensors are denoted by calligraphy letters, e.g., T ∈ Rn1×n2×n3 .
Given a third-order tensor, its fiber is defined as a 1D vector obtained by fixing all indices, but one,
and its slice is a 2D matrix defined by fixing all but two indices. Given a 3D tensor T , T ijk denotes
the entry with index (i, j, k); T(k) := T (:, :, k) denotes the k-th frontal slice. T̃ denotes the tensor
after performing the fast Fourier transformation along the tube fibers of T . Notations dft3(·) and
idft3(·) are used to represent the discrete Fourier transformation (DFT) and inverse discrete Fourier
transformation (IDFT) along the tube fibers of 3D tensors.

Given a matrix M ∈ Rn1×n2 , its nuclear norm is defined as ‖M‖∗ := ∑
p
i=1 σi(M),

where p = min{n1, n2} and σ1(M) ≥ · · · ≥ σp(M) are the singular values of M in
non-ascending order. The inner product between two 3D tensors T 1,T 2 ∈ Rn1×n2×n3 is defined



Algorithms 2018, 11, 94 3 of 20

as 〈T 1,T 2〉 := ∑ijk T 1(i, j, k)T 2(i, j, k). The Frobenius norm of a tensor T ∈ Rn1×n2×n3 is defined as

‖T ‖F :=
√

∑ijk T 2
ijk. The l∞-norm of a tensor T ∈ Rn1×n2×n3 is defined as ‖T ‖∞ := maxijk |T ijk|.

2.2. Tensor Singular Value Decomposition

Firstly, five block-based operators, i.e., bvec, bvfold, bdiag, bdfoldand bcirc [1], are introduced.
Given a tensor T ∈ Rn1×n2×n3 , the block vectorizing and its opposite operation are defined as follows:

bvec(T ) :=


T (1)

T (2)

...
T (n3)

, bvfold(bvec(T )) = T ,

the block diag matrix and its opposite operation:

bdiag(T ) :=


T (1)

. . .
T (n3)

, bdfold(bdiag(T )) = T ,

and the block circulant matrix as follows:

bcirc(T ) :=


T (1) T (n3) · · · T (2)

T (2) T (1) · · · T (3)

...
. . . . . .

...
T (n3) T (n3−1) · · · T (1)

 .

Based on the five operators defined above, we are able to give the definition of the tensor t-product.

Definition 1 (t-product [1]). Let T 1 ∈ Rn1×n2×n3 and T 2 ∈ Rn2×n4×n3 . The t-product of T 1 and T 2 is a
tensor T of size n1 × n4 × n3:

T = T 1 ∗ T 2 =: bvfold{bcirc(T 1)bvec(T 2)}. (1)

Viewing a 3D tensor T ∈ Rn1×n2×n3 as an n1 × n2 matrix of tubes, the tensor t-product is
analogous to the matrix multiplication by replacing scalar multiplication with the vector circular
convolution between the tubes, as follows:

T (i, j, :) =
n2

∑
k=1
T 1(i, k, :) • T 2(k, j, :), (2)

where • denotes the circular convolution [1] between two tube vector x, y ∈ Rn3 defined as:

(x • y)j =
n3

∑
k=1

xky1+(j−k)modn3
.

Due to the relationship between the circular convolution and the DFT, the t-product in the original
domain is equivalent to matrix multiplication of the frontal slices in the Fourier domain [1], i.e.,

T̃ (k)
= T̃ 1

(k)T̃ 2
(k)

, k = 1, · · · , n3. (3)

The tensor transpose, identity tensor, f-diagonal tensor and orthogonal tensor are further defined.
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Definition 2 (Tensor transpose [1]). Let T be a tensor of size n1 × n2 × n3; then T > is the n2 × n1 × n3

tensor obtained by transposing each of the frontal slices and then reversing the order of transposed frontal Slices
2 through n3.

Definition 3 (Identity tensor [1]). The identity tensor I ∈ Rn1×n1×n3 is a tensor whose first frontal slice is
the n1 × n1 identity matrix, and all other frontal slices are zero.A

Definition 4 (F-diagonal tensor [1]). A tensor is called f-diagonal if each frontal slice of the tensor is a
diagonal matrix.

Definition 5 (Orthogonal tensor [1]). A tensor Q ∈ Rn1×n1×n3 is orthogonal if it satisfies the
following relationship:

Q> ∗Q = Q ∗Q> = I .

Based on the concepts defined above, the tensor singular value decomposition (t-SVD) and the
tensor tubal rank are established as follows.

Definition 6 (Tensor singular value decomposition and tensor tubal-rank [31]). Any
tensor T ∈ Rn1×n2×n3 can be decomposed as:

T = U ∗ S ∗V>, (4)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors and S is a rectangular f -diagonal tensor of
size n1 × n2 × n3.

The tensor tubal rank of T is defined to be the number of non-zero tubes of S in Equation (4), i.e.,

rtubal(T ) := ∑
i

1(S(i, i, :) 6= 0), (5)

where 1(·) is an indicator function whose value is one if the input condition is satisfied, and zero otherwise.

The t-SVD is illustrated in Figure 1. It can be computed efficiently by FFT and IFFT in the Fourier
domain according to Equation (3). For more details, see [1].

Figure 1. Illustration of tensor (t)-SVD.

3. The Triple Tubal Nuclear Norm

In this section, we will define the triple tensor tubal nuclear norm, before which the most related
norms, i.e., tubal nuclear norm and twist tubal nuclear norm, are introduced first.

