

  algorithms-11-00107




algorithms-11-00107







Algorithms 2018, 11(7), 107; doi:10.3390/a11070107




Article



An Ensemble Extreme Learning Machine for Data Stream Classification



Rui Yang 1, Shuliang Xu 1[image: Orcid] and Lin Feng 2,*





1



School of Computer Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China






2



School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian 116024, China









*



Correspondence: fenglin@dlut.edu.cn







Received: 14 June 2018 / Accepted: 11 July 2018 / Published: 17 July 2018



Abstract

:

Extreme learning machine (ELM) is a single hidden layer feedforward neural network (SLFN). Because ELM has a fast speed for classification, it is widely applied in data stream classification tasks. In this paper, a new ensemble extreme learning machine is presented. Different from traditional ELM methods, a concept drift detection method is embedded; it uses online sequence learning strategy to handle gradual concept drift and uses updating classifier to deal with abrupt concept drift, so both gradual concept drift and abrupt concept drift can be detected in this paper. The experimental results showed the new ELM algorithm not only can improve the accuracy of classification result, but also can adapt to new concept in a short time.
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1. Introduction


With the explosively growing Internet and rapid development of information society, many industries have generated a large number of data streams, such as medical diagnosis, online shopping, traffic flow detection and satellite remote sensing. Different from conventional static data, data streams often have the characteristics of infinite quantity, rapid arrival, and conceptual drift, which make data stream mining faces an enormous challenges [1,2,3]. Since data stream classification was put forward, it has attracted much attention from scholars and made many achievements [4,5,6,7,8,9]. Up to now, the achievements are divided into three groups: statistical analysis model, decision tree model and neural network model. In statistical analysis model, Brzezinski et al. proposed an online leaning algorithm called OAUE [10] which utilizes mean square error to determine the weight of the classification model. When the detection period is reached, the concept drift will be replaced by replacement strategy. Farid et al. proposed a weighted case ensemble classification algorithm [11], and clustering algorithm is introduced to detect concept drift. If a data point does not belong to any existing class, it is considered that the class corresponding to this data may be a new concept, and then is further confirmed by data statistics in nodes. Bifet et al. proposed an adaptive window algorithm called HWF-ADWIN [12]. It uses Hoeffding inequality [13] to divide the nodes with the attributes corresponding to the maximum and second largest information gain to train a classifier; when the accuracy of the classifier is significantly changed, concept drift will be thought to have happened. Xu et al. proposed a data stream classification method based on Kappa coefficient [14]; in the process of classification, the algorithm calculates the Kappa coefficients of each block, and detects the changes of concepts in data streams by using Kappa coefficients. When the concept of data stream is changing, the system will eliminate the classifiers which do not meet the requirements according to the existing knowledge. Compared with the contrast algorithm, this algorithm can not only obtain a higher accuracy, but also reduce the time cost to a certain extent, and get better results. Decision tree model is very common in data stream classification tasks and there have been many publications. Domingos and Hulten et al. proposed a series of algorithms based on Hoeffding tree called VFDT and CVFDT [15,16]; Wu and Li et al. proposed semi-random decision tree algorithms [17,18]; Brzezinski et al. proposed a red–black tree structure algorithm to improve the efficiency of finding and removing outdated nodes for imbalanced data stream classification [19]. Rutkowski et al. developed a McDiarmid Tree algorithm according to McDiarmid inequality and the threshold of the difference between the maximum information gain and the second large information gain is determined by the McDiarmid boundary [20]. With the heat of the neural network, many scholars apply neural network in data stream classification tasks. Aiming at imbalanced data stream classification [21], telecommunication fraud detection [22], spatiotemporal event streams [23] and so on, many algorithms have been proposed. However, statistical analysis model, decision tree model and neural network model need to repeatedly scan data classifiers and data several times, or there are many parameter needing to adjustment. Thus, the above drawbacks limit these models to be more widely used in data stream environment.



