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Abstract: A randomized algorithm is suggested for the syntheses of optimal PID controllers for
MIMO coupled systems, where the optimality is with respect to the H∞-norm, the H2-norm and the
LQR functional, with possible system-performance specifications defined by regional pole-placement.
Other notions of optimality (e.g., mixed H2/H∞ design, controller norm or controller sparsity) can
be handled similarly with the suggested algorithm. The suggested method is direct and thus can
be applied to continuous-time systems as well as to discrete-time systems with the obvious minor
changes. The presented algorithm is a randomized algorithm, which has a proof of convergence
(in probability) to a global optimum.

Keywords: continuous-time linear systems; discrete-time linear systems; state-space representation;
proportional-integral-differential controllers; static output feedbacks; optimal controllers; randomized
algorithms; convergence in probability

1. Introduction

Proportional Integral Derivative (PID) controllers are the most widely-used controllers in industry
despite of many new results in control theory that have been achieved in recent years. This is
because in many cases PID controllers achieve close to optimal performance, because it is hard to
compete with their investment-to-profit ratio and because of their well-understood influence on
the closed-loop system behavior, as well as the availability of many tuning procedures for various
performance objectives, at least for SISO systems or MIMO systems that can be well decoupled.
Often, the performance achieved by PID controllers can be significantly improved by using more
effective design techniques. Therefore the field of PID controllers is an on-going active field of research.
A review of most recent techniques for tuning and designing PID-based control structures, together
with methods for assessing their performance is presented in [1]. In [2] optimal decentralized MIMO
PID controller design for a benchmark MIMO distillation column models is carried out using a
Modified Firefly Algorithm (MFA), where the optimality is with respect to an objective function which
is a weighted combination of the L1-norm and the L2-norm of the tracking error, with respect to a
reference signal.

Tuning of MIMO coupled systems PID controllers is much more challenging than tuning PID
controllers for SISO system or decoupled MIMO systems, because of the number of parameters and
because they should be tuned all at once, since otherwise, tuning each channel separately might end
up in a very poor performance of the whole system or even destabilize the whole system. In [3] the
need for effective methods for the design of PID optimal controllers for MIMO coupled systems that
cannot be well approximated by second-order systems, was raised. In [4] the parametrization of all the
solutions of the standard H∞ control problem is used to obtain Bilinear Matrix Inequalities (BMI’s)
constraints on the PID gains for each frequency. Next, for each frequency, Linear Matrix Inequalities
(LMI’s) restricted constraints for a stabilizing PID gain are derived from the BMI constraints. Finally,
the set of LMI’s for a chosen finite set of frequencies are solved by the Iterated Linear Matrix Inequalities
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(ILMI) method. The sequence is shown to converge to a local optimum. In [5] a method for MIMO
coupled systems PID controller design for stable plants (given by transfer function at an appropriate
set of frequencies) is represented. The method relies on solving a sequence of SDP’s, but it cannot
guarantee finding a globally optimal design.

In this article, we suggest a randomized algorithm for PID optimal controllers. The algorithm is
based on the known reduction of [3] to the Stabilizing Static-Output-Feedback (SOF) problem, which
is then solved by the Ray-Shooting Method, where the method is used both for the search for feasible
starting SOF and for the optimal SOF (see [6–8] for some applications of the method).

A closely related approach to ours is given in [9] where the problem is first reduced to the SOF
problem, by the reduction of [3] and by using a descriptor system representation of the augmented
system (in order to bypass the feasibility condition that I − K̂3C2B2 should be invertible—see the
following). Next, the search problem of a starting stabilizing SOF controller is solved via the ILMI
approach. Finally, a Bounded-Real Lemma version for descriptor systems is used in order to get a
set of Quadratic Matrix Inequalities (QMI’s) that their solution guaranties a γ suboptimal H∞ gain.
The last can be solved by the ILMI method (without a proof of convergence). The method of ILMI was
discussed in many articles (see [3,10–12]). Unfortunately, the ILMI method needs a good starting point
and has no proof of convergence in general.

Another closely related approach is given in [13] where the 2-Degree of Freedom PID (2-DOF-PID)
problem is reduced to the SOF problem, which in order to incorporate the optimization problem of γ

suboptimal H∞ gain, is reformulated as a set of BMI’s, where the last is solved via standard BMI solvers.
Many problems can be reduced to the SOF problem, imposing structural or other constraints

on the controllers. These include the reduction of the minimal-degree dynamic-feedback problem
and robust or decentralized stability via static-feedback (see [14,15], resp.). The design problem
of remote digital PID controllers formulated as robust SOF problem for discrete-time Networked
Control Systems (NCS), subject to time-delays and randomly missing-data is considered in [16].
A formulation of the reduced-order H∞ filter problem as constrained SOF problem, is considered
in [17]. Unfortunately, the SOF problem with bounded entries or other structural constraints is known
to be NP-hard (see [14,18]). Therefore, minimal-gain SOF with bounded entries is obviously NP-hard
problem. Exact Pole-placement and simultaneous and robust stabilization via SOF are also NP-hard
(see [14,19], resp.). Thus, practically, one should expect that only approximation or randomized
algorithms will be able to cope with these problems.