3.1. Tubal Nuclear Norm

Based on the preliminaries introduced in Section 2, the tubal nuclear norm is defined as follows:
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Definition 7 (Tubal nuclear norm [31]). The tubal nuclear norm (TNN) ‖T ‖? of a 3D tensor T is defined
as the nuclear norm of the block diagonal matrix of T̃ (the Fourier domain version of T ), i.e.,

‖T ‖? := ‖bdiag(T̃ )‖∗ =
n3

∑
k=1
‖T̃ (k)‖∗. (6)

From Definition 7, we can compute the TNN of a tensor efficiently through first conducting
FFT along the tube direction and summing the nuclear norms of each frontal slice. Given a tensor
T ∈ Rn1×n2×n3 , the computation cost of ‖T ‖? is O(n1n2n3(n3 + log n3)). Since a block circulant
matrix can be block diagonalized through the Fourier transform [1], we obtain:

‖T ‖? = ‖bdiag(T̃ )‖∗ = ‖(Fn3 ⊗ In1)bcirc(T )(F−1
n3
⊗ In2)‖∗ = ‖bcirc(T )‖∗, (7)

where ⊗ denotes the Kronecker product [14], Fn is the n× n discrete Fourier transform matrix and In

is an n× n identity matrix. Note that (Fn3 ⊗ In1)/
√

n3 is a unitary matrix.
The tubal nuclear norm has been used as a convex relaxation of the tensor tubal-rank for tensor

completion, tensor robust principle component analysis (TRPCA) and outlier robust tensor principle
component analysis (OR-TPCA) [6,30,36,39]. In optimization over TNN, one often needs to compute
the proximal operator [40] of TNN defined as:

Sτ(T 0) := argmin
T

1
2
‖T 0 − T ‖2

F + τ‖T ‖?. (8)

In [3], a closed-form expression of Sτ(·) is given as follows:

Definition 8 ([3]). For a 3D tensor T ∈ Rn1×n2×n3 with reduced t-SVD T = U ∗ S ∗ V>, where U ∈
Rn1×r×n3 and V ∈ Rn2×r×n3 are orthogonal tensors and S ∈ Rr×r×n3 is the f-diagonal tensor of singular
tubes, the proximal operator Sτ(·) at T 0 can be computed through the following equation:

Sτ(T ) := U ∗ idft3(max(dft3(S)− n3τ, 0)) ∗V>. (9)

3.2. Twist Tubal Nuclear Norm

The twist tubal nuclear norm [16] is related to a pair of tensor operations named column twist
and column squeeze as follows.

Definition 9 (Tensor column twist and column squeeze (here, the twist and squeeze operations
in [1,16] are renamed as column twist and column squeeze, respectively, since we will define the row
twist and row squeeze) [16]). Let T ∈ Rn1×n2×n3 , then the column twist tensor T 1 =

−→T is a tensor of
size n1 × n3 × n2 whose lateral slice T 1(:, k, :) = T (k). Correspondingly, the column squeeze tensor of T 1,
i.e., T =

←−T 1, can be obtained by the reverse process, i.e., T (k) = ColSqueeze(T 1(:, k, :)). See Figure 2.

Then, we give the definition of twist nuclear norm as follows:

Definition 10 (Twist tensor nuclear norm [16]). The twist tensor nuclear norm (t-TNN) based on the t-SVD
framework is defined as follows:

‖T ‖−→? := ‖−→T ‖? = ‖bcirc(
−→T )‖∗. (10)

From the above definition, t-TNN can be computed efficiently by first twisting the original tensor
and then computing the TNN. Given a tensor T ∈ Rn1×n2×n3 , the computation cost of ‖T ‖−→? is
O(n1n2n3(n2 + log n2)). The t-TNN has attained significant improvement against the TNN in video
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inpainting [16]. Since the t-TNN is essentially a TNN, the proximal operator of it can be derived from
the proximal operator of TNN as follows:

ColSqueeze(Sτ(
−→T 0)) = argmin

T

1
2
‖T 0 − T ‖2

F + τ‖T ‖−→? .

Figure 2. The column twist and column squeeze operations.

3.3. A Circular Interpretation of TNN and t-TNN

In this subsection, an illustration of TNN and t-TNN in a circular way [16], which motivates
the proposal of TriTNN, will be given. For a tensor T ∈ Rn1×n2×n3 , we define the operation called
circulant block matricization of T [41] in the following equation:

circ(T ) :=


circ(T (1, 1, :)) circ(T (1, 2, :)) · · · circ(T (1, n2, :))
circ(T (2, 1, :)) circ(T (2, 2, :)) · · · circ(T (2, n2, :))

...
...

. . .
...

circ(T (n1, 1, :)) circ(T (n1, 2, :)) · · · circ(T (n1, n2, :))

 ∈ Rn1n3×n2n3 , (11)

where circ(x) denotes an n3 × n3 matrix with x ∈ Rn3 in the following way:

circ(x) :=


circ(x1) circ(xn3) · · · circ(x2)

circ(x2) circ(x1) · · · circ(x3)
...

...
. . .

...
circ(xn3) circ(xn3−1) · · · circ(x1)

 ∈ Rn3×n3 . (12)

By the permutation operation, there exist two so-called stride permutation matrices [42] P1 and
P2, such that the following relationship between circ(T ) and bcirc(T ) holds:

circ(T ) = P1bcirc(T )P2. (13)

Since the matrix nuclear norm is permutation invariant, it holds that [16]:

‖circ(T )‖? = ‖bcirc(T )‖?. (14)

As an example, Figure 3a,b intuitively shows the relationships between the original tensor,
the column twist tensor, the block circulant matrix and the circulant block matricization of a tensor
T ∈ R3×3×3. As illustrated in Subplots (a) and (b) of Figure 3, from the circulant perspective, TNN
essentially exploits the tube redundancy in a circulant way while keeping the row and column
relationship, and t-TNN essentially exploits the row redundancy in a circulant way while preserving
the tube and column relationship [16]. In computer vision applications, the row and column of a data
tensor (like color images or videos) often carry spatial information, and the tube often carries temporal
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or channel information. From the computational perspective, FFT is operated along the tube direction
to compute TNN, while t-TNN needs FFT along the row direction.

