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Abstract: The computation of distances between strings has applications in molecular biology, music
theory and pattern recognition. One such measure, called short reversal distance, has applications
in evolutionary distance computation. It has been shown that this problem can be reduced to the
computation of a maximum independent set on the corresponding graph that is constructed from the
given input strings. The constructed graphs primarily fall into a class that we call layered graphs.
In a layered graph, each layer refers to a subgraph containing, at most, some k vertices. The inter-layer
edges are restricted to the vertices in adjacent layers. We study the MIS, MVC, MDS, MCV and MCD
problems on layered graphs where MIS computes the maximum independent set; MVC computes the
minimum vertex cover; MDS computes the minimum dominating set; MCV computes the minimum
connected vertex cover; and MCD computes the minimum connected dominating set. MIS, MVC
and MDS run in polynomial time if k = Θ(log | V |). MCV and MCD run in polynomial time if
k = O((log | V |)α), where α < 1. If k = Θ((log | V |)1+ε), for ε > 0, then MIS, MVC and MDS run
in quasi-polynomial time. If k = Θ(log | V |), then MCV and MCD run in quasi-polynomial time.

Keywords: NP-complete; layered graph; quasi-polynomial time; dynamic programming;
independent set; vertex cover; dominating set; string transformations; social networks

1. Introduction

A string is a sequence of symbols from an alphabet Σ, in which a symbol can be repeated. An
adjacent swap exchanges two consecutive elements in a sequence [1,2]. In a signed string (π, ∀i π[i]) the
following signs are assigned: + for normal orientation and − for reverse orientation. Adjacent swap over
positions i, i+ 1 are denoted by (i i+ 1). For unsigned strings (π), where π = π[1], π[2], π[3], . . . , π[i], π[i+
1], . . . , π[n], π transforms into π′, where π′ = π[1], π[2], π[3], . . . , π[i− 1], π[i + 1], π[i], π[i + 2], . . . , π[n].
For signed strings (π), where π = π[1], π[2], π[3], . . . , π[i], π[i + 1], . . . , π[n], π transforms into π′, where
π′ = π[1], π[2], π[3], . . . , π[i− 1],−π[i + 1],−π[i], π[i + 2], . . . , π[n]. Two strings are compatible under
some operation if they can be transformed into each other with the operation. That is, the unsigned
string (2, 1, 3, 2) is compatible with (2, 1, 2, 3), whereas it is not compatible with (3, 2, 1, 1).
The computation of the minimum number of adjacent swaps required to transform one given string
into another compatible string, i.e., the adjacent swap distance, has applications in genetics and music
theory [1]. A 1-flip toggles the orientation of a particular π[i]; it is denoted by f1(i). It changes the sign
of π[i]. When it is applied to a signed string (π), where π = π[1], π[2], π[3], . . . , π[i], π[i + 1], . . . , π[n],
π transforms into π′, where π′ = π[1], π[2], π[3], . . . , π[i− 1],−π[i], π[i + 1], π[i + 2], . . . , π[n].
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A short reversal is either a (1-flip) or an adjacent swap. The short reversal distance is the minimum
number of short reversals required to transform a signed string into another compatible string.
Two strings are compatible under short reversals if and only if their unsigned versions, i.e., the strings
whose signs are disregarded, are compatible [1]. The computation of the short reversal distance
between α and β is reduced to the computation of the cardinality of the maximum independent set
on a conflict graph constructed from α and β. It has applications in HOX gene clusters in vertebrate
evolution [2,3]. In music theory, a composition is represented as a string. The smaller the distance
between two patterns (compositions), the more similar they are [4].

The maximum independent set problem on a graph, G = (V, E), seeks to identify a subset of
V with maximum cardinality, such that no two vertices in the subset have an edge between them.
If V∗ ⊆ V is the maximum independent set (or MIS for short) of G, then ∀u, v ∈ V∗, (u, v) /∈ E. In this
article, G is undirected, so an edge (u, v) is understood to be an undirected edge. Karp proposed a
method for proving problems to be NP-complete [5]. The maximum independent set problem on
a general graph is known to be NP-complete [6]. Certain classes of graphs have a polynomial time
solution for this problem. Such algorithms are known for trees and bipartite graphs [7], chordal
graphs [8], cycle graphs [9], comparability graphs [10], claw-free graphs [11], interval graphs and
circular arc graphs [12]. The maximum weight independent set problem is defined on a graph where
the vertices are mapped to corresponding weights. The maximum weight independent set problem
seeks to identify an independent set where the sum of the weights of the vertices is maximized.
On trees, the maximum weighted independent set problem can be solved in linear time [13]. Thus,
for several classes of graphs, MIS can be efficiently computed.

Hsiao et al. designed an O(n) time algorithm to solve the maximum weight independent set
problem on an interval graph with n vertices, given its interval representation with a sorted endpoints
list [14]. Several articles improved the complexity of the exponential algorithms that compute an MIS
on a general graph [15,16]. Lozin and Milanic showed that MIS is polynomially solvable for the class
of S1,2,k-free planar graphs, generalizing several previously known results, where S1,2,k is the graph
consisting of three induced paths of lengths 1, 2 and k with a common initial vertex [17].

The minimum vertex cover problem on G seeks to identify a vertex cover with minimum
cardinality, i.e., minimum vertex cover or MVC. If V∗ ⊆ V is the MVC of G, then ∀e = (u, v) ∈ E,
u ∈ V∗ ∨ v ∈ V∗. In this article, G is undirected, so an edge (u, v) is understood to be an
undirected edge. The minimum dominating set (i.e., MDS) and the minimum connected dominating
set (i.e., MCD) problems seek to identify a dominating set i.e., DS and a connected dominating set
i.e., CDS, respectively, with minimum cardinalities. The MVC, MDS and MCD problems on general
graphs are known to be NP-complete [6]. Garey and Johnson showed that MVC is one of the first
NP-complete problems [6]. In connected vertex cover problems (i.e., MCV), given a connected graph
(G), a connected vertex cover (i.e., CVC) with minimum cardinality is sought. Garey and Johnson
proved that MCV is NP-complete [18]. For trees and bipartite graphs, the minimum vertex cover can
be identified in polynomial time [19,20]. Garey and Johnson proved that the MCV problem is NP-hard
in planar graphs, with a maximum degree of 4 [6]. Li et al. proved that for 4-regular graphs, the MCV
problem is NP-hard [21]. It has been shown that for series-parallel graphs, which are a set of planar
graphs, the minimum vertex cover can be computed in linear time [22].

Garey and Johnson showed that the MDS problems on planar graphs with maximum vertex degree
3 and planar graphs that are regular with degree 4 are NP-complete [6]. MCD is NP-complete even
for planar graphs that are regular with degree 4 [6]. Bertossi showed that the problem of identifying
a MDS is NP-complete for split graphs and bipartite graphs [23]. Cockayne et al. proved that MDS
in trees can be computed in linear time [24]. Baker designed various approximation algorithms for
planar graphs [25]. Muller and Brandstadt showed that MDS and MCD are NP-complete for chordal
bipartite graphs [26]. Ruo-Wei et al. proved that for a given circular arc graph with n sorted arcs, MCD
is linear in time and space [27]. Fomin et al. proposed an algorithm with a time complexity faster than
2n to solve the connected dominating set problem [28].
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The term “layered graph” has been used in the literature. The hop-constrained minimum spanning
tree problem related to the design of centralized telecommunication networks with quality of service
(QoS) constraints is NP-hard [29]. A graph known as a layered graph was constructed from a given
input graph, and the authors showed that the hop-constrained minimum spanning tree problem is
equivalent to the Steiner tree problem. In software architecture, the system is divided into several
layers; this has been viewed as a graph with several layers. In this article, we define a new class of
graphs that we call layered graphs and design algorithms for various graph-theoretic problems.

2. Layered Graph

Consider a set of undirected graphs, G1, G2, . . . , Gq, on the corresponding vertex sets
(V1, V2, . . . , Vq) and the edge sets (E1, E2, . . . , Eq i.e., Gi = (Vi, Ei)). Consider a graph, G, that is
formed from ∀i Gi with special additional edges called inter-layer edges, denoted as Eij, where j = i + 1
and Eij denotes the edges between Vi and Vj. We call such a graph a layered graph, denoted as LG,
where the i-th layer is Gi. Note that for any given i, Eij, where j = i + 1 can be φ and ∀l 6=i+1Eil = φ.
Every vertex within a given layer gets a label from (1, 2, 3, . . . , k). Thus, Vi ⊆ {Vi1, Vi2, . . . , Vik}. Note
that Vix is the vertex number, x, in layer i. However, in layer i, the vertex number, x, may not exist.
Further, if (Vix, Vi+1 y) ∈ Ei i+1, then it follows that vertex x is present in layer i and vertex y is present
in layer i + 1.