Extreme learning machine is a single hidden layer feedforward neural network; the input weights and biases of hidden layer are randomly generated and the output weights can be automatically determined by input data [24,25,26,27,28]. ELM does not need to adjust the parameters repeatedly and it has an obvious advantage in the speed of the training process comparing with the traditional neural networks [29], so it is very suitable for data stream classification tasks. Liang et al. proposed an ELM algorithm based on online sequential learning mechanism called OS-ELM [30], and it extends ELM to the field of data stream classification. After OS-ELM being proposed, many scholars have proposed a series of improved OS-ELM. Gu et al. proposed a timeliness online sequential extreme learning machine for timeliness problem [31]; it adopts the batch processing and weighting mechanism to make TOSELM have good stability and prediction ability. Shao et al. proposed a regularization extreme learning machine with online sequential learning called OS-RELM [32]. OS-RELM combines OS-ELM and RELM [33]; at the same time, the minimum error rate is guaranteed, and the norm of the minimum weight is obtained, so that OS-RELM can have good generalization performance. Zhao et al. proposed a FOS-ELM with forgetting mechanism for timeliness stock data [34]. In FOS-ELM, it only uses latest data to update model, so it can avoid the invalid data to participate in updating the weights of the output layer. Bilal et al. proposed an ensemble online sequential extreme learning machine for imbalanced classification [35]; each OS-ELM focuses on the minority class data and is trained with a balanced subset of the data stream. For distributed multi-agent system, Vanli et al. proposed a online nonlinear extreme learning machine [36]; it uses optimization method to minimize empirical risk and structural risk. Singh et al. applied OS-ELM in intrusion detection system [37]; before dealing with data, it introduces features selection to eliminate redundant or unrelated attributes.



The above OS-ELM and its developments provide a number of ways to solve the problem of data stream classification. However, most of them lack concept drift detection mechanism; they have a good performance for data stream without concept drift or concept changing slowly, but cannot cope with the rapid change of concept in data stream. In this paper, an ensemble extreme learning machine with concept drift detection (CELM) is proposed. CELM uses manifold learning to reduce the dimensions of data and introduces concept drift detection mechanism which effectively overcomes the shortcomings of OS-ELM. The contributions of this paper are as follows:




	
An ensemble extreme learning machine algorithm is presented. In the data stream environment, the performance of ensemble classifiers is better than that of single classifier [38], so CELM employs ensemble learning method and improves the performance of ELMs.



	
Because data stream classification is very demanding for real time and the high dimensions of data tend to reduce the efficiency of algorithm, CELM introduces a manifold learning method to reducing the dimension of data which reduces the time consumption of CELM.



	
Concept drift detection is incorporated into the training process of ELM classifiers. The change of data stream is divided into three categories: normal condition, warning level and concept drift. Different from the traditional ELMs, CELM not only can detect gradual concept drift, but also can handle abrupt concept drift.








The rest of this paper is organized as follows: Section 2 reviews the background knowledge of data stream classification and ELM. Section 3 states the details of ELM, and then elaborates the reducing dimension method of the manifold learning and the principles of CELM. In Section 4, CELM is compared with comparison algorithms and we discusses the experimental results. Finally, Section 5 concludes the research and gives future directions.




2. Background Knowledge


In this section, we give a brief introduction about data stream classification and extreme learning machine and explain their basic principles.



2.1. Data Stream Classification


Let   ⋯ ,  d  t − 1   ,  d t  ,  d  t + 1   , ⋯   be a data stream generated by a system, and   d t   a datum at t moment;    d t  =   x  t 1   ,  x  t 2   , ⋯ ,  x  t m   ,  y t    , where m is the features number of   d t   and   y t   is the class label. Data stream classification generally adopts a sliding window mechanism, and several data make up a dataset called data block and denoted   B i  , where    B i  =   d  1   ,  d  2   , ⋯ ,  d  n      and n is the size of data block. At every moment, only one or several data blocks are allowed to enter sliding window. After one data block is processed, a new data block can be loaded to sliding window.



Suppose that in   Δ t   time, if the error rate of classifier system is at a low level in the sliding window, it is said that the concept of data stream is stable in this period and   P  e r r o r − b e s t ≤ ε  ≥ 1 − α  , where error is the current error rate of classifier system, best is the classification error rate of optimal performance classifier for data stream and  α  is a significance level. Let the classification model of data stream be M, which is trained by the data blocks in sliding window at t moment; after   Δ t   time, the classification model changes to N. If   M ≠ N  , it means concept drift has happened in data stream. If   Δ t   is a short time, the concept drift is called abrupt concept drift; otherwise, it is called as gradual concept drift [14].