Figure 3. An intuitive illustration of relationships between the original tensor, the column twist
tensor, the row twist tensor, the block circulant matrix and the circulant block matricization of a tensor
T ∈ R3×3×3. Subplots (a–c) show the operations on the column twist tensor, the original tensor and
the row twist tensor, respectively. It can be seen that circ(T ) exploits the tube redundancy in a circulant
way while keeping the row and column relationship,
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circ(
−→T )

circ(T−→)

As an example, Fig. 4 (a) and (b) intuitively show the relationships between the original tensor,
the column twist tensor, the block circulant matrix and the circulant block matricization of a tensor
T ∈ R3×3×3. As illustrated in subplots (a) and (b) of Fig. 4, from the circulant perspective, TNN
essentially exploits the tube redundancy in a circulant way while keeping the row and column
relationship and t-TNN essentially exploits the row redundancy in a circulant way while preserving
the tube and column relationship [17]. In computer vision applications, the row and column of a data
tensor (like color images or videos) often carry spatial information and the tube often carries temporal
or channel information. From the computational perspective, FFT is operated along the tube direction
to compute TNN while t-TNN needs FFT along the row direction.

3.4. The Proposed Row Twist Tubal Nuclear Norm and Triple Tubal Nuclear Norm

As discussed above, TNN and t-TNN need FFT along the the tube and row direction, respectively.
Note that, for real-word visual data, like color images, the row and column carry homogeneous
information and they are better to be treated equally. A simple operation similar to the column twist
and column squeeze, called row twist and row squeeze, respectively, are defined.

Definition 11 (Tensor Row Twist and Row Squeeze). Let T ∈ Rn1×n2×n3 , then the row twist tensor T 1 =

T−→ is a tensor of size n3 × n2 × n1 whose horizontal slice T 1(k, :, :) = T (k). Correspondingly, the row squeeze

tensor of T 1, i.e., T = T 1←−, can be obtained by the reverse process, i.e., T (k) = RowSqueeze(T 1(k, :, :)). See
Fig. 3.

Definition 12 (Row twist tubal nuclear norm, rt-TNN). The row twist tubal nuclear norm (rt-TNN) of a
tensor T ∈ Rn1×n2×n3 is defined as the tubal nuclear norm of its row twisted tensor, i.e.,

‖T ‖ ?−→ = ‖T−→‖? = ‖bcirc(T−→)‖∗. (15)

As illustrated in subplot (c) Fig. 4, from the circulant perspective, rt-TNN essentially exploits
the column redundancy in a circulant way while keeping the row and tube relationship. From the
computational perspective, FFT is operated along the column direction to compute rt-TNN. The
proximal operator of rt-TNN can be derived from the proximal operator of TNN as follows:

RowSqueeze(Sτ(T 0−→)) = argmin
T

1
2
‖T 0 − T ‖2

F + τ‖T ‖ ?−→.

It should be noted that, each of TNN, t-TNN and rt-TNN only exploits one type of redundancies,
i.e., the tube, row, and column redundancies, in a circulant way. Real-world data may has more than
one type of redundancies and it is beneficial to exploit such a property. To simultaneously exploits the
tube, row and column redundancy in a circulant way while keeping other relationships, we simply
combine the TNN, t-TNN and rt-TNN to get the triple tubal nuclear norm.

Definition 13 (Triple Tubal Nuclear Norm). The triple tubal nuclear norm (Tri-TNN) is defined as a wighted
sum of its tubal nuclear norm,column twist tubal nuclear norm and its row twist tubal nuclear norm, i.e.,

‖T ‖A = λ1‖T ‖? + λ2‖T ‖−→? + λ3‖T ‖ ?−→, (16)

where λ1, λ2 and λ3 are positive weights satisfying

λ1 + λ2 + λ3 = 1. (17)

exploits the row redundancy in a circulant
way while keeping the tube and column relationship and
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As an example, Fig. 4 (a) and (b) intuitively show the relationships between the original tensor,
the column twist tensor, the block circulant matrix and the circulant block matricization of a tensor
T ∈ R3×3×3. As illustrated in subplots (a) and (b) of Fig. 4, from the circulant perspective, TNN
essentially exploits the tube redundancy in a circulant way while keeping the row and column
relationship and t-TNN essentially exploits the row redundancy in a circulant way while preserving
the tube and column relationship [17]. In computer vision applications, the row and column of a data
tensor (like color images or videos) often carry spatial information and the tube often carries temporal
or channel information. From the computational perspective, FFT is operated along the tube direction
to compute TNN while t-TNN needs FFT along the row direction.

3.4. The Proposed Row Twist Tubal Nuclear Norm and Triple Tubal Nuclear Norm

As discussed above, TNN and t-TNN need FFT along the the tube and row direction, respectively.
Note that, for real-word visual data, like color images, the row and column carry homogeneous
information and they are better to be treated equally. A simple operation similar to the column twist
and column squeeze, called row twist and row squeeze, respectively, are defined.

Definition 11 (Tensor Row Twist and Row Squeeze). Let T ∈ Rn1×n2×n3 , then the row twist tensor T 1 =

T−→ is a tensor of size n3 × n2 × n1 whose horizontal slice T 1(k, :, :) = T (k). Correspondingly, the row squeeze

tensor of T 1, i.e., T = T 1←−, can be obtained by the reverse process, i.e., T (k) = RowSqueeze(T 1(k, :, :)). See
Fig. 3.

Definition 12 (Row twist tubal nuclear norm, rt-TNN). The row twist tubal nuclear norm (rt-TNN) of a
tensor T ∈ Rn1×n2×n3 is defined as the tubal nuclear norm of its row twisted tensor, i.e.,

‖T ‖ ?−→ = ‖T−→‖? = ‖bcirc(T−→)‖∗. (15)

As illustrated in subplot (c) Fig. 4, from the circulant perspective, rt-TNN essentially exploits
the column redundancy in a circulant way while keeping the row and tube relationship. From the
computational perspective, FFT is operated along the column direction to compute rt-TNN. The
proximal operator of rt-TNN can be derived from the proximal operator of TNN as follows:

RowSqueeze(Sτ(T 0−→)) = argmin
T

1
2
‖T 0 − T ‖2

F + τ‖T ‖ ?−→.