The article is organized as follows:
In Section 2 we define the feasibility problem of PID controllers and the specific reduction to the

SOF problem that will be used. In Section 3 we define the PID controller optimization problems where
the optimality is with respect to the H∞-norm, the H2-norm and the LQR functional, with possible
regional pole-placement. In Section 4 we describe the suggested randomized algorithm and finally, in
Section 5 we give a real-life example for each one of the above-mentioned optimization problems.

The notions are standard. By < (z) and = (z) we denote the real and imaginary parts of z ∈ C,
resp., where by C− we denote the left half-plane. For a matrix Z we denote by ZT its transpose
and by Z we denote the conjugate matrix. By Z∗ we denote conjugate-transpose of Z. By Z+ we
denote the Moore-Penrose pseudo-inverse of Z, where by LZ and RZ we denote the left and right
orthogonal projections I − Z+Z and I − ZZ+, resp.. For a square matrix Z, we denote by σ (Z) the
spectrum of Z and by trace (Z) we denote the trace of Z. For matrices Z, W we denote by Z ⊗W
the Kronecker product. By ‖Z‖ we denote the spectral norm of Z, i.e., the largest singular value

of Z, where by ‖Z‖F we denote its Frobenious norm, i.e., (trace (Z∗Z))
1
2 . For matrices Z, W with

the same size, we denote by 〈Z, W〉F = trace (W∗Z) the Frobenious inner product. For a vector v

we denote by ‖v‖ its Euclidean norm
(

∑j
∣∣vj
∣∣2) 1

2 . By vec (Z) we denote the vector obtained from
the matrix Z by chaining all its columns to a single column. By mat we denote the inverse function
of vec. For a transfer function T (s) analytic in the open right half-plane, we denote by ‖T‖H∞

its H∞ norm where ‖T‖H∞
= ess − supω∈R ‖T (jω)‖ and by ‖T‖H2

we denote its H2 norm where
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‖T‖H2
=
(

1
2π

∫ +∞
−∞ trace

(
T (jω)∗ T (jω)

)
dω
) 1

2 . For a set X in a topological space, we denote by X its
closure and by int (X) its interior. For two sets X, Y we denote by CH (X, Y) the convex-hull of X and
Y, i.e., the minimal closed convex set that contains X ∪Y.

2. The Problem of Stabilization via PID Controllers

Let a system be given by:
ẋ (t) = Ax (t) + B1w (t) + B2u (t)

z (t) = C1x (t) + D1,1w (t) + D1,2u (t)

y (t) = C2x (t) + D2,1w (t) ,

where A ∈ Rnx×nx , B1 ∈ Rnx×nw , B2 ∈ Rnx×nu , C1 ∈ Rnz×nx , D1,1 ∈ Rnz×nw , D1,2 ∈ Rnz×nu , C2 ∈
Rny×nx , D2,1 ∈ Rny×nw , where x is the state, z is the regulated output, y is the measurement, u is the
control input and w is the noise. Assume that D2,1 = 0 and let

u (t) = r (t)− KPy (t)− KI

∫ t

0
y (τ) dτ − KD ẏ (t) ,

where r (t) is the new reference input. Let x̂ (t) =

[
x (t)∫ t

0 y (τ) dτ

]
be the augmented state, then:

u (t) = r (t)− KPy (t)− KI

∫ t

0
y (τ) dτ − KD ẏ (t)

= r− KP

[
C2 0

]
x̂ (t)− KI

[
0 I

]
x̂ (t) +

− KDC2 ẋ (t)

= r− KP

[
C2 0

]
x̂ (t)− KI

[
0 I

]
x̂ (t) +

− KDC2 (Ax (t) + B1w (t) + B2u (t)) ,

implying that:
u (t) = M−1r (t)−M−1KP

[
C2 0

]
x̂ (t) +

−M−1KI

[
0 I

]
x̂ (t) +

−M−1KD

[
C2 A 0

]
x̂ (t)−M−1KDC2B1w,

where M = I + KDC2B2 is assumed to be invertible. Now:

˙̂x (t) =

[
ẋ (t)
y (t)

]

=

[
Ax (t) + B1w (t) + B2u (t)

C2x (t)

]

=

[
A 0
C2 0

]
x̂ (t) +

+

[
B1 − B2M−1KDC2B1

0

]
ŵ (t) +

[
B2

0

]
û (t) ,
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where: 

ŵ (t) = w (t)

û (t) = r̂ (t)− K̂ŷ (t)

r̂ (t) = M−1r (t)

ŷ (t) =

 C2x (t)∫ t
0 y (τ) dτ

C2 Ax (t)


K̂ = M−1

[
KP KI KD

]
.

Let 

Â =

[
A 0
C2 0

]
, B̂2 =

[
B2

0

]

B̂1 =

[
B1 − B2M−1KDC2B1

0

]

Ĉ1 =
[

C1 0
]

, Ĉ2 =

 C2 0
0 I

C2 A 0


D̂1,1 = D1,1 − D1,2M−1KDC2B1, D̂1,2 = D1,2.