2.2. Extreme Learning Machine


Extreme learning machine is a single hidden layer feedforward neural network. The input weights and biases are randomly generated, while the output weights can be automatically determined. Compared with the traditional methods such as BP neural network [39], the speed of ELM is faster [40,41]. The structure of ELM is shown in Figure 1.



For N arbitrary distinct samples,     x i  ,  t i    i = 1  N  ,    x i  =    x  i 1   ,  x  i 2   , ⋯ ,  x  i n    T  ∈  R n  ,  t i  =    t  i 1   ,  t  i 2   , ⋯ ,  t  i m    T  ∈  R m   . If the activation function is   g ( x )   with L hidden nodes, the output of ELM is as


   ∑  j = 1  L   β j  g  (  w j  ·  x i  +  b j  )  =  o j  ,     i = 1 , 2 , ⋯ , N  



(1)




where    w j  =    w  j 1   ,  w  j 2   , ⋯ ,  w  j n    T    is the weights connecting the jth hidden node with the input nodes,    β j  =    β  j 1   ,  β  j 2   , ⋯ ,  β  j m    T    is the weights connecting the jth hidden node with the output nodes,   b j   is the bias of the jth hidden nodes. According to the theory [24], ELM can approximate these N samples with zero error and    ∑  i = 1  N    o i  −  t i   = 0  . Thus, the output of ELM can be expressed compactly as


  H β = T  



(2)




where  H  is the output matrix of hidden layer and  T  is the output matrix of output layer. They are as:


  H =       g (  w 1  ,  b 1  ,  x 1  )    ⋯    g (  w L  ,  b L  ,  x 1  )      ⋮   ⋱   ⋮      g (  w 1  ,  b 1  ,  x N  )    ⋯    g (  w L  ,  b L  ,  x N  )       N × L       and     T =       t  1  T      ⋮      t  N  T       N × m    



(3)







The output weights matrix  β  can be estimated as


   β ^  =   H  †  T  



(4)




where    H  †   is the Moore–Penrose generalized inverse of the hidden layer output matrix  H . It can be computed by orthogonal projection method, orthogonalization method and singular value composition (SVD) [42]. To improve the generalization performance of ELM, regularization is introduced and the optimization problem of ELM is as follows:


     min   1 2    β  2  + C  1 2   ∑  i = 1  N    ξ i         s . t .   h  (  x i  )  β =  t  i  T  −  ξ  i  T     i = 1 , 2 , ⋯ , N     



(5)




where C is a penalty factor, and   ξ i   is the training error which is used to eliminate over-fitting. According to KKT conditions [26], if   L < N  , the  β  is as


  β =   (  I C  +   H  T  H )   − 1     H  T  T  



(6)







Thus, the output of ELM is as


  f  ( x )  = h  ( x )  β = h  ( x )    (  I C  +   H  T  H )   − 1     H  T  T  



(7)







If   L ≥ N  , the  β  is as


  β =   H  T    (  I C  + H   H  T  )   − 1   T  



(8)







Thus, the final output of ELM is


  f  ( x )  = h  ( x )  β = h  ( x )    H  T    (  I C  + H   H  T  )   − 1   T  



(9)







The classification label of ELM is as


  l a b e l  ( x )  =  argmax  i ∈  1 , 2 , ⋯ , m     f i   ( x )   



(10)




where   f  ( x )  =   f 1   ( x )  ,  f 2   ( x )  , ⋯ ,  f m   ( x )    .



From the above descriptions, the steps of ELM are summarized as follows (Algorithm 1) [24,25]:





	Algorithm 1 ELM.



	Input: a training data   X =   (  x i  ,  y i  )   |   x i  ∈  R n  ,  y i  ∈  R m    ; the number of hidden nodes L; the activation function   g ( · )  ;

Output: ELM classifier.

    Step 1: Randomly generate the input weights    w j    and biases    b j  , j = 1 , 2 , ⋯ , L ;  

    Step 2: Calculate the output matrix of hidden layer   H   for dataset   X   

    Step 3: Obtain the output weights   β   according to Equation (6) or Equation (8);








3. The Basic Principles of CELM


In this section, we introduce the dimension-reduction method which is used to reduce the dimension of the data at first, and then explain the details of concept drift detection mechanism and classification steps of CELM.