It should be noted that, each of TNN, t-TNN and rt-TNN only exploits one type of redundancies,
i.e., the tube, row, and column redundancies, in a circulant way. Real-world data may has more than
one type of redundancies and it is beneficial to exploit such a property. To simultaneously exploits the
tube, row and column redundancy in a circulant way while keeping other relationships, we simply
combine the TNN, t-TNN and rt-TNN to get the triple tubal nuclear norm.

Definition 13 (Triple Tubal Nuclear Norm). The triple tubal nuclear norm (Tri-TNN) is defined as a wighted
sum of its tubal nuclear norm,column twist tubal nuclear norm and its row twist tubal nuclear norm, i.e.,

‖T ‖A = λ1‖T ‖? + λ2‖T ‖−→? + λ3‖T ‖ ?−→, (16)

where λ1, λ2 and λ3 are positive weights satisfying

λ1 + λ2 + λ3 = 1. (17)

exploits the column redundancy in a
circulant way while keeping the tube and row relationship.

3.4. The Proposed Row Twist Tubal Nuclear Norm and Triple Tubal Nuclear Norm

As discussed above, TNN and t-TNN need FFT along the tube and row direction, respectively.
Note that, for real-word visual data, like color images, the row and column carry homogeneous
information, and they are better treated equally. A simple operation similar to the column twist and
column squeeze, called row twist and row squeeze, respectively, is defined.
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Definition 11 (Tensor row twist and row squeeze). Let T ∈ Rn1×n2×n3 , then the row twist
tensor T 1 = T−→ is a tensor of size n3 × n2 × n1 whose horizontal slice T 1(k, :, :) = T (k).
Correspondingly, the row squeeze tensor of T 1, i.e., T = T 1←−, can be obtained by the reverse process,

i.e., T (k) = RowSqueeze(T 1(k, :, :)). See Figure 4.

Figure 4. The row twist and row squeeze operations.

Definition 12 (Row twist tubal nuclear norm (rt-TNN)). The row twist tubal nuclear norm (rt-TNN) of a
tensor T ∈ Rn1×n2×n3 is defined as the tubal nuclear norm of its row twisted tensor, i.e.,

‖T ‖ ?−→ = ‖T−→‖? = ‖bcirc(T−→)‖∗. (15)

As illustrated in Subplot (c) of Figure 3, from the circulant perspective, rt-TNN essentially
exploits the column redundancy in a circulant way while keeping the row and tube relationship.
From the computational perspective, FFT is operated along the column direction to compute rt-TNN.
The proximal operator of rt-TNN can be derived from the proximal operator of TNN as follows:

RowSqueeze(Sτ(T 0−→)) = argmin
T

1
2
‖T 0 − T ‖2

F + τ‖T ‖ ?−→.

It should be noted that each of TNN, t-TNN and rt-TNN only exploits one type of redundancy,
i.e., the tube, row and column redundancies, in a circulant way. Real-world data may have more than
one type of redundancy, and it is beneficial to exploit such a property. To simultaneously exploit the
tube, row and column redundancy in a circulant way while keeping other relationships, we simply
combine the TNN, t-TNN and rt-TNN to get the triple tubal nuclear norm.

Definition 13 (Triple tubal nuclear norm). The triple tubal nuclear norm (TriTNN) is defined as a weighted
sum of its tubal nuclear norm, column twist tubal nuclear norm and its row twist tubal nuclear norm, i.e.,

‖T ‖A = λ1‖T ‖? + λ2‖T ‖−→? + λ3‖T ‖ ?−→, (16)

where λ1, λ2 and λ3 are positive weights satisfying:

λ1 + λ2 + λ3 = 1. (17)

From the above definition, the computation of ‖T ‖A can be divided into computations of TNN,
t-TNN and rt-TNN, which has the following computational complexity:

O
(
n1n2n3(n1 + n2 + n3 + log n1 + log n2 + log n3)

)
. (18)
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Due to the coupling of three tubal nuclear norms, it is very difficult to derive a closed-form
expression of the proximal operator of TriTNN.

4. TriTNN-Based Tensor Completion

4.1. Problem Formulation

Let L∗ ∈ Rn1×n2×n3 be the true, but unknown tensor to be completed. Suppose only a
small fraction of its entries are observed and the observations are corrupted by small dense
noise. Let T ∈ Rn1×n2×n3 denote the observed noisy tensor of L∗. Then, we have the following
observation model:

T = (L∗ + E)�O, (19)

where E ∈ Rn1×n2×n3 is the noise tensor with element-wisely i.i.d. Gaussian noise, � denotes the
element-wise multiplication andO ∈ Rn1×n2×n3 denotes the binary tensor whose entryOijk = 1 if the
(i, j, k)-th entry is observed, otherwiseOijk = 0. The goal is to estimate L∗ given noisy observation T
from observation Model (19).

We estimate L∗ by simultaneously exploiting the tube, row and column redundancy in a circular
way through minimizing the proposed triple tubal nuclear norm. Specifically, we come up with the
following problem:

min
L
‖L‖A

s.t. ‖O � (T −L)‖F ≤ ε,
(20)

where parameter ε > 0 denotes the noise level. The motivation is to recover L∗ by choosing the
tensor with the smallest TriTNN from a hyper-ball in Rn1×n2×n3 with radius ε. It is well known that
Problem (20) in the form of convex minimization with a bounded norm constraint is equivalent to the
following unconstrained problem [23]:

min
L

1
2
‖O � (T −L)‖2

F + τ‖L‖A. (21)

where τ > 0 is the regularization parameter.

4.2. An ADMM Solver to Problem (21)

The alternative direction multiplier method (ADMM) [38] has been extensively used in solving
composite convex problems like Problem (21). We will solve Problem (21) by using ADMM in
this subsection.