Let ẑ (t) = z (t) then, the augmented system is given by:
˙̂x (t) =

(
Â− B̂2K̂Ĉ2

)
x̂ (t) + B̂1ŵ (t) + B̂2r̂ (t)

ẑ (t) =
(
Ĉ1 − D̂1,2K̂Ĉ2

)
x̂ (t) + D̂1,1ŵ (t) + D̂1,2r̂ (t)

ŷ (t) = Ĉ2 x̂ (t) .

(1)

Once that a stabilizing SOF matrix K̂ =
[

K̂1 K̂2 K̂3

]
for the augmented system (1) has been

found, we have KD = MK̂3. Thus, M = I + MK̂3C2B2 from which we conclude that:

M =
(

I − K̂3C2B2
)−1 .

Finally, we have: 
KP = MK̂1 =

(
I − K̂3C2B2

)−1 K̂1

KI = MK̂2 =
(

I − K̂3C2B2
)−1 K̂2

KD = MK̂3 =
(

I − K̂3C2B2
)−1 K̂3.

(2)

We conclude that the stabilization problem via PID controller is reducible to the stabilization
via SOF problem, with the constraint that I − K̂3C2B2 is invertible. In the following we will assume
that the couples

(
Â, B̂2

)
and

(
ÂT , ĈT

2
)

are controllable, in order to make the task of finding a feasible
starting SOF K̂ easier.

Remark 1. Please note that although the method relies on a specific known state-space model of the plant, it does
not require an exact model, since the modeling errors can be included in the dynamic uncertainty and they can
be taken into account by selecting a nominal model with a suitable weighting function (see [20]). In any case,
after designing a PID controller for the nominal model, its performance should be checked on the non-linear
plant model. Note also that the requirement that I − K̂3C2B2 should be invertible is not a problem since that if a
stabilizing SOF K̂ exists, there exist an open neighborhood of it where all the members are stabilizing SOF’s,
where on the other hand, the set of all matrices that does not satisfy the invertibility condition has measure 0.
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Remark 2. Since the problem of SOF is (polynomial-time) reducible to the PID controller problem (by restriction
to KI = 0, KD = 0), therefore the PID controller problem is as hard as the SOF problem. Since the SOF problem
with structural constraints (on KP), or the problem of exact pole-placement via SOF are NP-hard, it follows that
these problems with PID controllers are NP-hard. We therefore conclude that unless P = NP, no deterministic
polynomial-time algorithm can solve these problems and we therefore are led to use randomization with the hope
that randomized algorithms will be able to cope more efficiently with these problems.

3. Statement of the Problem

The H∞ and H2 norm minimization relates to the transfer function Tŵ,ẑ (s) from the noise ŵ to the
output ẑ (when the reference signal r̂ is zero and the system is derived only by the noise). The transfer
function is given by:

Tŵ,ẑ (s) = D̂1,1 +
(
Ĉ1 − D̂1,2K̂Ĉ2

) (
sI − Â + B̂2K̂Ĉ2

)−1 B̂1. (3)

In order that the H2-norm of Tŵ,ẑ (s) would be finite, we need that D̂1,1 = 0. We therefore have
the following lemma (given without a proof):

Lemma 1. We have:

D̂1,1 = D1,1 − D1,2M−1KDC2B1 = D1,1 − D1,2K̂3C2B1 = 0, (4)

if and only if: (
(C2B1)

T ⊗ D1,2

)
·
(
(C2B1)

T ⊗ D1,2

)+
vec (D1,1) = vec (D1,1) . (5)

In this case, the set of all matrices K̂3 satisfying (4) is given by:

K̂3 = mat
((

(C2B1)
T ⊗ D1,2

)+
vec (D1,1) + L

(C2B1)
T⊗ D1,2

vec (Z)
)

, (6)

where Z is arbitrary matrix with the same size as K̂3.

For the LQR minimization, we assume that ŵ (t) = 0 and r̂ (t) = 0, i.e., the system is derived
by the initial state x̂0 := x̂ (0) (initial step input). Assume that a SOF K̂ was found, such that
Âc`

(
K̂
)

:= Â− B̂2K̂Ĉ2 is stable. Let the LQR functional be defined by:

J (x̂0) :=
∫ ∞

0

(
x̂ (t)T Qx̂ (t) + ẑ (t)T Rẑ (t)

)
dt, (7)

where Q > 0 and R ≥ 0. Let Ĉ
(
K̂
)

:= Ĉ1 − D̂1,2K̂Ĉ2. Then, ẑ (t) = Ĉ
(
K̂
)

x̂ (t) and substitution of the
last into (7) yields

J
(

x̂0, K̂
)
=
∫ ∞

0
x̂ (t)T

(
Q + Ĉ

(
K̂
)T RĈ

(
K̂
))

x̂ (t) dt = x̂T
0 P
(
K̂
)

x̂0, (8)

where P
(
K̂
)
> 0 is the unique solution to the Lyapunov equation

Âc`
(
K̂
)T P + PÂc`

(
K̂
)
= −

(
Q + Ĉ

(
K̂
)T RĈ

(
K̂
))