3.1. The Method of Dimensionality Reduction for Data Stream


Dimensionality reduction is important for data stream classification. It can reduce the dimension of the data and improve the efficiency of the algorithm. In this paper, LLE method [43] is used to handle data stream. Let a data block be    B i  =   x 1  ,  x 2  , ⋯ ,  x N    , for a data point    x i  , i = 1 , 2 , ⋯ , N  , LLE (https://cs.nyu.edu/~roweis/lle/) finds k neighborhood points of   x i   to reconstruct   x i  . The objective function of the optimization problem is as follows:


     min  J  ( w )  =  ∑  i = 1  N     x i  −  ∑  j = 1  k   w  i j    x j    2  2        s . t .    ∑  j = 1  k   w  i j   = 1     



(11)




where   w  i j    is the weight of the neighborhood sample   x j  . If   x j   is not the neighborhood of   x i  ,    w  i j   = 0  . From Equation (11), it follows:


     J ( w )     =  ∑  i = 1  N    1 ·  x i  −  ∑  j = 1  k   w  i j    x j    2  2  =  ∑  i = 1  N     ∑  j = 1  k   w  i j    x i  −  ∑  j = 1  k   w  i j    x j    2  2         =  ∑  i = 1  N     ∑  j = 1  k   w  i j    (  x i  −  x j  )    2  2  =  ∑  i = 1  N     (  x i  −  x j  )   W i    2  2         =  ∑  i = 1  N   W  i  T    (  x i  −  x j  )  T   (  x i  −  x j  )   W i      



(12)




where    W i  =    w  i 1   ,  w  i 2   , ⋯ ,  w  i k    T   . Let    Z i  =   (  x i  −  x j  )  T   (  x i  −  x j  )   , so it will have


  J  ( w )  =  ∑  i = 1  N   W  i  T   Z i   W i    and    ∑  j = 1  k   w  i j   =  W  i  T   1 k  = 1  



(13)




where   1 k   is a vector in which all elements are 1. The optimization function of Equation (13) can be expressed as


  L =  ∑  i = 1  N   W  i  T   Z i   W i  + λ  (  W  i  T   1 k  − 1 )  ⇒   ∂ L   ∂  W i    = 2  Z i   W i  + λ  1 k  = 0  



(14)







From Equations (13) and (14), it will obtain


   W i  =    Z  i   − 1    1 k     1  k  T   Z  i   − 1    1 k     



(15)







For    B i  =   x 1  ,  x 2  , ⋯ ,  x N    , the projection of   B i   in low dimension space is    y 1  ,  y 2  , ⋯ ,  y N   . The objection of dimension reduction is to make the following loss function is minimized.


     min   ∑  i = 1  N     y i  −  ∑  j = 1  k   w  i j    y j    2  2        s . t .   ∑  i = 1  N   y i  = 0   and   1 N   ∑  i = 1  N   y i   y  i  T  = I     



(16)







Equation (16) can be changed as


     J ( Y )     =  ∑  i = 1  N     y i  −  ∑  j = 1  k   w  i j    y j    2  2  =  ∑  i = 1  N    Y  I i  − Y  W i    2  2         = t r (   Y  T    ( I − W )  T   ( I − W )  Y )     



(17)







Let   M =   ( I − W )  T   ( I − W )   , so the objective function of the optimization problem is


     min  J  ( Y )  = t r  (   Y  T  M Y )         s . t .    Y  T  Y = N I     



(18)







Construct the following Lagrange function


  L  ( Y )  = t r  (   Y  T  M Y )  + λ  (   Y  T  Y − N I )   



(19)







By solving the partial derivation of   L ( Y )  , it will get


    ∂ L   ∂ Y   = M Y − λ Y = 0 ⇒ M Y = λ Y  



(20)







Equation (20) means  Y  is the eigenvectors of  M . If it wants to get d-dimensional data, it only needs to find a matrix which is made up by   d + 1   eigenvectors corresponding to the least   d + 1   eigenvalues of the matrix  M , and   Y =   y 2  ,  y 3  , ⋯ ,  y  d + 1     . The dimension-reduction algorithm of CELM is as follows (Algorithm 2).





	Algorithm 2 Dimension-reduction of data stream.