Considering the definition of TriTNN, we introduce auxiliary variables U ,V ,W ∈ Rn1×n2×n3

and obtain the following constrained problem:

min
L,U ,V ,W

1
2
‖O � (T −L)‖2

F + τλ1‖U‖? + τλ2‖V‖? + τλ3‖W‖?

s.t. U = L, V =
−→L , W = L−→.

(22)

First, the augmented Lagrangian of Problem (22) is:

Lρ(L,U ,V ,W ,Y1,Y2,Y3)

=
1
2
‖O � (T −L)‖2

F + τλ1‖U‖? + τλ2‖V‖? + τλ3‖W‖? + 〈Y1,U −L〉+ ρ

2
‖U −L‖2

F

+
〈
Y2,V −−→L

〉
+

ρ

2
‖V −−→L ‖2

F +
〈
Y3,W − L−→

〉
+

ρ

2
‖W − L−→‖

2
F,

(23)

where Y1,Y2 and Y3 are Lagrangian multipliers and ρ > 0 is the penalty parameter.
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Using the framework of ADMM, we update the variables alternatively by fixing others at the
k + 1-th iteration in the following way.

Update L. We update L by fixing the other variables as follows:

Lk+1 = argmin
L

Lρ(L,U k,V k,W k,Y k
1,Y k

2,Y k
3)

= argmin
L

1
2
‖O � (T −L)‖2

F +
〈
Y k

1,U k −L
〉
+

ρ

2
‖U k −L‖2

F

+
〈
Y k

2,V k −−→L
〉
+

ρ

2
‖V k −−→L ‖2

F +
〈
Y k

3,W k −←−L
〉
+

ρ

2
‖W k −←−L ‖2

F

= (ρU k+ρ
←−
V k + ρ

−−→
W k +Y k

1 +
←−
Y k

2 +
−→
Y k

3 +O � T )� (O + ρI),

(24)

where � denotes element-wise division and I denotes the tensor of all ones.
Update U ,V andW . Tensor U is updated as follows:

U k+1 = argmin
U

Lρ(Lk+1,U ,V k,W k,Y k
1,Y k

2,Y k
3)

= argmin
U

τλ1‖U‖? +
〈
Y k

1,U −Lk+1
〉
+

ρ

2
‖U −Lk+1‖2

F

= Sτλ1/ρ(Lk+1 − Y
k
1

ρ
),

(25)

where S·(·) is the proximal operator of TNN at point Lk+1 − Y k
1/ρ with parameter τλ1/ρ (see

Equation (8)).
Tensors V andW are updated similarly to U ,

V k+1 = argmin
V

Lρ(Lk+1,U k+1,V ,W k,Y k
1,Y k

2,Y k
3)

= ColSqueeze(Sτλ2/ρ(
−−→
Lk+1 − Y

k
2

ρ
)),

(26)

and:
W k+1 = argmin

W
Lρ(Lk+1,U k+1,V k+1,W ,Y k

1,Y k
2,Y k

3)

= RowSqueeze(Sτλ3/ρ(Lk+1
−−→−

Y k
3

ρ
)).

(27)

Update Y1,Y2 and Y3. Using dual ascending, we update Y1,Y2 and Y3 as follows:

Y k+1
1 = Y k

1 + ρ(U k+1 −Lk+1),

Y k+1
2 = Y k

2 + ρ(V k+1 −
−−→
Lk+1),

Y k+1
3 = Y k

3 + ρ(W k+1 −Lk+1
−−→).

(28)

We summarize the algorithm in Algorithm 1 and analyze the computational complexity as follows.
Complexity analysis: The main computational cost in each iteration rests in the singular tube

thresholding operator, requiring the computation of FFT, IFFT and SVDs. Therefore, the time
complexity in each iteration is:

O
(
n1n2n3(n1 + n2 + n3 + log(n1n2n3))

)
, (29)
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Algorithm 1 Solving Problem (21) using ADMM.

Input: The observed tensor T , the parameters τ, λ1, λ2, λ3, ρ.

1: while not converged do

2: Update L using Equation (24);

3: Update U ,V andW using Equations (25), (26) and (27), respectively;

4: Update Y1,Y2 and Y3 using Equations (28);

5: Check the convergence conditions:

‖Lk+1 −Lk‖∞ ≤ δ, ‖U k+1 −U k‖∞ ≤ δ,

‖V k+1 −V k‖∞ ≤ δ, ‖W k+1 −W k‖∞ ≤ δ.

6: end while

Output: L̂.

4.3. Convergence of Algorithm 1

As Problem (21) has more than two variables, the convergence property of Algorithm 1 cannot
be directly obtained from existing results on the convergence of ADMM [38]. Thus, we prove its
convergence in terms of the objective function in the following theorem.

Theorem 1 (Convergence of Algorithm 1). For any ρ > 0, if the unaugmented Lagrangian
L0(L,U ,V ,W ,Y1,Y2,Y3) has a saddle point, then the iterations (Lk,U k,V k,W k,Y k

1,Y k
2,Y k

3) in
Algorithm 1 satisfy the residual convergence, objective convergence and dual variable convergence of
Problem (21).

Proof. The key idea of the proof is to rewrite Problem (9) into a two-block ADMM problem.
Since the RowTwist and ColTwist operations are linear, there exist two matrices P1, P2 ∈ Rn1n2n3×n1n2n3 ,
such that the constraints V = ColTwist(L) and W = RowTwist(L) are equivalent to the
vectorization expressions:

vec(V) = P1vec(L), and vec(W) = P2vec(L),

where vec(·) denotes the operation of tensor vectorization (see [14]).
For notational simplicity, let:

x = vec(L), y =

vec(Y1)

vec(Y2)

vec(Y3)

 , z =

 vec(U )
vec(V)
vec(W)

 , A =

 I
P1

P2

 ,

and:
f (x) =

1
2
‖O � (L− T )‖2

F, g(z) = τ(λ1‖U‖? + λ2‖V‖? + λ3‖W‖?).