We defined the following restrictions on a layered graph. Several of the these restrictions can be
combined. Please see Figure 1.
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Figure 1. (a) LG24,4
6 . (b) LLG23,4

6 . (c) SLG24,4
6 . (d) SLLG24,4

6 . Layer 1 is the topmost and layer 4 is the
bottommost. Vertices have labels from {1, 2, 3, 4, 5, 6} within a given layer. Intra-layer edge is a thick
line whereas inter-layer edge is thinner. (a–d) are CLGs as well. (a,b) are not a SLGs ((a): layer 4 has
two components {1,3,5} and {2,4,6}. (b): layer 4 has three components {1,6}, {2,5} and {4}; vertex 3 does
not exist, only a placeholder is shown).

• If ∀i | Vi |≤ k, then a k-restricted layered graph, i.e., LGk, is obtained. LGq
k denotes an LG with q

layers. LGn,q
k denotes an LGq

k with n vertices.
• If ∀t, (Vit, Vju) is an inter-layer edge → (t = u) ∧ j ∈ {i − 1, i + 1}, then a linear layered graph,

i.e., LLG, is obtained. LLGk denotes an LLG that is k-restricted.
• If ∀i Gi is a connected component, then a single component layered graph, i.e., SLG, is obtained.
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• If G is required to be a connected component, then a connected layered graph, i.e., CLG, is obtained.

The problems of computing the adjacent swap distance between unsigned strings, adjacent swap
distance between signed strings and short reversal distance were addressed in [1]. If the alphabet is Σ,
|Σ| is k, the source string is α and the destination string is β and the length of α (and β) is n, a pairing
diagram can be drawn for α and β, where all elements of α and β are treated as vertices, and perfect
matching is performed on all 2n vertices, where each edge corresponds to (α[i], β[j]) (here, both α[i],
β[j] denote the same symbol [1]). The solutions to the above problems are based on optimum pairing
(in contrast to any perfect matching), where there is an edge from the i-th occurrence of a symbol x in
α to the i-th occurrence of x in β; the corresponding pairing diagram is the optimum pairing diagram.
The solutions for adjacent swap distances are complete. However, the solution suggests that the short
reversal distance is partial; it can solve very few sub-cases. Several distance problems on strings have
been shown to be NP-complete [30]. However, the complexity of short reversal distance problem is
unknown. The short reversal distance was studied in [2]. It was shown that the edges corresponding
to two consecutive occurrences of a symbol x in optimum pairing form a special edge-pair if they
meet certain criteria. A conflict graph, G, is constructed from an optimum pairing diagram where a
vertex denotes a special edge-pair, and an edge exists between a pair of vertices that are in conflict. The
computation of the short reversal distance is reduced to the computation of MIS on G. G consists of
several subgraphs, ∀i Gi, each having, at most, k vertices, where each vertex corresponds to a symbol
in Σ. Each Gi is a subgraph of the Kk clique. The vertices, u ∈ Gi, v ∈ Gj (i 6= j), can have a conflict
only if they correspond to the same symbol. Further, they share a common edge in the optimum
pairing diagram. In this particular scenario, the layered graphs arise naturally. Further, such layered
graphs are LLGs. In this framework, the computation of MIS on a LLG is a necessary component in
the computation of the corresponding short reversal distance.

Considering a tribal society S consisting of some villages on a bank of a river, a village consists of
a few families where each family has its own family-head. The family-heads of a given village know one
another, and they also interact with specific family-heads of adjacent villages for trade (of produce)
and partnership (collaboration in farming etc.). If one models this society as a social network, where a
family-head is denoted by a vertex and an interaction (among family-heads) is denoted by an edge,
then one obtains a layered graph. In this social network, identifying the smallest set of influencers
is a natural pursuit (whose solution is given by computing MDS). These applications motivate the
study of MIS, MDS and other graph theoretic problems on layered graphs. In general, graph theoretic
problems, like subgraph isomorphism, and its variations have extensive applications in computational
biology, e.g., references [31,32].

This article designs algorithms for LGk where every vertex within a given layer gets a label from
{1, 2, 3, . . . , k}. The results are applicable for any restrictions of LGk, like LLG, SLG, etc. Consider a
layered graph, G, whose first a layers and last b layers do not have any edges. The graph is not a CLG;
however, the MCV of G is the same as the MCV of the subgraph where the first a and the last b layers
are removed. Further, if every layer has at least one intra-layer edge, then MCV can be computed only
on CLG. MCD is well defined only for CLG because it must dominate all vertices.

The complete graph on k vertices, a clique on k vertices, is denoted by Kk. Consider a graph, G,
formed from several copies of Kk, say G1, G2, . . . , Gq, where, in addition to the edges that exist in each
of Gi, an edge is introduced between every pair, uv: u ∈ Gi and v ∈ Gi+1. We denote this particular
graph, G, that has q layers with Kq

k . The class of k-restricted layered graphs are in fact subgraphs of Kq
k .

Thus, we call Kq
k a full LGq

k . Likewise, a LLG that is defined on q cliques, where for any i, i + 1, for all
values of l, an edge is introduced between vertex l of layer i and vertex l of layer i + 1, is called a full
LLGq

k . The number of layers in LGk i.e., q is bound by n/k ≤ q ≤ n.
A subgraph of G induced by vertices u1, u2, . . . , ui consists of all vertices (u1, u2, . . . , ui) and all the

edges restricted to them. We designed algorithms that compute the cardinalities of MVC, MIS and
MDS of any subgraph of Kq

k i.e., LGn,q
k in polynomial time when k = O(log n) and the cardinalities
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of MCV and MCD in polynomial time when k = O((log n)α), α < 1. Additionally, these algorithms
report the corresponding numbers of MISs, MVCs, MDSs, MCVs and MCDs in LGn,q

k .

3. Algorithm

Consider a layered graph with q layers, i.e., LGn,q
k with layers (1, 2, 3, . . . , q). We designed a

generic dynamic programming algorithm for all of the problems. However, certain restrictions exist
corresponding to the problem at hand. The specific details pertaining to each problem are elucidated
along with its solution. For example, MCD is meaningful only when the underlying graph is connected,
i.e., the input graph is restricted to CLG.

We denoted the vertices chosen in a particular layer with a k-bit variable that we called mask.
The pth bit of the mask was set to one to include the pth vertex. Otherwise, the bit was set to zero and
the vertex was excluded. Let S =

⋃q
i=1 V∗i be a candidate solution for a problem where V∗i denotes the

set of nodes that are chosen from layer i. The candidate sub-solution for layer i is denoted csi. For layers
1, . . . , i, a combined candidate sub-solution is maintained, denoted ccsi. Likewise, csi,j and ccsi,j denote
the sub-solutions (of layer i and first i layers respectively), where the vertices chosen from layer i are
denoted by mask j. Only the cardinality of the best options is stored; such cardinality is called an
optimum value. This is stored in the variable soli,j, and the corresponding number of solutions that yield
the optimum value is stored in counti,j. In this article, an optimal solution is a solution that corresponds
to the optimum value. We say that csi,j and ccsi−1,l are compatible if csi,j

⋃
ccsi−1,l ∈ ccsi,j. That is,

the union of csi,j and ccsi−1,l yields a ccs for the first i layers. Note that compatibility is determined by
csi,j and csi−1,l ∈ ccsi−1,l , and the vertices chosen by ccsi−1,l in the earlier layers are irrelevant. This is a
key feature.

3.1. Input

The input consists of LGn,q
k which is specified in terms of M1, . . . , Mq and I1, . . . , Iq−1, where Mi is

the 0–1 adjacency matrix for layer i, i.e., Gi. Ii is the 0–1 adjacency matrix for Ei,i+1. Rows 1, 2, . . . , k of Ii
correspond to vertices Vi1, Vi2, . . . , Vik, and columns 1, 2, . . . , k of Ii are vertices Vi+1 1, Vi+1 2, . . . , Vi+1 k.
It must be noted that for a linear graph, Ii can just be a k dimensional vector and the corresponding
computation is less expensive where Ii[a] = 1 ⇐⇒ an edge between a ∈ Vi, a ∈ Vi+1 exists.
The adjacency matrix Mi, for layer i, is a matrix of dimensions k× k, which means it requires O(k2)

space. Similarly, each Gi also requires O(k2) space. Therefore, the total space required for the input
graph is O(nk), since each layer requires O(k2) space, and there are O(n/k) layers.

The Boolean valued function compatible (please see Algorithm 1) determines whether the candidate
sub-solutions (of the current layer and the subgraph induced by vertices of all previous layers) can
be combined; here, the layer number, i, is implicit. For each mask, j, of a given layer, i, the function
valid(i, j) determines if j is a feasible option for layer i. The helper function, cardinality(j), returns the
number of bits that are set in the binary representation of mask j.