	Input: Data stream  S , the size of data block   B i  : winsize, k and d;

Output:   Y =   y 1  ,  y 2  , ⋯ ,  y d    .

    while   S ≠ N U L L   do

        Get a data block    B j  =   x 1  ,  x 2  , ⋯ ,  x N     with N samples from sliding window;

        Calculate    W i  ,  i = 1 , 2 , ⋯ , N  ;

        Calculate   M =   ( I − W )  T   ( I − W )   ;

        Calculate d+1 eigenvectors of the matrix  M ;

        Get the low dimensional matrix  Y ;







3.2. The Data Stream Classification and Concept Drift Detection of CELM


Data stream is different from the traditional static data, concept drift is often happened, so concept drift detection must be included in the training process. For a data block   B i  , the error rate of classifiers is   p i   which is a random variable obeying the Bernoulli distribution, so the standard deviation is    s i  =     p i   ( 1 −  p i  )   i     where i is the number of samples [44,45]. In this paper, CELM utilizes   p i   and   s i   to detect concept drift. The change of data stream is divided into three types: stable, error level and concept drift.



If    p i  +  s i  ≤  p  m i n   + 2  s  m i n     and    p i  < ε  , it suggests that the error rate of classifiers system is in a low level and the concept of data stream is stable where  ε  is a threshold. Thus, the classifiers are suitable for the classification task of the current data stream and they do not need to make any adjustment.



If    p i  +  s i  ≥  p  m i n   + 2  s  m i n     and    p i  < ε  , it suggests that the error rate of classifiers system is still in a low level, but the performance of classifers has a big fluctuation, the classifiers will give a warning and CELM will use online sequence learning mechanism [30] to update each classifier. At the initial time, let the data block be    B 0  =    x i  ,  t i    i = 1   N 0    , so the output matrix of hidden layer   H 0   and the initial target matrix of   T 0   are


   H 0  =       g (  w 1  ,  b 1  ,  x 1  )    ⋯    g (  w L  ,  b L  ,  x 1  )      ⋮   ⋱   ⋮      g (  w 1  ,  b 1  ,  x  N 0   )    ⋯    g (  w L  ,  b L  ,  x  N 0   )        N 0  × L     and    T 0  =       t  1  T      ⋮      t   N 0   T        N 0  × m    



(21)







The initial output weight of ELM    β   ( 0 )    is


    β   ( 0 )   =  K  0   − 1    H  0  T   T 0   



(22)




where    K 0  =  I C  +   H  T  H   and    T 0  =    t 1  ,  t 2  , ⋯ ,  t  N 0    T   . After (k + 1)th data block coming into sliding window, the data block is    B  k + 1   =    x i  ,  t i    i =  ∑  j = 0  k   N j  + 1    ∑  j = 0   k + 1    N j     . The output matrix of hidden layer   H  k + 1    is


   H  k + 1   =       g (  w 1  ,  b 1  ,  x   ∑  j = 0  k   N j  + 1   )    ⋯    g (  w L  ,  b L  ,  x   ∑  j = 0  k   N j  + 1   )      ⋮   ⋱   ⋮      g (  w 1  ,  b 1  ,  x   ∑  j = 0   k + 1    N j    )    ⋯    g (  w L  ,  b L  ,  x   ∑  j = 0   k + 1    N j    )        N  k + 1   × L    



(23)






   T  k + 1   =    t  1 +  ∑  j = 0  k   N j   T  , ⋯ ,  t   ∑  j = 0   k + 1    N j   T     N  k + 1   × m  T   



(24)







The   K  k + 1    and    β   ( k + 1 )    are updated as


   K  k + 1   =  K k  +  H  k + 1  T   H  k + 1    



(25)






    β   ( k + 1 )   =   β   ( k )   +  K  k + 1   − 1    H  k + 1  T   (  T  k + 1   −  H  k + 1     β   ( k )   )   



(26)




when calculating the output weight matrix  β  , it needs to perform a matrix inversion, but the calculated amount of the pseudo inverse is very large, so Woodbury formula is often used to diminish the computation [37] and the formula is as


     K  k + 1   − 1      =   (  K k  +  H  k + 1  T   H  k + 1   )   − 1          =  K  k   − 1   −  K  k   − 1    H  k + 1  T    ( I +  H  k + 1    K  k   − 1    H  k + 1  T  )   − 1    H  k + 1    K  k   − 1       



(27)







By the online sequential learning mechanism, when the change of concept in data stream is small, CELM can update classifiers to adapt to the change of concept which is also effective for gradual concept drift.