It is obvious that f (·) and g(·) are closed, proper and convex. Then, Problem (21) can be re-written
as follows:

min
x,z

f (x) + g(z)

s.t. Ax− z = 0.
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According to the convergence analysis in [38], we have:

objective convergence: lim
k→∞

f (xk) + g(zk) = f ∗ + g∗,

dual variable convergence: lim
k→∞

yk = y∗,

constraint convergence: lim
k→∞

Axk − zk = 0,

where f ∗, g∗ are the optimal values of f (x), g(z), respectively. Variable y∗ is a dual optimal point
defined as:

y∗ =

vec(Y∗1)
vec(Y∗2)
vec(Y∗3)

 ,

where (Y∗1 ,Y∗2 ,Y∗3) is the dual component of a saddle point (L∗,U ∗,V∗,W∗,Y∗1 ,Y∗2 ,Y∗3) of the
unaugmented Lagrangian L0(L,U ,V ,W ,Y1,Y2,Y3).

4.4. Differences from Prior Work

First, we show the difference between the proposed model TriTNN and two mostly related
models TNN [30] and t-TNN [16]. Although all of them are based on the tubal nuclear norm, the main
difference lies in that TNN and t-TNN only use information of one orientation, whereas TriTNN uses
information of three orientations.

Now, we compare the proposed model with Tubal-Alt-Min [37]. It is based on tensor tubal
rank and employs the tensor factorization strategy for tensor completion. The differences between
TriTNN and Tubal-Alt-Min are: (a) TriTNN preserves the low-rank structure by summing three
tubal nuclear norms, whereas Tubal-Alt-Min adopts low-rank tensor factorization to characterize
the low-rank property of a tensor. In this way, they are two different kinds of models for tensor
completion (since Tubal-Alt-Min and the proposed TriTNN are quite different algorithms and the
main goal of this paper is to improve upon TNN, we do not compare Tubal-Alt-Min in the experiment
section.) (b) Since TriTNN is based on the tubal nuclear norm, it is formulated as a convex optimization
problem (21). Benefiting from convexity, each local minimum of Problem (21) must be a global
minimum. However, Tubal-Alt-Min is formulated as a non-convex optimization problem, thus it may
produce sub-optimal solutions.

5. Experiments

In this section, extensive experiments will be conducted to explore the effectiveness of the
proposed Algorithm 1. All the codes are implemented in MATLAB language, and all experiments are
carried out in Windows 10 based on an Intel Core(TM) 2.60-GHz CPU with 12 G RAM.

To explore the effectiveness of the proposed TriTNN-based model, we compare with the following
nuclear norm-based tensor completion models:

• The tensor nuclear norm-based model with ADMM solver: high accuracy low-rank tensor
completion (HaLRTC, denoted by SNNin this paper) (code available: http://www.cs.rochester.
edu/u/jliu/publications.html) [2], The tensor nuclear norm is defined as the weighted sum of
nuclear norms of the unfolding matrices along each mode (thus, we denote this model as SNN):

‖T ‖SNN := α1‖T(1)‖∗ + α2‖T(2)‖∗ + α3‖T(3)‖∗,

where α1, α2, α3 are positive parameters and T(i) ∈ Rni×∏j 6=i ni , i = 1, 2, 3, is the unfolding matrix
of tensor T ∈ Rn1×n2×n3 along the i-th mode [2].

• The latent tensor nuclear norm-based model (LatentNN) (code available: https://github.com/
ryotat/tensor) [21]. The latent tensor nuclear norm is defined as:

http://www.cs.rochester.edu/u/jliu/publications.html
http://www.cs.rochester.edu/u/jliu/publications.html
https://github.com/ryotat/tensor
https://github.com/ryotat/tensor
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‖T ‖latent := inf
X+Y+Z=T

‖X(1)‖∗ + ‖Y (2)‖∗ + ‖Z(3)‖∗,

where X(1), Y (2) and Z(3) are the first-mode, second-mode and third-mode unfoldings of latent
tensors X ,Y and Z , respectively.

• The square nuclear norm-based model (SquareNN) (code available: https://sites.google.com/
site/mucun1988/publi) [23]. The square nuclear norm of a tensor is defined as the nuclear norm
of the most balanced unfolding of a tensor (see [7,23]).

• The most related tubal nuclear norm-based model (TNN) (code available: https://github.com/
jamiezeminzhang/) [30] and the twist tubal nuclear norm-based model (t-TNN) [16].

We conduct tensor completion experiments on color images, videos and a dataset for autonomous
vehicle. For an estimation tensor L̂ ∈ Rn1×n2×n3 , its quality is evaluated by the peak signal-to-noise
ratio (PSNR) computed by the definition:

PSNR = 10 log10
(n1n2n3‖L∗‖2

∞

‖L̂−L∗‖2
F

)
,

where L∗ is the underlying tensor. The higher the PSNR value is, the better the recovery performance
will be.

5.1. Color Image Inpainting

Color images in row × column × channel are naturally expressed in 3D tensor form. Image
inpainting aims at reconstructing a color image from a small fraction of its entries. In this experiment,
twelve test images of size 256× 256× 3 are used; see Figure 5. Given an imageM of size d1 × d2 × 3,
we randomly sample 30% of its pixels and add i.i.d. Gaussian noise with standard deviation σ = 0.1σ0,
where σ0 = ‖M‖F/

√
3d1d2 is the rescaled magnitude ofM.

The weight parameters α of SNN are chosen to satisfy α1 : α2 : α3 = 1 : 1 : 0.01 as suggested in [2].
Parameter τ = 8e3 and λ1, λ2, λ3 in Problem (22) are chosen to satisfy λ1 : λ2 : λ3 = 1 : 0.01 : 0.01.
Parameters of other algorithms are tuned for better performances in most cases. We also employ
the structural similarity index measure (SSIM) [43] to measure the quality of inpainted color images.
The higher the SSIM value is, the better the inpainting performance will be. Given a color image,
we test ten times and report the averaged PSNR and SSIM values.