(9)

given explicitly by

P
(
K̂
)
= −mat

((
I ⊗ Âc`

(
K̂
)T

+ Âc`
(
K̂
)T ⊗ I

)−1
· vec

(
Q + Ĉ

(
K̂
)T RĈ

(
K̂
)))

. (10)
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Thus, we look for SOF K̂ that minimizes the functional J
(
x0, K̂

)
= x̂T

0 P
(
K̂
)

x̂0. When x̂0 is
unknown, we seek a SOF K̂ for which

σmax
(
K̂
)

:= max
(
σ
(

P
(
K̂
)))

(11)

is minimal. In this case, we get a robust LQR via SOF, in the sense that it minimizes J
(
x̂0, K̂

)
for the

worst possible (unknown) x̂0. Please note that

x̂T
0 P
(
K̂
)

x̂0 =

∥∥∥∥P
(
K̂
) 1

2 x̂0

∥∥∥∥2
≤

≤
∥∥∥∥P
(
K̂
) 1

2

∥∥∥∥2

‖x̂0‖2 =

=
∥∥P
(
K̂
)∥∥ ‖x̂0‖2 = σmax

(
K̂
)
‖x̂0‖2 ,

and that there exists x̂0 6= 0 for which equality holds. Therefore
J(x̂0,K̂)
‖x̂0‖2 ≤ σmax

(
K̂
)
, with equality in

the worst case.
Let Ω denote a subset of C−, which is symmetric with respect to the x-axis, containing a positive

length segment of the real axis, with some neighborhood of it, and such that Ω = int (Ω) (i.e., Ω is the
closure of its interior). Let Sq×r denote the set of all matrices K̂ ∈ Rq×r, such that Âc`

(
K̂
)

is stable, i.e.,
σ
(

Âc`
(
K̂
))
⊂ C−. By Sq×r

Ω , we denote the set of all matrices K̂ ∈ Rq×r, such that σ
(

Âc`
(
K̂
))
⊂ Ω.

In this case, we say that Âc`
(
K̂
)

is Ω-stable (or, the augmented system (1) is Ω-stable). In the sequel,
we will occasionally write SΩ instead of Sq×r

Ω , when it is clear what the size of the related matrices
is. Please note that SΩ is a closed set, since Ω is closed and that SΩ has nonempty interior (if it is
nonempty) since Ω has nonempty interior.

Under the assumptions that D2,1 = 0 and that
(

Â, B̂2
)

,
(

ÂT , ĈT
2
)

are controllable (and the
additional assumption (5) when dealing with the H2-norm minimization), for the PID controller
problem with minimal H∞-norm, we need to solve:

min fH∞

(
K̂
)

:= ‖Tŵ,ẑ‖H∞

such that:{
K̂ ∈ SΩ

I − K̂3C2B2 is invertible

(12)

where Tŵ,ẑ is given by (3). For the PID controller problem with minimal H2-norm, we need to solve:

min fH2

(
K̂
)

:= ‖Tŵ,ẑ‖H2

such that:
K̂ ∈ SΩ

K̂3 has the structure (6)

I − K̂3C2B2 is invertible

(13)

where Tŵ,ẑ is given by (3) and, for the PID controller problem with minimal LQR functional-value,
we need to solve:

min fLQR
(
K̂
)

:= σmax
(
K̂
)

such that:{
K̂ ∈ SΩ

I − K̂3C2B2 is invertible

(14)
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where σmax
(
K̂
)

is given by (11).

4. The Suggested Algorithm

Assume that K̂(0) ∈ int (SΩ)q×r was found by the Ray-Shooting algorithm ([6]) or by any other
method (see [21–23]). We assume that I − K̂(0)

3 C2B2 is invertible (and in addition, we assume that

K̂(0)
3 has the form (6) for some initial matrix Z(0), when dealing with the H2-norm minimization).

Let h > 0 and let U(0) be a unit vector w.r.t. the Frobenius norm, i.e.,
∥∥∥U(0)

∥∥∥
F
= 1. Let L(0) =

K̂(0) + h ·U(0) and let L be the hyperplane defined by L(0) + V, where
〈

V, U(0)
〉

F
= 0. Let r∞ > 0

and let R∞ denote the set of all F ∈ L, such that
∥∥∥F− L(0)

∥∥∥
F
≤ r∞. Let R∞ (ε) = R∞ + B (0, ε),

where B (0, ε) denotes the closed ball centered at 0 with radius ε (0 < ε ≤ 1
2 ), with respect to the

Frobenius norm on Rq×r. Let D(0) = CH
(

K(0),R∞ (ε)
)

denote the convex-hull of the vertex K̂(0)

with the basis R∞ (ε). Let S (0)Ω = SΩ ∩D(0) and please note that S (0)Ω is compact (but generally not

convex). We wish to minimize a continuous function f
(
K̂
)

over the compact set SΩ ∩ B
(
K̂(0), h

)
.