If    p i  +  s i  ≥  p  m i n   + 2  s  m i n     or    p i  ≥ ε  , it indicates that the change of data stream is too large or the performance of classifiers is in low level. The classification model is not fit for the current data stream, so all classifiers must be deleted and retrain a series of classifiers. The steps of CELM are summarized in Algorithm 3.





	Algorithm 3 CELM.



	Input: Data stream  S , the size of data block   B i  : winsize, k and d,  ε , K classifiers;

Output: An ensemble classifiers system.

    while   S ≠ N U L L   do

        Get a data   B i   from sliding window;

        Use Algorithm 2 to descend dimension for   B i  ;

        if    p i  +  s i  <  p  m i n   + 2  s  m i n   & &  p i  < ε   then

            The data stream is stable and directly uses classifier to finish classification task;

        else if    p i  +  s i  ≥  p  m i n   + 2  s  m i n   & &  p i  < ε   then

            Uses online learning mechanism to update classifiers as Equations (21)–(27);

        else if    p i  +  s i  ≥  p  m i n   + 2  s  m i n    | |   p i  ≥ ε   then

            Concept drift has happened;

            Delete all classifiers and retrain each classifier as Algorithm 1;






From the steps of CELM, it is known that, when the change of data stream is small, CELM uses online sequential learning mechanism to update classifiers which ensures the classifiers can utilize the last model and do not need to be retrained again and again; in other words, the method also gives a way to handle gradual concept drift. In addition, the dimension-reduction algorithm which preprocesses data blocks and the advantages of ELM makes CELM keep a good performance and have a fast speed.





4. Experiments and Data Analysis


In the section, experiments and data analysis are executed to test the performance of CELM. OS-ELM [30], SEA [46], AE [47] and M_ID4 [48] are used as comparison algorithms. All algorithms were executed on MATLAB 2017a platform, windows 7 OS, Intel quad-core 3.30 GHz CPU and 8 G memory. There are 10 artificial and real datasets for experimental datasets. The base classifier of SEA, AE and M_ID4 is decision tree and the number of sub-classifiers is set to 5. For CELM, the parameter C = 1000, the neighbourhood k = 5 and the threshold   ε = 0.3  . For M_ID4, the threshold   θ = 0.01   and the decay factor b = 0.5. The activation function of CELM and OS-ELM is sigmoid.



4.1. Datasets


At first, we will give a brief introduction about datasets. All artificial datasets are generated from MOA platform [49]. In artificial datasets, we only give a explain about hyperplane dataset, the other description of datasets can be see from UCI website (http://archive.ics.uci.edu/ml/datasets.html) and help handbook. The basic information of datasets are shown in Table 1.



hyperplane is a gradual concept drift dataset. In a d-dimensional space, a hyperplane is defined as    ∑  i = 1  d   w i   x i  =  w 0   , where    x i  ∈  0 , 1   ,    w i  ∈  − 10 , 10    and    w 0  =  1 2   ∑  i = 1  d   w i   . If    ∑  i = 1  d   w i   x i  ≥  w 0   , the point is remarked as positive; if    ∑  i = 1  d   w i   x i  <  w 0   , the point is remarked as negative.




4.2. The Comparison Results of CELM and Comparison Algorithms on the Test Datasets


To test the performance of CELM and comparison algorithms, the algorithms are executed on 10 datasets. The test results are shown in Table 2 and Table 3.



Table 2 and Table 3 show that CELM gets best results on four datasets; SEA, AE and OS-ELM get the best results on two datasets; and M_ID4 gets only one best result. In addition, the average accuracy of CELM is also the best of all. For time consumption, OS-ELM is the least of all and CELM the second least, but the accuracies of CELM are much higher than OS-ELM. Thus, it can be concluded that the performance of CELM is better than the other algorithm in most conditions. On Ozone dataset, CELM and OS-ELM get the same highest accuracy because Ozone has no abrupt concept drift and CELM degenerates into OS-ELM; in other words, there will be no difference between CELM and OS-ELM when dataset has no abrupt concept drift.




4.3. The Effect of Sliding Window on the Performance of CELM


To test the effect of sliding window on the performance of CELM, this paper chooses different winsize values, and executes CELM and OS-ELM on the experimental datasets. The number of hidden nodes is 20 and d = 5. The test results are shown in Figure 2a–j.