The inpainting results of five images are shown in Figure 6 for qualitative comparison. We can
see that the proposed TriTNN-based model obtains better visual performances. For quantitative
comparison, the PSNR and SSIM values on the twelve images of seven algorithms are reported in
Figure 7. It can be seen that the proposed TriTNN-based outperforms the competitors in most cases.

Figure 5. Twelve color images used in the experiments.

https://sites.google.com/site/mucun1988/publi
https://sites.google.com/site/mucun1988/publi
https://github.com/jamiezeminzhang/
https://github.com/jamiezeminzhang/
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(a) Obser. (b) SNN [2] (c) LatentNN [21] (d) SquareNN [23] (e) TNN [31] (f) t-TNN [16] (g) TriTNN(a) Observation (b) SNN (c) LatentNN (d) SquareNN (e) TNN (f) t-TNN (g) TriTNN

Image 

Algorithms 

SNN LatentNN SquareNN TNN t-TNN TriTNN 

Starfish 
PSNR 22.36 21.41 21.62 21.63 22.88 23.40 

SSIM 0.5014 0.4573 0.4557 0.4461 0.5301 0.5865 

Flower 
PSNR 23.38 22.54 22.44 22.50 23.72 24.85 

SSIM 0.4670 0.4286 0.4109 0.4001 0.4692 0.6721 

Sunset 
PSNR 24.48 24.04 23.82 23.61 24.90 25.19 

SSIM 0.6381 0.6161 0.5982 0.5853 0.6650 0.7111 

Tree 
PSNR 24.13 23.27 23.19 23.25 24.39 25.35 

SSIM 0.5491 0.5120 0.4946 0.4850 0.5680 0.6932 

Church 
PSNR 25.81 25.21 25.01 25.66 24.70 26.87 

SSIM 0.8576 0.8466 0.8391 0.8511 0.8055 0.8359 

(h) PSNR & SSIM values of each algorithm (h) PSNR and SSIM values of the algorithms

Figure 6. Examples of color image inpainting. (a) is the observed noisy incomplete image (Obs.) with
sampling ratio 0.3 and noise level σ = 0.1σ0; (b–g) show the inpainting results of nuclear norm-based
models: SNN [2], latent tensor nuclear norm-based model (LatentNN) [21], SquareNN [23], tensor
tubal nuclear norm (TNN) [31], t-TNN [16] and the proposed model, respectively. The corresponding
PSNR and SSIM values are listed in (k). The highest PSNR and SSIM indicating the best inpainting
performance are highlighted in bold. It is suggested to be viewed in color as a pdf file with a 4× zoom
in. TriTNN, triple tubal nuclear norm.
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(a)

(b)

Figure 7. Quantitative evaluation of algorithms on color images for Uniform-0.3: the image is
sampled uniformly with ratio p = 0.3 and corrupted with noise level σ = 0.1σ0. (a) PSNR values;
(b) SSIM values.

5.2. Video Inpainting

The video inpainting task aims at imputing the missing pixels of a video. The performance
competition is carried out on five widely-used YUVvideos (They are available from https://
sites.google.com/site/subudhibadri/fewhelpfuldownloads): salesman_qcif, silent_qcif, suzie_qcif,
tempete_cif and waterfall_cif. Due to the computational limitation, we use the first 30 frames of Y
components in each video. This results in three tensors sized 144× 176× 32 and two tensors sized
288 × 352 × 32. For each video, we uniformly sample 10% of the entries and conduct the video
inpainting experiments.

The weight parameters α of SNN are chosen to satisfy α1 : α2 : α3 = 1 : 1 : 1 as suggested in [2].
Parameters τ = 2, ρ = 5e-5 and λ1, λ2, λ3 are chosen to satisfy λ1 : λ2 : λ3 = 1 : 1 : 1 for the proposed
model. Parameters of other algorithms are tuned for better performances in most cases. Given a video,
we test ten times and report the averaged PSNR value.

The qualitative comparison is shown in Figure 8. The PSNR values are reported in Table 1.
It can be seen that the TriTNN-based model outperforms the others. The proposed TriTNN has better
performances than TNN and t-TNN, since the TriTNN exploits the row, column and tube redundancy
simultaneously, whereas TNN or t-TNN only exploit one type of redundancy. The superiority of
TriTNN over SNN, LatentNN and SquareNN may be explained by the fact that the circulant block

https://sites.google.com/site/subudhibadri/fewhelpfuldownloads
https://sites.google.com/site/subudhibadri/fewhelpfuldownloads
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matricization of a tensor coded in TriTNN makes use of more information than directly unfolding
along each mode.

(a) Original (b) Obser. (c) SNN [2] (d) LatentNN [21] (e) SquareNN [23] (f) TNN [31] (g) t-TNN [16] (h) TriTNN

Figure 8. Examples of YUVvideo inpainting. (a) is the first frame of each video; (b) is the observed
incomplete frame (Obs.) with 90% missing entries; (c–h) show the inpainting results of nuclear
norm-based models: SNN [2], LatentNN [21], SquareNN [23], TNN [31], t-TNN [16] and the proposed
model TriTNN-based model, respectively. It is suggested to be viewed as a pdf file with a 4× zoom in.

Table 1. Quantitative evaluation of algorithms in PSNR values for YUV video inpainting: each video is
sampled uniformly with ratio p = 0.1.

Video SNN [2] LatentNN [21] SquareNN [23] TNN [31] t-TNN [16] TriTNN

salesman_qcif 21.10 24.21 20.31 25.56 25.73 26.18
silent_qcif 24.07 23.95 22.98 27.93 28.03 28.47
suzie_qcif 25.79 24.63 24.48 27.92 29.47 29.70

tempete_cif 19.10 18.45 19.23 20.65 21.21 21.46
waterfall_cif 24.10 22.39 24.06 26.71 27.44 28.22

5.3. A Dataset for Autonomous Driving

Environment perception for autonomous driving has attracted more and more attention in
computer vision. In this subsection, experiments on a dataset collected for autonomous driving
are performed.