Let K̂∗ denote a point in SΩ ∩ B
(
K̂(0), h

)
where a global minimum of f

(
K̂
)

is accepted. Obviously,
K̂∗ ∈ D(0), for some direction U(0), as above. When dealing with the H2-norm minimization, and
if U(0) =

[
U(0)

1 U(0)
2 U(0)

3

]
then, the directions will be constrained to have the form U(0)

3 =

mat
(

L
(C2B1)

T⊗ D1,2
vec (Z)

)
, in order that L(0) would have the form (6). We will also restrict V as we

have restricted U(0), in order that any element of L would have the structure (6).
The suggested Algorithm 1 goes as follows:
We start with a point K̂(0) ∈ int (SΩ), found by the Ray-Shooting algorithm [6]. Assuming

that K̂∗ ∈ D(0), the inner-loop (j = 1, . . . , n) uses the Ray-Shooting Method in order to find an
approximation of the global minimum of the function f

(
K̂
)

over S (0)Ω - the portion of SΩ bounded
in the cone D(0). The proof of convergence in probability of the inner-loop and its complexity can
be found in [6] (see also [7]). In the inner-loop, we choose a search direction by choosing a point
F in R∞ (ε) - the base of the cone D(0). Next, in the most inner-loop (k = 1, . . . , s) we scan the
ray K̂ (t) := (1− t) K̂(0) + tF and record the best controller on it. Repeating this sufficiently many
times, we reach K̂∗ (or an ε- neighborhood of it) with high probability, under the assumption that
K̂∗ ∈ D(0). In [8] it was shown that by taking h = r∞ and m =

⌈
e ·
√

2π`
⌉

iterations in the outer-loop

(where ` := qr), we have K̂∗ ∈ D(0) almost surely. Specifically, when ` ≥ 12, it was suggested
to take m = 2` and `× ` orthogonal matrix U =

[
u1 u2 · · · u`

]
, and to take the directions

U(0)
j = ±mat

(
uj
)

, j = 1, . . . , ` in the outer-loop.
The outer-loop (i = 1, . . . , m) is used instead of executing the Ray-Shooting algorithm again and

again, by taking K̂(best) as the new vertex of the search cone instead of K̂(0). The replacement of K̂(0)

can be avoided if r∞ is chosen sufficiently large. The replacement of K̂(0) by K̂(best) can be considered
as a heuristic step, which is made instead of running the Ray-Shooting algorithm many times in
order to generate "the best starting point", which is relevant only if we actually evaluate f

(
K̂
)

on
each such point and take the point with the best value as the best starting point. Since in any case,
we evaluate f

(
K̂
)

in the main algorithm, we could avoid the repeated execution of the Ray-Shooting
algorithm. The outer-loop is similar to what is done in the Hide-And-Seek algorithm (see [24,25]).
The convergence in probability of the Hide-And-Seek algorithm can be found in [26].
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Algorithm 1 Optimal PID controller randomized algorithm

Require: An algorithm for deciding Ω-stability and an algorithm for computing f
(
K̂
)
.

Input: K̂(0) such that Âc`

(
K̂(0)

)
is Ω-stable and I − K̂(0)

3 C2B2 is invertible (with the needed structure (6)
if H2-norm minimization is sought), ε > 0, r∞ > 0, h > 0 and integers m, n, s.
Output: K̂∗ that globally minimize f

(
K̂
)

(or within ε distance from a global minimum of f
(
K̂
)

) in
h-radius closed-ball centered at K̂(0).

1. K̂(best) ← K̂(0)

2. f (best) ← f
(

K̂(0)
)

3. i← 0
4. k← 1
5. while i ≤ m do
6. i← i + 1
7. choose U(0) such that

∥∥∥U(0)
∥∥∥

F
= 1, uniformly at random

8. set L(0) ← K̂(0) + h ·U(0)

9. for j = 1 to n do
10. choose F ∈ R∞ (ε) uniformly at random
11. for k = 1 to s do
12. t← k

s
13. K̂ (t)← (1− t) K̂(0) + tF
14. if K̂ (t) ∈ SΩ then

15. if f
(
K̂ (t)

)
< f (best) then

16. K̂(best) ← K̂ (t)
17. f (best) ← f

(
K̂ (t)

)
18. end if
19. end if
20. end for
21. end for
22. if i ≥ k

⌈
e ·
√

2π`
⌉

then

23. K̂(0) ← K̂(best)

24. k← k + 1
25. end if
26. end while
27. if I − K̂(best)

3 C2B2 is invertible then

28. return K̂(best), f (best)

29. else
30. return failure
31. end if

Remark 3. Please note that K̂(0) should satisfy the feasibility condition that I− K̂(0)
3 C2B2 is invertible, in order

to raise the probability that I − K̂(best)
3 C2B2 would be invertible. Indeed, one can execute the algorithm without

this condition, i.e., execute the algorithm from an infeasible point.
Note also that during the optimization in the main loop of Algorithm 1, we do not check this feasibility condition
and we may pass to a better point which might not be feasible, because such points might lead to a better feasible
points. This is made because the set of non-feasible points has measure 0 and thus, we should not be disturbed by
the possibility of temporarily stepping on infeasible points, during the search. The feasibility condition is checked
at the end of Algorithm 1 and experience with the algorithm shows that almost always we end up with a feasible
point, when we start from a feasible point (which is almost always the case, if K̂(0) was found).