In Figure 2a–j, the accuracies of CELM and OS-ELM are changing with different winsize values. On the voice, waveform, letter, occupancy and protein datasets, CELM is much better than OS-ELM; the classification performance of OS-ELM is at a low level because there are many abrupt concept drifts in those datasets. It suggests that OS-ELM is not fit for dealing with data stream with abrupt concept drift and CELM has an obvious advantage in handling data stream with abrupt concept drift. On the other datasets, the test results of OS-ELM is better than that of CELM. If analyzing the change of the curve, it is known that there is no big difference between OS-ELM and CELM in accuracy and both get good results because the change of concepts in those dataset is small. Therefore, it can be concluded that CELM can cope with gradual concept drift and abrupt concept drift, but OS-ELM can only face gradual concept drift; thus, CELM is better than OS-ELM.




4.4. The Effect of the Values of d on the Performance of CELM


To test the effect of d on the performance of CELM, this paper executes CELM with different values of k which is a parameter of Algorithm 2. The activation function of CELM is sigmoid; the size of sliding window is 90; and the number of hidden nodes is 30.



Table 4 is the dimension decrement of the datasets testing on CELM. From the result analysis of Table 2, it can be known that the performance of CELM is the best. CELM reduces the dimensions of most datasets. In other words, the dimensionality reduction methods of manifold learning in CELM is effective. Figure 3 presents the result of CELM testing on the experimental datasets with different d values. d is an important parameter for the dimension reduction algorithm which is presented as Algorithm 2. Data will lose more information if d is a small value and data will have many redundant features if d is a larger value. It is known that the performance of CELM will change when d value changes. The accuracy of CELM has a large fluctuation on voice, waveform, adult, letter, occupancy, hill and protein datasets and the accuracy of CELM has less fluctuation on the other datasets, as shown in Figure 2 and Table 5. It manifests d values can affect the effect of dimensionality reduction algorithm. In addition, it is obvious that the performance of CELM will be affected if the value of d is too large or too small, therefore the user needs to select a appropriate value for the manifold learning algorithm.





5. Conclusions


Data stream classification is a hot research topic in recent years. How to deal with the data stream with concept drift has a high value of practical application. A new ensemble extreme learning machine with concept drift detection (CELM) is presented in this paper. CELM applies manifold learning method to reduce the dimensions of data blocks and divides the changes of concepts in data stream into three types: stable, warning and concept drift. The algorithm can detect both gradual concept drift and abrupt concept drift by online sequential learning and concept drift detection mechanisms which expands the application scope of ELM. The experimental results also prove that the proposed algorithm is effective for data stream classification.



It is obvious that this algorithm still has some problems to be solved. The number of hidden nodes L and the parameter of the manifold learning algorithm d have a great impact on CELM. How to select appropriate values for those parameters will be a research direction for future works.
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Figure 1. The structure of ELM. 






Figure 1. The structure of ELM.



[image: Algorithms 11 00107 g001]







[image: Algorithms 11 00107 g002a 550][image: Algorithms 11 00107 g002b 550] 





Figure 2. The test result of CELM and OS-ELM with different winsize values. 
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Figure 3. The test result CELM with different d values: (a) voice dataset; (b) waveform dataset; (c) bank dataset; (d) adult dataset; (e) letter dataset; (f) hyperplane dataset; (g) occupancy dataset; (h) hill dataset; (i) protein dataset; and (j) ozone dataset. 
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Table 1. The information of the experimental datasets.






Table 1. The information of the experimental datasets.





	Dataset
	Size
	Attributes
	Classes
	Types





	voice
	7614
	385
	12
	Numeric



	waveform
	50,000
	21
	3
	Numeric



	bank
	45,211
	16
	2
	Mixed



	adult
	32,561
	13
	2
	Mixed



	letter
	20,000
	16
	26
	Categorical



	hyperplane
	50,000
	40
	2
	Numeric



	occupancy
	8143
	5
	2
	Numeric



	hill
	1212
	100
	2
	Numeric



	Protein
	1080
	80
	8
	Mixed



	Ozone
	2534
	72
	2
	Numeric
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Table 2. The test accuracies of the algorithms on the experimental datasets.
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	Dataset
	CELM
	SEA
	AE
	OS-ELM
	M_ID4
	winsize
	d
	L