All algorithms consist of the following sequence of computational tasks:

• Repeat (i) and (ii) for all layers 1, . . . , q− 1.
• (i) Feasible: ∀j (if valid(i, j)), then go to step(ii).
• (ii) Extension: If j and l are compatible, then store the cardinality of csi,j

⋃
ccsi−1,l in soli,j and the

count of ccsi,j in counti,j.
• (iii) Summarize: At layer q :, execute (i) and (ii). Identify the optimum cardinality among ∀jsolq,j

and the corresponding count.

A particular problem has specific characteristics. In the sequel, where a problem is dealt with in
detail, the corresponding validity/compatibility and other specifics are elucidated.
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Algorithm 1 Compatible Algorithm

Input: LGk, j, l, and I. //The function call: compatible(j, l). l: Mask for layer i.
Output: 0 (incompatible) or 1 (compatible). //j: Mask for layer i + 1. I denotes matrix for Ei i+1.

// bitc(i) returns true if bit c is set in i, otherwise, it returns false.

Case MIS: // Input: two valid MISs of two adjacent layers
if independent(j, l) then // independent(j, l): for any a, b : bita(l) and bitb(j):

return 1; //if I[a][b] = 1, return 0; otherwise, return 1; O(k2) algorithm.
else

return 0; //∃ a pair of vertices across the layers joined with an edge.
end if

Case MVC: // Input: two VCs of two adjacent layers
if cover(j, l) then // cover(j, l): ∀a,b where I[a][b] = 1: bita(l) ∨ bitb(j) = 1

return 1; // then return 1; otherwise, return 0; O(k2) algorithm.
else

return 0;
end if

Case MCV: // Input: two masks of two adjacent layers; need not be MCVs of their respective layers.
if ccover(j, l) then // ccover(j, l): ∀a,b where I[a][b] = 1: bita(l) ∨ bitb(j) = 1

return 1; // and for each component of l, ∃c ∈ l: (∃d : I[c][d] = 1) ∧ (bitd(j) = 1)
else // then return 1; otherwise, return 0; O(k2) algorithm.

return 0;
end if

Case MDS: // Input: two masks of two adjacent layers,
if dom(j, l) then // dom(j, l): D ← csi,l

⋃
csi+1,j

⋃
Adj(csi,l)

⋃
Adj(csi+1,j)

return 1; // i < q− 1: if Vi ⊆ D, then return 1; otherwise, return 0;
else // i = q− 1: if Vi

⋃
Vi+1 ⊆ D, then return 1; otherwise, return 0;

return 0; //Vi or Vi
⋃

Vi+1 is not dominated. O(k2) algorithm.
end if // Adj(V) is the set of all vertices neighboring any vertex in V

Case MCD: // Input: two masks of two adjacent layers,
// For each component of l, ∃c ∈ l: (∃d : I[c][d] = 1) ∧ (bitd(j) = 1)

if dom(j, l) then // dom(j, l): D ← csi,l
⋃

csi+1,j
⋃

Adj(csi,l)
⋃

Adj(csi+1,j)
return 1; // i < q− 1: if Vi ⊆ D then return 1; otherwise return 0;

else // i = q− 1: if Vi
⋃

Vi+1 ⊆ D then return 1; otherwise return 0;
return 0; //Vi or Vi

⋃
Vi+1 is not dominated. O(k2) algorithm.

end if // Adj(V) is the set of all vertices neighboring any vertex in V

3.2. MIS

Consider the structure of an MIS on LGn,q
k . Say, V∗ =

⋃q
j=1 V∗j where V∗j are the vertices in MIS

from layer j. Clearly, V∗j must be an independent set. (please see Figure 2). Let G1 be the subgraph

of LGn,q
k induced by V1 =

⋃i
j=1 Vj, and let G2 be the subgraph of LGn,q

k induced by V2 =
⋃q

j=i+1 Vj.

Consider the IS of G. If M1 =
⋃i

j=1 V∗j and M2 =
⋃q

j=i+1 V∗j , then M1 and M2 are ISs. Let the set of

edges crossing the cut, C = (M1, M2), be EC. It follows that M1
⋃

M2 is an IS of G with cardinality
| M1 | + | M2 | when there is no edge crossing C. Only the edges in Ei i+1 need to be considered. Thus,
the cardinality of an MIS of LGn,q

k is equal to max(∀EC=φ | M1 | + | M2 |).

• f easible(j): The mask j must denote an IS for Gi.
• compatible(j, l): The union of two ISs must be an IS.
• Extension: If (cardinality(j) + soli−1,l > soli,j) soli,j ← cardinality(j) + soli−1,l .
• Summarize: Let opt ← max(∀jsolq,j); count ← 0; ∀j i f (solq,j = opt)count ← count + countq,j;

Return (opt, countq,j))
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h i
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G2

Figure 2. MIS: Graph G consists of two layers, G1 and G2. The same graph is employed for the
illustration of other problems. The vertices of a maximum independent set are {b, e, f , h} from G1

and {a, d, h} from G2. The cardinality of any MIS of G is 7. The vertices of MIS are shown in larger
bold font.

3.3. MVC and MCV

Consider a vertex cover V∗ =
⋃q

j=1 V∗j of LGn,q
k where V∗j denotes the set of vertices in V∗ from

layer j. Clearly, V∗j is a VC for layer j (please see Figure 3). V∗j depends only on V∗j−1 and V∗j+1. Consider
two adjacent layers, p and p + 1. V∗p

⋃
V∗p+1 must cover all inter-layer edges between layers p and p + 1.

Specifically, V∗ =
⋃p+1

j=1 V∗j must cover all edges in the corresponding induced subgraph, including
Ep p+1. Similar constraints hold for MCV. Additionally, for MCV, the induced subgraph of V∗ must be
a connected component (please see Figure 4). In the sequel, the time and space complexity analyses for
these problems are presented.

Clearly, each layer must choose a mask that is a VC. In the case of MCV, when considering a mask,
j, for the current layer, i, the following cases exist:

(a) The previous layer mask, l, corresponds to one component.
(b) l has more than one component, i.e., the set of vertices denoting l is partitioned into several

connected components.

Case (a): For layer i, mask j is infeasible if either (I) vertices corresponding to j and l have no
edges among them or (II) all edges in Ii are not covered. Otherwise, j is feasible. If at least one edge
exists across j and l:

(i) If j is a single connected component, then the result is also a single component (consisting of all
chosen vertices).

(ii) If j has more than one connected component and all of them connect to l, then the result is also a
single component.

(iii) If j has more than one connected component and only some of them connect to l, then the result
consists of many components. All components from j connected to l become one component and
the rest are separate components.

Case (b): Every component from the previous layer corresponding to mask l must connect to
some component in the current layer. Otherwise, the pair j and l is infeasible for layer i. For feasible
pairs the following possibilities exist:

(i) Every component in l has an edge with exactly one component in j. Here, the partition is
determined by j.

(ii) A component, C, in l has edges with C1, . . . , Ca in j. Then, C1, . . . , Ca can be merged into one
component as they are connected through C.

A particular partitioning of the current layer can occur due to various choices of l. For each
partition corresponding to j, the sub-solution is stored with minimum cardinality. Thus, for each mask,
j, there are, at most, Bk (k-th Bell number) solutions stored. When mask x is chosen for the last layer,
then the vertices of the mask must be connected to the components of the previous layer and yield a
single component.
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• f easible(j): Mask j must denote a VC for Gi.
• compatible(j, l): The union of two VCs must be a VC for edges in Gi−1, Gi and Ii−1. i is the current

layer. For MCV, all components of l must have edges with vertices in j. If i = q, then V∗ must be
one component.

• Extension: If (cardinality(j) + soli−1,l < soli,j) soli,j ← cardinality(j) + soli−1,l .
• Summarize: Let opt ← min(∀jsolq,j); count ← 0; ∀j i f (solq,j = opt)count ← count + countq,j;

Return (opt, count)

a

b

c d

e f i

g h

a

b c d

e

f

g

h i

G1

G2

Figure 3. MVC: The vertices of a minimum vertex cover are {a, b, d, f , h} from G1 and {a, c, d, e, h, i}
from G2. The cardinality of any MVC of G is 11. The vertices of MVC are shown in larger bold font.

a

b

c d

e f i

g h

a

b
c

d

e

f

g

h i

G1

G2

Figure 4. MCV: The vertices of a minimum connected vertex cover are {b, c, d, e, g, h, i} from G1 and
{b, c, d, e, f , h, i} from G2. The cardinality of any MCV of G is 14. The vertices of MCV are shown in
larger bold font.