5. Experimental Section

To synthesize LQR or H∞ optimal PID controller, we execute the Ray-Shooting algorithm ([6]) in
order to get a starting SOF K̂(0) such that the augmented system (1) is Ω-stable and I − K̂(0)

3 C2B2 is
invertible. Next, we apply Algorithm 1 in order to get K̂(best) from which the PID controller is derived,
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using (2). For the H2 optimal PID controller, we execute the Ray-Shooting algorithm, in order to get a
starting SOF K̂(0), as above. Next, we execute the algorithm from [7], in order to get a SOF K̂(1) with the
structure (6). This step is the most demanding step as can be seen from the following example. Finally,
we execute Algorithm 1 in order to get K̂(best) from which the PID controller is derived, using (2).

Example 1. For the AC1 system (taken from COMPleib—see [27–29]) with the following state-space model:

A =


0 0 1.132 0 −1
0 −0.0538 −0.1712 0 0.0705
0 0 0 1 0
0 0.0485 0 −0.8556 −1.013
0 −0.2909 0 1.0532 −0.6859

 ,

B1 =


0.03593 0 0.01672

0 0.00989 0
0 −0.07548 0
0 0 0.05635

0.00145 0 0.06743

 , B2 =


0 0 0

−0.12 1 0
0 0 0

4.419 0 −1.665
1.575 0 −0.0732


C1 =

[
0 0.707106781186547 0 0 0
0 0 0.707106781186547 0 0

]
,

and
D1,1 = 02×3

D1,2 =

[
0.707106781186547 0 0

0 0.707106781186547 0

]

C2 =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0


D2,1 = 03×3

with

σ (A) =


0

−0.780052457480417± 1.029636749384622i
−0.017597542519583± 0.182585375210158i

 ,

let the objective be to find a PID LQR-optimal controller, where the closed-loop eigenvalues should be in the
rectangular region defined by:

Ω = {z ∈ C |−1 ≤ < (z) ≤ −0.1, |= (z)| ≤ 1} .

With the following parameters for the algorithm: m = 100, n = 100, s = 100, h = r∞ = 100, ε = 10−16,
Q = I8, R = I2 we had the following feasible SOF

K̂(0) =
[

K̂(0)
1 K̂(0)

2 K̂(0)
3

]
,

where
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K̂(0)
1 =

 −1.139087350327457 −0.076805805847702 −1.175733971595813
0.175620269295905 1.249662743416654 −0.394592760970558
−2.524143751375688 −0.262506326222373 −3.380417685135832


K̂(0)

2 =

 −0.265188982290714 0.082432589634872 −0.236137372902669
0.106177753653144 0.443637620004996 −0.074457362520092
−0.527328403725350 0.200910957443737 −0.850599462623321


K̂(0)

3 =

 −1.120493844818183 0.190581999014316 −0.522738193473694
−0.036425300944087 −0.028600461083115 −0.183279009240151
−3.229623103192055 0.550761163041108 −2.205172558841497

 ,

found by the Ray-Shooting algorithm in CPU − time = 0.0001[sec] and with LQR functional value
fLQR

(
K̂(0)

)
= 16.746246825328360. Executing Algorithm 1, we had

K̂(best) =
[

K̂(best)
1 K̂(best)

2 K̂(best)
3

]
,

where

K̂(best)
1 =

 −1.085160433924800 −0.152380406023858 −1.111840435453025
0.173224251962231 1.253268146513151 −0.449756208653024
−2.518304745419560 −0.284285880826183 −3.437786815141788


K̂(best)

2 =

 −0.221989603556075 0.073112868340369 −0.241805447889791
0.119158793726812 0.403709017174812 −0.120711030008226
−0.541730211464951 0.187380061037601 −0.903873015737950


K̂(best)

3 =

 −1.068327578247724 0.146908957308029 −0.525373002842116
−0.006608329355743 0.015609869717001 −0.182159600265849
−3.166355434538844 0.515059657329335 −2.156140670934107

 ,

with fLQR

(
K̂(best)

)
= 13.601550793243616 (a 18.778512% relative improvement), in CPU − time =

76.343750[sec]. The resulting PID controller matrices are:

KP =

 −1.040671697032480 0.034045803431248 −1.158219284410088
0.177951420403750 1.273076937581805 −0.454684211704099
−2.362328186885230 0.369320416016725 −3.600390066086302


KI =

 −0.200613800205014 0.131015509566988 −0.255249027751546
0.121430088217771 0.409861485359054 −0.122139482935926
−0.466787102815339 0.390385480823640 −0.951005918753228