	voice
	0.6511 ± 0.1786
	0.3357 ± 0.0651
	0.4155 ± 0.0737
	0.2808 ± 0.0429
	0.6029 ± 0.1033
	100
	5
	20



	waveform
	0.6619 ± 0.0119
	0.6329 ± 0.0136
	0.6374 ± 0.0204
	0.6856 ± 0.0134
	0.6205 ± 0.0195
	1000
	200
	200



	bank
	0.8863 ± 0.0094
	0.8841 ± 0.0088
	0.8843 ± 0.0084
	0.8812 ± 0.0087
	0.8269 ± 0.0196
	1200
	13
	5



	adult
	0.7596 ± 0.0135
	0.8119 ± 0.0168
	0.8156 ± 0.0117
	0.7569 ± 0.0177
	0.7501 ± 0.0235
	1000
	5
	5



	letter
	0.4930 ± 0.0581
	0.0361 ± 0.0096
	0.3617 ± 0.0597
	0.0418 ± 0.0046
	0.6818 ± 0.1368
	1000
	13
	2000



	hyperplane
	0.5812 ± 0.0205
	0.5761 ± 0.0164
	0.5758 ± 0.0182
	0.5796 ± 0.0306
	0.5385 ± 0.0199
	1000
	30
	2000



	occupancy
	0.9670 ± 0.0294
	0.9882 ± 0.0111
	0.9788 ± 0.0191
	0.7835 ± 0.0291
	0.9640 ± 0.0182
	100
	5
	10



	hill
	0.5517 ± 0.0659
	0.5643 ± 0.0813
	0.4833 ± 0.0491
	0.4900 ± 0.0344
	0.5283 ± 0.0369
	60
	80
	100



	Protein
	0.6354 ± 0.0599
	0.5750 ± 0.1578
	0.6583 ± 0.1532
	0.1354 ± 0.0348
	0.5854 ± 0.1125
	80
	50
	1000



	Ozone
	0.9408 ± 0.0107
	0.9396 ± 0.0251
	0.9392 ± 0.0131
	0.9408 ± 0.0107
	0.7692 ± 0.1018
	120
	30
	200



	Average
	0.7128 ± 0.0297
	0.6344 ± 0.0406
	0.6750 ± 0.0424
	0.5576 ± 0.0227
	0.6868 ± 0.0592
	–
	–
	–
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Table 3. The time consumption of the algorithms on the experimental datasets.
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	Dataset
	CELM
	SEA
	AE
	OS-ELM
	M_ID4





	voice
	2.0433
	2401.3555
	291.9706
	0.1160
	5234.9994



	waveform
	82.9626
	1523.1448
	172.0207
	0.1480
	>20,000



	bank
	10.8994
	573.6019
	63.8236
	0.1100
	2392.9633



	adult
	6.1201
	279.0587
	37.7094
	0.0566
	2830.5794



	letter
	70.0543
	248.7848
	29.8872
	0.0865
	3638.3141



	hyperplane
	27.5537
	1558.7989
	160.4245
	0.2402
	3486.1807



	occupancy
	1.2085
	15.4485
	2.3894
	0.0632
	75.3053



	hill
	0.5319
	59.4144
	8.9018
	0.0548
	75.0302



	Protein
	4.2500
	40.2288
	6.3598
	0.0426
	14.2372



	Ozone
	0.4528
	64.5923
	6.0510
	0.0739
	32.7597
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Table 4. The dimension reduction result of CELM testing in Table 2.
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	Dataset
	The Number of Original Features
	After Dimension Reduction
	Decrement
	Reduction Rate





	voice
	385
	5
	380
	0.9870



	adult
	13
	5
	7
	0.5384



	letter
	16
	13
	3
	0.1875



	hyperplane
	40
	30
	10
	0.2500



	occupancy
	5
	5
	0
	0.0000



	hill
	100
	80
	20
	0.2000



	Protein
	80
	50
	30
	0.3750



	Ozone
	72
	30
	42
	0.5833
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Table 5. The accuracy standard deviation of CELM testing in Figure 3.
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	Dataset
	Voice
	Waveform
	Bank
	Adult
	Letter
	Hyperplane
	Occupancy
	Hill
	Protein
	Ozone





	Standard deviation
	0.1971
	0.0409
	0.0109
	0.0193
	0.0816
	0.0112
	0.0373
	0.0222
	0.1992
	0.0045











© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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