3.4. MDS and MCD

Let an MDS of LGn,q
k be V∗, such that, V∗ =

⋃q
j=1 V∗j , where V∗j represents the vertices in this

MDS from layer j. Clearly, V∗j may not be a dominating set of layer j because the vertices of Vj can be
dominated by any subset of V∗j−1

⋃
V∗j

⋃
V∗j+1. In Figure 5, e ∈ G2 is dominated by d ∈ G1. It follows

that
⋃p+1

j=1 V∗j must dominate all vertices in
⋃p

j=1 Vj. Further, V∗ =
⋃q−1

j=1 V∗j
⋃

V∗q must dominate⋃q
j=1 Vj. A vertex that is not dominated is undominated.

Consider mask j in layer i, where csi,j
⋃

ccsi−1,l dominates layer i − 1. This particular subset
of vertices can leave some vertices in layer i undominated. The number of such choices is 2k; each
choice is denoted by a k-bit variable that we call a mask—here, a mask of exclusion. Further, when one
processes layer i + 1, this information is critical. We show that the O(2k) triples stored for each mask
of a given layer suffice to compute MDS of LGk. For a chosen mask, j, in layer i, it suffices to store
2k triples of the form (u, s, c). Here, u is the mask of the vertices that are undominated in layer i, s is
the cardinality of the vertices chosen so far and c is the number of choices corresponding to u for a
particular j in layer i.
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a
b

c d

e f i

g h

a

b c d

e

f

g

h i

G1

G2

Figure 5. MDS: The vertices of a minimum dominating set are {a, d, f , h} from G1 and {c, i} from G2.
The cardinality of any MDS of G is 6. The vertices of MDS are shown in larger bold font.

MCD has an additional requirement compared to MDS, i.e., V∗ must form a single component
(please see Figure 6). For possible combinations of component layouts of the current and previous
layer masks, see MCV. For MCD, it suffices to store O(Bk2k) triples of the form (lo, un, r), where Bk
is the k-th Bell number. This corresponds to O(Bk) component layouts, lo, for a mask, j, and O(2k)

masks un of the vertices that are not dominated in layer i and O(2k) triples r of the form (m, s, c) for
every unique pair of (lo, un). Here, m is the mask of the current layer that produces the respective
(lo, un) pair, i.e., mask j, while s and c are same as that for MDS, corresponding to mask m and pair
(lo, un). The particular mask in the previous layer that is the cause of a particular triple in the current
layer needs not be carried forward. So, for MDS, soli,j indicates an array of 2k triples. As for MCD, it
indicates O(Bk2k) triples where O(2k) triples are associated with each of the O(Bk2k) unique pairs of
(lo, un). Also, when k = O(log n) for MDS and k = O(log n)α where α < 1 for MCD, the algorithm
runs in polynomial time.

a

b

c d

e f i

g h

a

b c d

e

f

g

h i

G1

G2

Figure 6. MCD: The vertices of a minimum connected dominating set are {c, d, e, g, h} from G1 and
{b, c, d, e, f , i} from G2. The cardinality of any MCD of G is 11. The vertices of MCD are shown in larger
bold font.

Consider the following analysis for MDS. Let mask j be chosen in layer i; it can potentially be
combined with every mask (O(2k) masks) of the previous layer. Thus, potentially, (O(2k)) triples
need be stored. Further, the total number of triples of the form (un, s, c) is Ω(n.2k), because un can
potentially assume any 0, . . . , 2k − 1; s is O(n) and c can, in fact, be exponential in n

k . Here, we make
the following critical observations:

• Let the chosen mask for layer i be j. When all the compatible vertex sets of the previous layer are
considered, then let the resultant triples for the choice of j in layer i be set as S.

• In S, for any two triples with the same mask, we need only to retain the triples with the smallest
size. The other triples cannot lead to an optimal solution.
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• If two triples have the same mask and the minimum size, then they can be combined into one
triple where the respective counts are added.

• Thus, only 2k triples suffice for a chosen mask for layer i which implies 22k triples suffice ∀j csi,j.
The information of only two layers is stored. Thus, the algorithm needs O(k22k) space. This is in
addition to the space required by the input graph, which is O(nk). For k = O(log n), O(k22k) is
the dominating term, so the space complexity is O(k22k).

• Thus, for a chosen mask for layer i, potentially 22k triples of the previous layer must be processed.
That is, for all masks of layer i, a total of 23k triples must be processed.

• Consider mask j in layer i and mask l in layer i − 1. Recall that there are 2k triples stored
corresponding to mask l in layer i− 1. All the vertices that are covered by the combination of j
and l in layer i− 1, say A, and not covered in layer i, say B, can be computed in O(k2). This needs
to be computed only once. Subsequently, for each of the triples stored corresponding to l in
layer i − 1, we need only to check if the undominated vertices are a subset of B in O(k) time.
Thus, O(k2k) is the dominating term in the time complexity, yielding O(k22k) for all masks in
the previous layer. So, for all masks in the current layer, the time complexity is O(k23k). Thus,

the time complexity of the algorithm is O(
n
k

k23k) = O(n23k).

Similar constraints hold for MCD. We carry forward the existing connected components, and
eventually, when the final layer is processed, all the components must be connected. The MCD
algorithm is explained in detail in Theorem 4 along with time and space complexity analyses.
The current layer in the following functions is i.

• f easible(j): Any j is valid.
• compatible(j, l): Tthe union must dominate all vertices of Vi−1. For MCD, all components of l

must have edges with vertices in j. If i = q, then V∗ must be one component and it must dominate
Vq also.

• Extension: Performed as per the observations listed above.
• Summarize: Let opt ← min(∀j∀dsizeq,j,d); count ← 0; ∀j∀d if (sizeq,j,d = opt) then count ←

count + ccountq,j,d; return (opt, count).

3.5. Compatible Algorithm

Given candidate sub-solutions for consecutive layers one must determine if their union is a
feasible sub-solution. The following algorithm determines the same for the problems addressed in
this article.

3.6. Generic Optimum Algorithm

The algorithms (please see Algorithm 2) for the MIS, MVC and MDS problems on LGn,q
k are

similar, while those for MCV and MCD must additionally ensure connectedness criterion. We give a
generic dynamic programming based algorithm for both sets of problems. Some specific instances are
shown in Appendix A.

Initialization: ∀i sol0i = sol1i = 0; ∀i count0i = count1i = 0; solij : The optimum value (of IS, VC,
MCD, etc.) up to layer i, where the chosen vertices of layer i are given by the binary value of j. countij :
The number of ways that the j-th mask in layer i yields the corresponding optimum value.
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Algorithm 2 Generic Optimum Algorithm

Input: LGn,q
k

Output: The cardinality and corresponding count for the respective problem.
for (i = 0, ..., 2k − 1) do

if valid(1, i) then //for layer 1
count0i = 1; sol0i = cardinality(i); // For all valid masks, set their count

end if
end for
for (i = 2, ..., q) do //For layers 2 through maximum

for (j = 0, ..., 2k − 1) do //For all masks of the current layer
Compose larger sub-solutions by considering all compatible masks of the
previous layer and any accompanying information.

end for//Masks of previous layer
end for//For all layers,
The current layer being processed is the final layer.
best← 0; sum← 0;
for (i = 0, ..., 2k − 1) do

Identify best, the cardinality of an optimal solution.
end for
for (i = 0, ..., 2k − 1) do

Compute sum, the count of the optimal solutions.
end for
return(best, sum)

4. Correctness and Complexity

The Algorithm Generic Optimum when adapted to a specific problem, say MVC, is referred to as
Algorithm MVC. The correctness is shown for MIS, MVC and MCD problems. The time complexities
for MIS, MVC, and MDS are respectively O(nk22k), O(nk22k) and O(n23k), where k = O(log n). When
k = log n these time complexities yield O(n3k), O(n3k) and O(n4) respectively. The space complexities
are O(nk), O(nk) and O(k22k) respectively. When k = log n these space complexities yield O(nk),
O(nk) and O(kn2) respectively. For MCV and MCD problems, the time complexity is O(n1+ε) for any
ε > 0, where the number of vertices in a layer is k = O((log n)α) for α < 1. The space complexity
is O(nk) for MCD and MCV. The time and space complexities of MVC and MCD are analyzed.
The proofs of correctness for the remaining problems are similar. The time complexity for MDS was
presented earlier.

Theorem 1. The MIS Algorithm correctly computes the MIS on LGn,q
k .

Proof. Let G = (V, E) be a graph and let V be partitioned into V1, V2. Further, let I1, I2 be the ISs of
the graphs induced by V1, V2, respectively, and let I = I1

⋃
I2. If we consider the cut, C = (I1, I2), on I,

where EC is the set of edges crossing the cut, then it follows that I is an IS of G if EC = φ. Further, the
cardinality of an MIS of G is max(∀EC=φ | I1 | + | I2 |). It is possible that either | I1 |= 0 or | I2 |= 0.