KD =

 −1.050500770135795 0.146612915752025 −0.542836776832826
−0.004714134766140 0.015578413703667 −0.184015220520444
−3.103855027173255 0.514021741975605 −2.217368288447396


and the resulting closed-loop eigenvalues are

σ
(

Âc`

(
K̂(best)

))
=



−0.915131493828863± 0.914610403731497i
−0.881963764205315± 0.191516911259354i

−0.730009436848610
−0.616780364831122

−0.329413066341451± 0.071827905231358i


.
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Example 2. For the same system as in Example 1 with the objective to find a PID H∞-norm optimal controller,
where the closed-loop eigenvalues should be in the same rectangular region Ω, starting from the same K̂(0) with
fH∞

(
K̂(0)

)
= 0.095033139822324, we had

K̂(best) =
[

K̂(best)
1 K̂(best)

2 K̂(best)
3

]
,

where

K̂(best)
1 =

 −1.087304300685670 −0.045931838436646 −1.085574892719301
0.133605778924987 1.184070254573485 −0.359343489961314
−2.678924736751655 −0.264961819769927 −3.490264530663762


K̂(best)

2 =

 −0.275424882288615 0.138303327101369 −0.075398358659212
0.090631547438998 0.331640807629037 −0.054696779167659
−0.516085927047396 0.184332519865895 −0.733373655058220


K̂(best)

3 =

 −1.165473798084745 0.076978746950025 −0.595094516639020
−0.052626935909114 −0.061681173045286 −0.250098357975546
−3.316496450850004 0.694282662038967 −2.314168285879468

 ,

with fH∞

(
K̂(best)

)
= 0.072175978563672 (a 24.051779% relative improvement), in CPU − time = 126[sec].

The resulting PID controller matrices are:

KP =

 −1.068321790034687 0.039576561177247 −1.102041006775961
0.118395560901336 1.115554481033627 −0.346149598520451
−2.507718675999537 0.506251036541779 −3.638774839724999


KI =

 −0.266534452864325 0.160949047585517 −0.078679654648945
0.083507865416445 0.313495349833722 −0.052067557547737
−0.435901834009705 0.388577609900052 −0.762968147108973


KD =

 −1.159203620514524 0.071881042424526 −0.607938725615309
−0.057651074688413 −0.057596508025015 −0.239806609825754
−3.259944795394558 0.648305713745055 −2.430012099310619


and the resulting closed-loop eigenvalues are

σ
(

Âc`

(
K̂(best)

))
=


−0.965762603991179± 0.955842860416991i
−0.507539612520429± 0.539780823728534i
−0.929257645094484± 0.106820410747074i
−0.402381802562664± 0.042181153576293i

 .

Example 3. For the system from Example 1, with the same Ω and the same K̂(0), the algorithm from [7] failed
to find structured SOF K̂(1). Indeed, from another starting SOF, the above-mentioned algorithm succeeded to
find a structured SOF. For

K̂(0) =
[

K̂(0)
1 K̂(0)

2 K̂(0)
3

]
,

where
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K̂(0)
1 =

 −0.001662379279286 −0.330320315815391 −0.204742383931633
0.107146675564809 0.994156785847185 0.016601261567192
−0.352905474519842 −0.942806073864177 0.096372856789800


K̂(0)

2 =

 0.021994917878383 −0.051106382240571 0.041069916425995
0.041186023579647 0.283840911655084 0.016793398034650
0.000278730967043 −0.136566568491544 0.140207270149126


K̂(0)

3 =

 −0.066971504986511 0.041204949529465 0.574933673498160
−0.152954829804652 −0.044219575277023 0.285308855216965
−1.286404253117917 0.132606565745259 1.514386124380330

 ,

found by the Ray-Shooting algorithm from [6], in CPU − time = 0.0001[sec], applying the algorithm from [7]
we have found the structured SOF

K̂(1) =
[

K̂(1)
1 K̂(1)

2 K̂(1)
3

]
,

where

K̂(1)
1 =

 −0.001662379279286 −0.330320315815391 −0.204742383931633
0.107146675564809 0.994156785847185 0.016601261567192
−0.352905474519842 −0.942806073864177 0.096372856789800


K̂(1)

2 =

 0.021994917878383 −0.051106382240571 0.041069916425995
0.041186023579647 0.283840911655084 0.016793398034650
0.000278730967043 −0.136566568491544 0.140207270149126


K̂(1)

3 =

 −0.000000000000001 1.630868948596140 0.213689638336193
−0.000000000000003 0.516222895350342 0.067639698397123
−3.828454587894386 1.446059480160095 0.287354792999600

 ,

in CPU − time = 2126.84375[sec] = 35.447395[min], with objective-function value fH2

(
K̂(1)

)
=

0.364564164927770 (note the small values of the 1, 1 and the 2, 1 entries of K̂(1)
3 obtained from the structural

constraints). Finally, executing Algorithm 1 with K̂(1) as a starting SOF, we have found