The dataset (a collection of Frame No. 165–No. 244 in Scenario B and Scenario B; additional sensor
data available at http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html) has
80 frames of gray images and LiDAR point cloud data acquired by a Velodyne HDL-64E LiDAR.
The image sequence is resized to be a tensor of size 128× 256× 80, and the LiDAR data are resampled,
transformed and formatted to be two tensors of size 64× 436× 80 representing the distance data and
the intensity data, respectively.

Given a tensor to complete T ∈ Rn1×n2×n3 , experiments are carried out with seven different
observation settings where the sampling ratio p varies from 0.1–0.7. The observed entries are further
corrupted by i.i.d. Gaussian noise with standard deviation σ = 0.2σ0, where σ0 = ‖T ‖F/

√
d1d2d3 is

the normalized magnitude of T . The weight parameters α of SNN are chosen to satisfy α1 : α2 : α3 =

1 : 1 : 1. Parameters τ = 2, ρ = 5e-5 and λ1, λ2, λ3 are chosen to satisfy λ1 : λ2 : λ3 = 1 : 1 : 1 for the

http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html
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proposed model. Parameters of other algorithm are tuned manually to achieve better performances in
most cases. Given a sampling ratio p, we repeat ten trials and report the averaged PSNR value.

The quantitative performance comparison in terms of PSNR is shown in Tables 2–4 for gray
image sequence, distance data and intensity data completion, respectively. The highest average PSNR
indicating the best recovery performance is highlighted in bold. From Tables 2–4, we can see that the
proposed TriTNN-based model yields better performances over the other five algorithms for noisy
tensor completion.

Table 2. Comparison of the PSNR values for image sequence completion.

Sampling Ratio SNN [2] LatentNN [21] SquareNN [23] TNN [31] t-TNN [16] TriTNN

p = 0.1 14.58 15.50 17.27 17.23 17.29 17.45
p = 0.2 17.79 17.27 18.16 18.32 18.59 18.74
p = 0.3 18.74 18.36 18.80 19.04 19.12 19.53
p = 0.4 19.29 19.02 19.21 19.50 19.44 20.02
p = 0.5 19.61 19.43 19.49 19.82 19.64 20.28
p = 0.6 19.80 19.70 19.69 20.06 19.76 22.01
p = 0.7 19.90 19.83 19.84 20.23 19.85 22.41

Table 3. Comparison of the PSNR values for HDL-64Edistance data completion.

Sampling Ratio SNN [2] LatentNN [21] SquareNN [23] TNN [31] t-TNN [16] TriTNN

p = 0.1 17.80 16.90 17.64 19.03 18.67 18.91
p = 0.2 19.26 18.48 18.94 20.04 19.60 20.09
p = 0.3 20.33 19.71 19.94 20.93 20.41 21.04
p = 0.4 21.24 20.67 20.89 21.74 21.17 21.92
p = 0.5 22.05 21.55 21.75 22.47 21.88 22.72
p = 0.6 22.82 22.39 22.56 23.16 22.61 23.68
p = 0.7 23.54 23.21 23.34 23.79 23.35 24.51

Table 4. Comparison of the PSNR values for HDL-64E intensity data completion.

Sampling Ratio SNN [2] LatentNN [21] SquareNN [23] TNN [31] t-TNN [16] TriTNN

p = 0.1 17.30 17.63 17.57 18.31 18.62 18.36
p = 0.2 18.79 19.30 18.92 19.50 19.61 19.63
p = 0.3 19.85 20.29 19.93 20.38 20.37 20.45
p = 0.4 20.84 21.11 20.90 21.24 21.08 21.30
p = 0.5 21.72 21.86 21.76 22.05 21.78 22.18
p = 0.6 22.51 22.62 22.53 22.79 22.50 22.94
p = 0.7 23.39 23.40 23.39 23.59 23.27 23.80

6. Conclusions

This paper studied the problem of completing a 3D tensor from incomplete observations. It has
been used in broad applications of computer vision tasks like image and video inpainting. In this
paper, a new tensor norm named the triple tubal nuclear norm (TriTNN) is proposed to simultaneously
exploit tube, row and column redundancy in a circulant way by using a weighted sum of three TNNs.
A TriTNN-based tensor completion model is presented. It is further solved by an ADMM-based
algorithm with convergence guarantee. Experimental results on color images, videos and LiDAR
datasets show the superiority of the proposed TriTNN against state-of-the-art nuclear norm-based
tensor norms.
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For the proposed TriTNN, the authors believe it can outperform many nuclear norm-based tensor
completion models because more spatial-temporal information is exploited. However, generally
speaking, it has the following two drawbacks:

1. Computational inefficiency: Compared to TNN and t-TNN, it is more time-consuming since it
involves computing TNN, t-TNN and rt-TNN (see Equation (18)).

2. Sample inefficiency: Using the analysis of [23] and [44], to complete an incomplete tensor, TriTNN
needs more observations than TNN and t-TNN (limited to the scope of this paper; the authors do
not discuss it further).

In the future research, the authors are interested in efficient algorithms like [45] to tackle the
problem of computational inefficiency. To decrease the sample complexity of TriTNN, it will be helpful
to follow the suggestions in [44] to design new atomic norms like [46]. To get better visual completion
performances, the authors would like to consider adding smoothness regularization in the model
like [47–49] and adopting different tensorization methods like [50]. It is also helpful for studying
new tensor completion models using deep neural networks [51]. For potential extensions of TriTNN,
the authors would like to explore the p-th order (p > 3) extension [52] and extensions to other discrete
transforms other than DFT like [53].
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