Let G be LGn,q
k . Let G1 be the subgraph of LGn,q

k induced by V1 =
⋃i

j=1 Vj, and let G2 be the

subgraph of LGn,q
k , induced by V2 =

⋃q
j=i+1 Vj. Consider the IS of G. Let I1 and I2 be the independent

sets of G1 and G2, respectively. Let the set of edges crossing the cut, C = (I1, I2), be EC. It follows
that I = I1

⋃
I2 is an IS of G with cardinality | I1 | + | I2 | when there is no edge crossing C.

Only the edges in Ei i+1 need to be considered. Thus, the cardinality of an MIS of LGn,q
k is equal to

max(∀EC=φ | I1 | + | I2 |). When the last layer is processed, the cardinalities of the ISs of subgraphs
induced by both V and V −Vq are known. Further, these ISs have maximum cardinalities with respect
to the vertices chosen in layers q− 1 and q, respectively. The theorem follows. Likewise, countij gives
the number of ways that an independent set of maximum cardinality can be formed when the vertices
chosen in layer i are given by j. Thus, the countqj corresponding to the maximum value of solqj yields
the total number of MISs.



Algorithms 2018, 11, 93 12 of 22

Theorem 2. The MVC Algorithm correctly computes the MVC on LGn,q
k .

Proof. Consider the structure of MVC on LGn,q
k . Let G1 be the subgraph of LGn,q

k induced by V1 =⋃i
j=1 Vj, and let G2 be the subgraph of LGn,q

k induced by V2 =
⋃q

j=i+1 Vj. Consider a VC of G.
Let M1 and M2 be the vertex covers of G1 and G2, respectively. Let the set of edges crossing the cut,
C = (M1, M2), be EC. It follows that the cardinality of a VC of G is | M1 | + | M2 | when every edge
crossing C is covered by either M1 or M2. Note that the only edges from Ei i+1 = EC can go across
the cut. Thus, the cardinality of the MVC of LGn,q

k is equal to min(| M1 | + | M2 |) for any such cut.
When the last layer is processed, this property is ensured. The theorem follows. Similarly, countij
gives the number of ways that a vertex cover of minimum cardinality can be formed when the vertices
chosen in the layer i are given by j. Thus, countqj corresponding to the minimum value of solqj yields
the total number of MVCs.

Theorem 3. The MVC Algorithm on LGn,q
k runs in polynomial time in n when k = O(log n). The space

required is O(nk).

Proof. We presume that Ii, the 0–1 adjacency matrix for the subgraph induced by Vi
⋃

Vi+1 where
the edges are restricted to Ei i+1 is given. Likewise, we assume that the 0–1 adjacency matrix, Mi,
for each of Gi is given. Recall that LGn,q

k was formed from G1, G2, . . . , Gq. For a linear graph, Ii is just a
k−dimensional vector where, if bit j is set, then there is an edge between Vij and Vi+1 j.

• The initialization step requires O(2k) time.
• Given a mask for layer i, it can be determined whether VC is valid in O(k2) time with Mi. That is,

for any two Mi[a][b] that are set, the mask should have either a bit a or a bit b set.
• Given Ii and two masks, mask1 and mask2, for layers i and i + 1, respectively, it can be directly

determined whether the union of the two masks is a VC of the subgraph induced by
⋃i+1

i Vj,
of LGn,q

k , in O(k2) time.
• In order to determine the MVC up to layer i, whose mask is j, j must be checked for compatibility

with all masks of the previous layer. Thus, O(k22k) time is required. For all masks of the current
layer, O(k222k), time is required. For all layers, the time required is maximized when each layer

has k vertices yielding O(
n
k

k222k) = O(nk22k) time.

The time complexity is clearly exponential in k; however, if k = O(1), the time complexity is O(n).
The time complexity remains polynomial when k = O(log n); specifically, O(n3 log n) when k = log n.
The additional space required is O(k2k) because for two layers, 4.2k masks and count variables are
stored, each of size k. The space required is O(nk) to store the graph and an additional space of O(k2k)

that is needed by the algorithm. When k = O(log n), the space complexity is O(nk).

Lemma 1. Let 0 ≤ α < 1.0, where α ∈ R+. If x = (log n)α, then x! = O(nε) for any ε > 0.

Proof.

Let f (n) = (log n)α, α < 1. Let h(n) = nε, ε > 0.

Thus, f (n)! = (log n)α!. Taking log on both sides we obtain:

log(d f (n)!e) = log 1 + log 2 + · · ·+ log(d(log n)αe)

=
d(log n)αe

∑
x=1

log x

≈
∫ (log n)α

1
log xdx

= [x log x− x](log n)α

1

= α(log n)α log log n− (log n)α + 1
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Disregarding smaller order terms we obtain the expression: (log n)α(α log log n)
α log log n = log((log n)α). Note that log n = O(nµ) for any µ > 0. Thus, (log n)α(α log log n) <

((log n)α))(1+µ) for any µ > 0. Given that α < 1 one can always choose µ such that α + αµ < 1. Thus,
the expression is O(log n) = O(nε) for any ε > 0.

Thus, (log n)α! = O(nε).

Lemma 2. (log n)! is quasi-polynomial and (log n)! = nO(log log n).

Proof.

From Stirling’s Approximation, we have log((log n)!) ≈ θ(log n log log n)

⇒ (log n)! ≈ eθ(log n log log n)

Thus, for some constants µ and δ, (nδ log log n) ≤ ((log n)!) ≤ (nµ log log n)

Thus, ( f (n)!) is quasi-polynomial.

Lemma 3. If k = Θ((log n)1+ε), for any ε > 0 then, the MIS Algorithm, MVC Algorithm and MDS
Algorithm run in quasi-polynomial time.

Proof. The time complexities of all these algorithms can be written as O( f (n)g(k)2ck), where f (n) =
Θ(n), g(k) = O(k) and c = O(1). Thus, when k = Θ((log n)1+ε) for ε > 0, the complexities for all the
algorithms will be quasi-polynomial.

Theorem 4. The MCD Algorithm correctly computes the cardinality of a connected minimum dominating
set for LGk with a time complexity of O(n1+ε) for any ε > 0 when k = O(log n)α and α < 1. The space
complexity of the algorithm is O(nk).

Proof. First, we show that the algorithm correctly computes the cardinality of a connected minimum
dominating set. Consider the structure of CDS on a connected graph, G. Let V be arbitrarily partitioned
into V1, V2, where both | V1 |> 0 and | V2 |> 0. Let G1 be the subgraph of G induced by V1, and let
G2 be the subgraph of G induced by V2. Let M1 ⊆ V1 and M2 ⊆ V2 be DSs of G1 and G2. Let C be the
cut (M1, M2) and let EC be the edges that cross this cut. Clearly, M = M1

⋃
M2 is DS for G. Further,

M is a CDS for G if | EC |> 0, and M forms a connected component in G. For a given partition V1, V2

of V, M is a MCD if it minimizes | M1 | + | M2 |, where M forms a connected component in G.
Let G be a LGn,q

k ; in particular, let G be a CLGn,q
k . Let V1 =

⋃q−1
j=1 Vj and V2 = Vq. Let G1 be the

subgraph of G induced by V1, and let G2 be the subgraph of G induced by V2. Let M1 ⊆ V1 and
M2 ⊆ V2 be DSs of G1 and G2, respectively. Let C be the cut (M1, M2), and let EC be the edges that
cross this cut. Note that EC = Eq−1 q. When the algorithm processes layer q, it chooses M = M1

⋃
M2,

such that | M1 | + | M2 | is minimized where M forms a connected component in G. Thus, the theorem
follows. Similarly, countij gives the number of ways a CDS of minimum cardinality can be formed
when the vertices chosen in layer i are given by j. Thus, ∀jΣcountqj corresponding to the minimum
value of ∀jsolqj yields the total number of MDSs.

The time complexity of the algorithm is analyzed below. We presumed that similar prerequisites
as in Theorem 3 were provided. The steps are presented below.

• A global structure, sol, consisting of sol0 and sol1, corresponding to the previous and current layers,
is maintained for the whole algorithm. The final solution for the problem can be determined just
by using information from sol0 and sol1. This structure is maintained for the whole algorithm and
not for every layer.
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• sol0 and sol1 consist of a maximum of Bk2k triples of the form (lo, un, r). This corresponds to a
maximum of Bk component layouts (lo), 2k masks, un undominated vertices of the current layer
and a maximum of 2k triples, r, of the form (m, s, c), for every unique pair (lo, un). Here, m is the
mask of the current layer that produced the respective (component layout, undominated vertices)
pair; s is the minimum cardinality of the sub-solution corresponding to mask m and pair (lo, un);
and c is the count of s corresponding to mask m and pair (lo, un).

• Throughout the algorithm, sol0 and sol1 are maintained by clearing sol0 when the current layer is
processed and the information of sol1 is used as sol0 for the next layer.

• sol0 is initialized with the triple (lo, un, r), corresponding to 2k masks of the first layer.
The initialization takes O(k22k).

• A candidate sub-solution for layers 1, . . . , i induces connected components in layer i that are
defined in terms of vertices of layer i. We call this the component layout.

• The number of component layouts is upper bounded by Bk, the number of ways of partitioning
k vertices of a layer. Here, k = f (n), f (n) = O(log n)α, α < 1. Bk = O( f (n)!). From Lemma 1,
we know that f (n)! = O(nε), for any ε > 0.

• A mask j of the current layer can be combined with a component layout for mask l of the previous
layer to form a new component layout for the current layer. With the same mask, l, j can form a
new mask corresponding to the undominated vertices of the current layer.

• Every such unique pair of (lo, un), where lo is component layout and un is mask of undominated
vertices, is maintained, and a list of triples r, consisting of triples of the form (m, s, c), is associated
with it. Here, m is the current layer mask, s is the minimum cardinality of the sub-solution
corresponding to m, and c is the count of s. The number of such tuples, (lo, un, r), is upper
bounded by Bk22k, where Bk2k is the possible number of unique pairs of (lo, un), and 2k is the
possible number of triples that can exist for each pair.

• Starting from the i-th layer, i > 1, every 2k masks of the current layer and the triple values from
the previous layer are used to generate the triples for the current layer.

• For a unique pair (lo, un) in the previous layer, if mask j dominates the undominated vertices
of mask un, and forms a connected component with the layout, lo, then we consider that a
sub-solution using mask j is feasible. Here, a mask, j, and a component layout, lo, are considered
to form a connected component if every component in lo has at least one edge with a node in
mask j. Each such check takes O(k2) time. So, the total time to determine if a sub-solution with
mask j is feasible is O(k2).

• If a mask, j, can feasibly give a sub-solution, then it is combined with the component layout, lo, of
the previous layer to form a new component layout for the current layer corresponding to mask j.
This is performed using a DFS which takes O(k2) for the given input matrix.

• Mask j is then combined with mask l of the previous layer, corresponding to the pair (lo, un) that
is under consideration, to form a mask for the current layer vertices that are not dominated by j
or l. This takes O(k2) time.

• Using the mask, j, of the current layer and minimum cardinality, s, for the pair (lo, un) of the
previous layer, the new cardinality for the sub-solution is computed.

• The count of the new cardinality will be same as that of c of the (lo, un) pair for the previous layer.
• This new pair of the component layout and undominated mask computed for mask j of the

current layer are checked with the existing pairs of the current layer to determine if it is unique
or not. We maintain the structure of the triples such that an entry can be accessed in O(1) time,
indexed by the pair (lo, un) and the corresponding mask m for the previous and the current layer.

• If it is unique, the triple value, consisting of the newly computed (lo, un) pair and its
corresponding triple, consisting of the mask j, respective cardinality and the count, are added as a
new triple for the current layer.

• Consider that the current mask j produces the new pair (lo, un) with values s = sx and c = cx.
If the new pair is not unique, then there are three cases. Consider the existing entry of the (lo, un)
pair and the corresponding j to have values s = sy and c = cy.
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(a) If sy = sx, then cy ← cy + cx;
(b) If sy > sx, then sy ← sx; cy ← cx;
(c) If sy < sx, then no update is required.

• The above procedure is performed until the last layer, where the final solution is computed from
the current layer information corresponding to the last layer. Of all the Bk2k pairs for the current
layer, a solution is considered to be feasible if the mask for the undominated vertices for any of
the Bk component layouts is 0, as this would mean all the vertices are dominated. The cardinality
of MCD is the minimum value among all the feasible solutions. The count is then computed by
considering each feasible entry with the minimum cardinality computed above and adding its
corresponding count.

• Thus, the solution and the corresponding count of optimal solutions for MCD problem
are computed.

For the whole algorithm, we maintained a global structure, as mentioned above. It consisted of a
maximum of O(Bk2k) entries corresponding to unique pairs of (lo, un) and another 2k triples for each
such pair. We maintainewa this information for only the previous and the current layers. So, the space
used by the data structure is O(Bk22k). This can be shown to be equal to O(nε), for any ε > 0, based on
the proof for Lemma 1. This space requirement is in addition to the space required by the input graph
which is O(nk). For k = O((log n)α), O(nk) is the dominating term compared to O(nε). So, the space
complexity is O(nk). The following is the proof for time complexity of the algorithm.

First, an expression for the runtime of the algorithm is derived. The initialization using the first
layer takes O(k22k) time. For each layer after the first, the 2k masks of the current layer are combined
with the Bk2k pairs of the previous layer. For each pair, a current layer mask is combined with a
maximum of 2k masks of the previous layer that generated this pair. Checking the feasibility of a mask
of the current layer takes O(k2). Computing the new component layout and the new undominated
mask takes O(k2) each. The undominated mask is calculated for 2k masks of the previous layer for
each mask of the current layer. Accessing and updating an entry takes O(1) time, as mentioned above.
This is done for O(n/k) layers. So, the time complexity expression can be written as

T = O(
n
k

2kBk2k(k2 + 2kk2))

= O(
n
k

k!22k(2kk2)) ∵ (Bk = O(k!))

= O(nk23kk!).

(1)

If k = O(1), the time complexity becomes T = O(n). If we assume the worst case number of nodes
in each layer, i.e., k = f (n), then the corresponding time complexity is T = O(n1+ε). as shown below.

Let f (n) = (log n)α α < 1

Let h(n) = nγ γ > 0

From Lemma 1 we have

x! = O(nγ) for some γ > 0, where x = (log n)α

⇒ f (n)! = O(nγ) = O(h(n))

The running time of the algorithm is given by

T = O(nk23k f (n)!)

≤ cn ∗ k ∗ 23k ∗ h(n)

≤ cn1+γ ∗ (log n)α∗23(log n)α
(∵ h(n) = nγ)

Consider F(n) = (log n)α ∗ 23(log n)α

Let g1(n) = nδ and g2(n) = nµ δ > 0, µ > 0



Algorithms 2018, 11, 93 16 of 22

We know that the logarithmic functions grow slower than the polynomial functions.

⇒ (log n)α ≤ cg1(n)

⇒ (log n)α = O(nδ)

Now, we claim that 23(logn)α ≤ cg2(n) for some α < 1, a positive real number c and n > n0, where n0 is
some positive intege.

Taking the log of both sides, we get

log(23(logn)α
) ≤ log(cg2(n))

⇒ 3(log n)α ≤ log c + log g2(n)

⇒ 3(log n)α ≤ µ log n (∵ g2(n) = nµ)

Since α < 1, (log n)α < log n

⇒ 3(log n)α = O(µ log n)

⇒ 23(logn)α ≤ cnµ

Hence, we have proved our claim.

∴ 23(logn)α
= O(nµ)

From above, we have

F(n) = (log n)α ∗ 23(log n)α

⇒ F(n) ≤ cnδ ∗ nµ

⇒ F(n) ≤ cnδ+µ

∴ F(n) = O(nδ+µ) δ > 0, µ > 0

From (1), we get

T ≤ cn1+γ ∗ nδ+µ

≤ cn1+γ+δ+µ

We can write it as

T ≤ cn1+ε ε = γ + δ + µ

By arbitrarily taking small values for µ, δ and γ, ε can be any value, such that ε > 0.

∴ T = O(n1+ε) ε > 0

Hence, the theorem is proved.

Theorem 5. The MCV Algorithm correctly computes a connected VC of minimum cardinality for LGk with a
time complexity of O(n1+ε) for any ε > 0 when k = O(log n)α and α < 1. The space complexity is O(nk).

Proof. The MCV Algorithm is similar to the MCD Algorithm. A mask, j, of layer i must be a valid VC
for layer i. The check takes an additional O(k2), though the total time complexity can be proved to be
same as that of MCD. So, the proofs of correctness and time complexity follow from the proofs for the
same of the MCD Algorithm. Hence, the time complexity is O(n1+ε) for any ε > 0 when the number
of vertices in each layer is k, where k = O((log n)α) and α < 1. Similarly, the space complexity can be
shown to be O(nk).

Lemma 2 proves that (log n)! is quasi-polynomial. Thus, if k = Θ(log n) then MCV and MCD are
computed in quasi-polynomial time. Proving this is quite straightforward. By substituting (log n)! for
k! into Equation (1) in Theorem 4, we get a product of a quasi-polynomial factor and a polynomial
factor. Thus, the time complexity is quasi-polynomial.
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Minor Enhancements

The current layer requires information only from the previous layer. So, only the variables of
the current layer, i, and the previous layer, i− 1, are maintained. In the pseudocode shown for all
algorithms, for simplicity, the variables of the current layer are stored at index 1 and the variables of
the previous layer are stored at index 0 of the data structure sol. When the current layer, i, is completely
processed, the variables from index 1 overwrite the corresponding variables in index 0. This can
be avoided by alternating the index of current layer between indices 0 and 1, thereby reducing the
execution time by a factor of O(1).

The optimum cardinalities for each of the problems are generated using minimal additional
space. For example, the MVC Algorithm employs only O(k2k) space in addition to the space required
by the graph. If, for each mask in each layer, we store the best compatible mask from the previous
layer, then we can generate a solution. There are O(n/k) layers, each having O(2k) k-bit masks. This
requires O(n2k) space instead of O(k2k) space. However, if we want to generate all solutions, then for
each mask of a given layer, we need to store all compatible masks of its previous layer that yield the
optimum value requiring O(n22k) space.

5. Conclusions

A novel graph class called layered graphs was defined. It includes a subset of bipartite graphs
and a subset of trees with n vertices. A layered graph can have exponential number of cycles. The
typical restrictions like bipartiteness, planarity and acyclicity on graph classes that admit polynomial
time solutions for hard problems are not applicable for this class. The known NP-complete problems
were shown to be in class P for these graphs when the layer size is O(log | V |) for MIS, MVC and
MDS, and O((log | V |)α), where α < 1, for MCV and MCD. The count of the corresponding optimal
solutions is also computed. We note that the identification of a maximum clique in a layered graph
is direct as the inter-layer edges are limited to adjacent layers. Thus, one can independently solve
q− 1 instances of the maximum clique problem on graphs induced by Vi

⋃
Vi+1 (of size ≤ 2k, each in

O(22kk2) time) to obtain a maximum clique of LGn,q
k .

A few applications of layered graphs in computational molecular biology and social networks
were addressed in this article. One can explore other problems that can be modeled by layered graphs.
The design of larger graph classes (that include layered graphs as a sub-class) that admit polynomial
time solutions for the problems studied in this article is an open problem. For example, in a layered
graph, the inter-layer edges are restricted to the vertices of adjacent layers. If this restriction is dropped
for O(1) edges originating from each layer, then one obtains a more general graph class. Such graphs
can potentially model more scenarios than layered graphs.
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Appendix A

The generic algorithm was presented earlier. Here, we present detailed algorithms for MIS and
MVC. A relatively high-level description of the MCD algorithm follows.
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Appendix A.1. MIS Algorithm

Algorithm A1 MIS Algorithm

Input: LGn,q
k

Output: The cardinality of MIS and the count of the maximum independent sets.
Initialization: ∀i sol0i = sol1i = 0;
∀i count0i = count1i = 0;
//solij : The maximum value of an independent set up to layer i where the chosen
//vertices of the layer i are given by the binary value of j.
//countij : the number of ways the jth mask in layer i yields the corresponding maximum value.
//valid(i, j) is a Boolean function that returns true if the vertex assignment corresponding to
//the binary value of j in layer i forms an IS. Otherwise it returns false.
//∧ is the bitwise AND operator.
//cardinality(j) is the number of bits that are set in the binary representation of j.
// For each solij, one k-bit variable that remembers the mask of the layer i− 1 that
// yielded solij will help in constructing MISs. The union of such masks (1/layer) is an MIS.

for (i = 0, ..., 2k − 1) do
if valid(1, i) then // for layer 1

count0i = 1; sol0i = cardinality(i); // No. of valid ISs of layer 1
end if

end for
for (p = 2, ....q) do //For layers 2 through maximum

for (j = 0, ....2k − 1) do //For all masks of current layer
if valid(p, j) then //j is valid

size← 0
for (l = 0, ..., 2k − 1) do //Masks of previous layer

if ((count0l > 0) ∧ (compatible(j, l))) then //sol0l = 0→Invalid IS
if (cardinality(j) + sol0l ≥ size) then // Better IS for the current mask

if (cardinality(j) + sol0l > size) then
size = cardinality(j) + sol0l ; count0l = count0l + 1

end if
count0l ← count0l + 1

end if
end if

end for//Masks of previous layer
for (l = 0, ..., 2k − 1) do //Masks of previous layer

if (size = cardinality(j) + sol0l) then //Instance of max
count1j ← count1j + count0l ; // Count corr. to max wrt mask=j

end if
end for//Masks of previous layer
sol1j ← size

end if// j is valid
end for//For all masks of current layer
∀x count0x ← count1x; sol0x ← sol1x; count1x ← sol1x ← 0;

end for//For layers 2 through maximum
best← 0; sum← 0;
for (i = 0, ..., 2k − 1) do

if sol0i > best then //Get the max value of ∀isolpi
best = sol0i;

end if
end for
for (i = 0, ..., 2k − 1) do

if sol0i = best then //Corr. to the best value of MIS(LGn,q
k )

sum← sum + count1i; //Get the count of MISs
end if

end for
return(best, sum) //MIS cardinality and the count of such MISs
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Appendix A.2. MVC Algorithm

Algorithm A2 MVC Algorithm

Input: LGn,q
k

Output: The cardinality and the count for the resp. problem.
//solij : The minimum value of a vertex cover up to layer i where the chosen
//vertices of the layer i are given by the binary value of j.
// valid(i, j) is a Boolean function that returns true if the vertex assignment corresponding to
//the binary value of j in layer i forms a VC. Otherwise it returns false.
//countij : the number of ways the jth mask in layer i yields the corresponding minimum value.
//cardinality(j) is the number of bits that are set in the binary representation of j.
for (i = 0, ..., 2k − 1) do

if valid(1, i) then //for layer 1
count0i = 1; sol0i = −1; // No. of valid VCs of layer 1

end if
end for
for (p = 2, ....q) do //For layers 2 through maximum

for (j = 0, ....2k − 1) do //For all masks of current layer
if valid(p, j) then //j is valid

size← (i + 1) ∗ k
for (l = 0, ..., 2k − 1) do //Masks of previous layer

if ((count0l > 0) ∧ (compatible(j, l))) then //sol0l = 0→Invalid VC
if (cardinality(j) + sol0l ≤ size) then // Better VC for the current mask

size = cardinality(j) + sol0l ;
if (cardinality(j) + sol0l = size then count1j ← count1j + count0l ;
else count1j ← count0l ; sol1j ← size)
end if

end if
end if
sol1j ← size

end for//Masks of previous layer
for (l = 0, ..., 2k − 1) do //Masks of previous layer

if (size = cardinality(j) + sol0l ;) then //Instance of max
count1j ← count1j + count0l ; // Count corr. to max wrt mask=j

end if
end for//Masks of previous layer

end if// j is valid
end for//For all masks of current layer
∀x count0x ← count1x; sol0x ← sol1x; count1x ← sol1x ← 0;

end for//For layers 2 through maximum
best← inf; sum← 0;
for (i = 0, ..., 2k − 1) do

if sol1i < best then //Get the max value of ∀isolpi
best = sol1i;

end if
end for
for (i = 0, ..., 2k − 1) do

if sol1i = best then //Corr. to the best value of MVC(LGn,q
k )

sum← sum + count1i; //Get the count of MVCs
end if

end for
return(best, sum) //MVC cardinality and the count of such MVCs
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Appendix A.3. MCD Algorithm

Algorithm A3 MCD Algorithm

// A brief outline of the MCD Algorithm
// The algorithm maintains a global structure, sol, which consists of sol0 and sol1, corresponding to the previous
and current layers. sol1 consists of Bk2k triples of the form (lo, un, r). This corresponds to a maximum of Bk
(k-th Bell number) component layouts, 2k masks of undominated vertices of the current layer and a maximum
2k triples, r, of the form (m, s, c) for every unique pair (lo, un). lo is a component layout, un is the mask of
undominated vertices of the current layer; r is triples of the form (m, s, c) where m is the mask of the current
layer that produces the respective (component layout, undominated vertices) pair; s is the minimum cardinality
of the sub-solution corresponding to mask m and pair (lo, un); c is the count of s corresponding to mask m and
pair (lo, un). All unique pairs of (component layout, undominated vertices) need not yield a (sub)solution. sol0
consists of the same information as for the previous layer.
// Mask j refers to the mask of the vertices of current layer that can yield a sub-solution (with minimum
value of s for some pair (lo, un)). The component layout refers to the list of the connected components of the
current layer vertices (which can form a component employing some vertices from the previous layers). It
is determined by the respective mask and the corr. sub-solution from the previous layer whose combination
yields the minimum value of s for some pair (lo, un).
// If the current layer mask, j, produces (lo, un) pair with values s = sx and c = cx, then we have two cases:
(i) There is no entry corr. (lo, un) and j. Here, we just add (lo, un) and j with corr. s and c. (ii) There is an entry
corr. (lo, un) and j with s = sy and c = cy then,
(a) if sy = sx then cy ← cy + cx;
(b) if sy > sx then sy ← sx; cy ← cx;
(c) if sy < sx then no update is required.

for (i = 0, ..., 2k − 1) do //for layer 1
Initialize sol0i ← (lo, un, r); r ← (m, cardinality(i), 1)

end for
for (p = 2, ..., q) do //for layers 2 through q

for (j = 0, ..., 2k − 1) do //j: current layer mask
for (v = 0, ..., no. of (lo, un) pairs) do // Of sol0

If j dominates the nodes of un of sol0v then continue.
If every component of lo of sol0v has an edge to any node in j then continue.
Compute the new component layout using mask j and layout lo.
for (x = 0, ..., size of r corr. (l, u)) do // No. of triples in r

Compute the new mask of the undominated vertices using masks j
of current layer and m corresponding to x-th triple of sol0v.
Compute the minimum cardinality of the sub-solution corresponding to
mask j for the current layer using s of the x-th triple of sol0v.
The count of the newly computed sub-solution will be equal to c
of the x-th triple corresponding to mask m.

If component layout lo and the undominated mask un that are computed corr. j
do not exist in sol1, then insert the tuple (lo, un, r), into sol1
where r has a single triple whose mask is j.
If the (lo, un) pair was already generated by j and a previous mask of the
previous layer, then if needed, update the minimum cardinality
and the corresponding count.
Otherwise, insert the new triple (m, s, c) for the corresponding (l, u) pair in sol1.

end for
end for

end for
end for
best← inf, sum← 0
Consider the values of sol1 in layer q.
Here, the component layout can be ignored as an entry would mean that it forms a connected component.
For a solution to be considered, the undominated mask must be 0.
for (i = 0, ..., no. of (lo, un) pairs) do // for sol1

Identify best, the cardinality of the optimal solution.
end for
for (i = 0, ..., no. of (lo, un) pairs) do // size of sol1

Compute sum, the count of such optimal solutions.
end for
return(best, sum)



Algorithms 2018, 11, 93 21 of 22

References

1. Chitturi, B.; Sudborough, H.; Voit, W.; Feng, X. Adjacent Swaps on Strings. In Proceedings of the Computing
and Combinatorics (COCOON 2008), Dalian, China, 27–29 June 2008; Springer: Berlin/Heidelberg, Germany,
2018; Volume 5092.

2. Chitturi, B.; Mohandas, M.; Sudborough, H.; Voit, W. Adjacent Swaps on Strings. Algorithms Mol. Biol.
2018, submitted.

3. Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell; Garland Science:
New York, NY, USA, 2002.

4. Feng, X.; Chitturi, B.; Sudborough, H. Sorting circular permutations by bounded transpositions. In Advances
in Computational Biology; Springer: New York, NY, USA, 2010; pp. 725–736.

5. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Springer:
Boston, MA, USA, 1972; pp. 85–103.

6. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H.
Freeman & Co.: New York, NY, USA, 1979.

7. Harary, F. Graph Theory; Addison-Wesley Pub. Co.: Boston, MA, USA, 1969.
8. Gavril, F. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum

vertex cover of a chordal graph. SIAM J. Comput. 1972, 1, 180–187. [CrossRef]
9. Gavril, F. Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks

1973, 3, 261–273. [CrossRef]
10. Golumbic, M.C. The complexity of comparability graph recognition and coloring. Computing 1977, 18,

199–208. [CrossRef]
11. Minty, G.J. On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser. B 1980, 28,

284–304. [CrossRef]
12. Gupta, U.I.; Lee, D.T.; Leung, J.T. Efficient algorithms for interval graphs and circular arc graphs. Networks

1982, 12, 459–467. [CrossRef]
13. Chen, G.H.; Kuo, M.T.; Sheu, J.P. An optimal time algorithm for finding a maximum weight independent set

in a tree. BIT Numer. Math. 1988, 28, 353–356. [CrossRef]
14. Hsiao, J.Y.; Tang, C.Y.; Chang, R.S. An efficient algorithm for finding a maximum weight 2-independent set

on interval graphs. Inf. Process. Lett. 1992, 43, 229–235. [CrossRef]
15. Tarjan, R.E.; Trojanowski, A.E. Finding a maximum independent set. SIAM J. Comput. 1977, 6, 537–546.

[CrossRef]
16. Robson, J.M. Algorithms for maximum independent sets. J. Algorithms 1986, 7, 425–440. [CrossRef]
17. Lozin, V.V.; Milanic, M. On the Maximum Independent Set Problem in Subclasses of Planar Graphs. J. Graph

Algorithms Appl. 2010, 14, 269–286. [CrossRef]
18. Garey, M.R.; Johnson, D.S. The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 1977, 32,

826–834. [CrossRef]
19. Bondy, J.A.; Murty, U.S.R. Graph Theory with Application; Macmillan: London, UK, 1976.
20. Konig, D. Graphen und matrizen. Mat. Fiz. Lapok 1931, 38, 116–119. (In German)
21. Li, Y.; Yang, Z.; Wang, W. Complexity and algorithms for the connected vertex cover problem in 4-regular

graphs. Appl. Math. Comput. 2017, 301, 107–114. [CrossRef]
22. Takamizawa, K.; Nishizeki, T.; Saito, N. Linear-time computability of combinatorial problems on

series-parallel graphs. J. ACM 1982, 29, 623–641. [CrossRef]
23. Bertossi, A.A. Dominating sets for split and bipartite graphs. Inf. Process. Lett. 1984, 19, 37–40. [CrossRef]
24. Cockayne, E.; Goodman, S.; Hedetniemi, S. A linear algorithm for the domination number of a tree.

Inf. Process. Lett. 1975, 4, 41–44. [CrossRef]
25. Baker, B.S. Approximation algorithms for NP-complete problems on planar graphs. J. ACM 1994, 41, 153–180.

[CrossRef]
26. Müller, H.; Brandstädt, A. The NP-completeness of Steiner tree and dominating set for chordal bipartite

graphs. Theor. Comput. Sci. 1987, 53, 257–265. [CrossRef]
27. Hung, R.W.; Chang, M.S.; Ming-Hsiung, C. A linear algorithm for the connected domination problem on

circular-arc graphs. In Proceedings of the 19th Workshop on Combinatorial Mathematics and Computation
Theory, Kaohsiung, Taiwan, 29–30 March 2002.

http://dx.doi.org/10.1137/0201013
http://dx.doi.org/10.1002/net.3230030305
http://dx.doi.org/10.1007/BF02253207
http://dx.doi.org/10.1016/0095-8956(80)90074-X
http://dx.doi.org/10.1002/net.3230120410
http://dx.doi.org/10.1007/BF01934098
http://dx.doi.org/10.1016/0020-0190(92)90216-I
http://dx.doi.org/10.1137/0206038
http://dx.doi.org/10.1016/0196-6774(86)90032-5
http://dx.doi.org/10.7155/jgaa.00207
http://dx.doi.org/10.1137/0132071
http://dx.doi.org/10.1016/j.amc.2016.12.004
http://dx.doi.org/10.1145/322326.322328
http://dx.doi.org/10.1016/0020-0190(84)90126-1
http://dx.doi.org/10.1016/0020-0190(75)90011-3
http://dx.doi.org/10.1145/174644.174650
http://dx.doi.org/10.1016/0304-3975(87)90067-3


Algorithms 2018, 11, 93 22 of 22

28. Fomin, F.V.; Grandoni, F.; Kratsch, D. Solving connected dominating set faster than 2n. Algorithmica 2008, 52,
153–166. [CrossRef]

29. Gouveia, L.; Simonetti, L.; Uchoa, E. Modeling hop-constrained and diameter-constrained minimum
spanning tree problems as Steiner tree problems over layered graphs. Math. Program. 2011, 128, 123–148.
[CrossRef]

30. Chitturi, B. A note on complexity of genetic mutations. Discrete Mathematics. Discret. Math. Algorithms Appl.
2011, 3, 269–286. [CrossRef]

31. Chitturi, B.; Bein, D.; Grishin, N. Complete enumeration of compact structural motifs in proteins.
In Proceedings of the International Symposium on Biocomputing, Kerala, India, 15–17 February 2010;
pp. 19–27.

32. Chitturi, B.; Shi, S.; Kinch, L.N.; Grishin, N. Compact Structure Patterns in Proteins. J. Mol. Biol. 2016, 428,
4392–4412. [CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00453-007-9145-z
http://dx.doi.org/10.1007/s10107-009-0297-2
http://dx.doi.org/10.1142/S1793830911001206
http://dx.doi.org/10.1016/j.jmb.2016.07.022
http://www.ncbi.nlm.nih.gov/pubmed/27498165
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Layered Graph
	Algorithm
	Input
	MIS
	MVC and MCV
	MDS and MCD
	Compatible Algorithm 
	Generic Optimum Algorithm 

	Correctness and Complexity
	Conclusions
	
	MIS Algorithm
	MVC Algorithm
	MCD Algorithm

	References