K̂(best) =
[

K̂(best)
1 K̂(best)

2 K̂(best)
3

]
,

where

K̂(best)
1 =

 0.076825955660614 −0.288411611380877 −0.080218436303677
0.092501965527188 1.046837016022694 0.126682619794964
−0.341825773843233 −0.939476093514249 −0.014192822579841


K̂(best)

2 =

 0.054840679045778 −0.080221174899522 0.114230924697635
0.052402918799798 0.301314353311879 −0.093055199101202
−0.061395620772426 −0.248330164720565 0.198088337294925


K̂(best)

3 =

 −0.000000000000001 1.623084863796692 0.212669704596573
−0.000000000000003 0.692852565144541 0.090783146121880
−3.950508497484917 1.418275521031274 −0.019182452364697

 ,
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with fH2

(
K̂(best)

)
= 0.212807638848134 (a 41.626835% relative improvement), in CPU − time =

99.890625[sec]. The resulting PID controller matrices are:

KP =

 0.346143328950049 3.208734600167995 0.360572630013263
0.207466522885631 2.539677456718627 0.314844821170003
−0.106492276227244 2.116381906236221 0.370976920044842


KI =

 0.203018492396510 0.925289371971877 −0.231015500114683
0.115656159814819 0.730540561515251 −0.240431886773992
0.068084340579495 0.630299798860383 −0.103593086737016


KD =

 −0.000000000000010 3.233767462898737 0.423714364176847
−0.000000000000007 1.380410927195360 0.180872602940673
−3.950508497484925 2.825713760036134 0.165231487536706


and the resulting closed-loop eigenvalues are

σ
(

Âc`

(
K̂(best)

))
=



−0.350618286842131± 0.990354187385021i
−0.963555748849909± 0.645732021985088i
−0.127768318435090± 0.216451742947409i

−0.159486067934620
−0.462031919768989


.

Please note that

D̂1,1 = D1,1 − D1,2K̂(1)
3 C2B1

= 10−16 ·
[

0.254063466480327 0.173472347597681 0.118228253814391
0.762190399440980 −0.273218947466347 0.354684761443172

]

and
D̂1,1 = D1,1 − D1,2K̂(best)

3 C2B1

= 10−16 ·
[

0.254063466480326 0.156125112837913 0.118228253814391
0.762190399440979 −0.277555756156289 0.354684761443172

]
which we treat numerically as 0.

6. Concluding Remarks

In this article, a randomized method for synthesizing PID optimal controllers (for the standard
LQR, H∞ and H2 optimization problems) for coupled MIMO systems was introduced. The method is
based on a (direct) reduction of the problem to the problem of SOF (occasionally with some structure).
The randomization circumvents the need to solve any SDP or BMI programs. Therefore, the method
can be applied to more involved PID controller design that can be formulated as structured SOF
problems, e.g., the design of 2-DOF-PID controllers and robust and gain-scheduled PID controllers for
Linear Parameter Varying (LPV) systems (see [13]), without the need to solve any BMI programs and
thus can be applied to larger systems. Moreover, the method has a proof of convergence (in probability)
to a global optimum of the objective function.

Conflicts of Interest: The author declares no conflict of interest.



Algorithms 2018, 11, 81 14 of 15

References

1. Visioli, A. Research Trends for PID Controllers. Acta Polytech. 2012, 52, 144–150.
2. Suresh, A.; Meena, S.; Chitra, K. Controller design for mimo process using optimization algorithm. Int. J.

Pure Appl. Math. 2017, 117, 163–170.
3. Zheng, F.; Wang, Q.G.; Lee, T.H. On the design of multivariable PID controllers via LMI approach. Automatica

2002, 38, 517–526. [CrossRef]
4. Saeki, M. Fixed structure PID controller design for standard H∞ control problem. Automatica 2006, 42, 93–100.

[CrossRef]
5. Boyd S.; Hast M.; Åström, K.J. MIMO PID tuning via iterated LMI restriction. Int. J. Robust Nonlinear Control

2016, 26, 1718–1731. [CrossRef]
6. Peretz, Y. A randomized approximation algorithm for the minimal-norm static-output-feedback problem.

Automatica 2016, 63, 221–234. [CrossRef]
7. Peretz, Y. On applications of the Ray-Shooting method for structured and structured-sparse static-output-feedbacks.

Int. J. Syst. Sci. 2017, 48, 1902–1913. [CrossRef]
8. Peretz, Y. On application of the Ray-Shooting Method for LQR via static-output-feedback. Algorithms 2018,

11, 8. [CrossRef]
9. Lin, C.; Wang, Q.G.; Lee, T.H. An improvement on multivariable PID controller design via iterative LMI

approach. Automatica 2004, 40, 519–525. [CrossRef]
10. Cao, Y.Y.; Lam, J.; Sun, Y.X. Static Output Feedback Stabilization: An ILMI Approch. Automatica 1998,

34, 1641–1645. [CrossRef]
11. Cao, Y.Y.; Sun, Y.X.; Lam, J. Simultaneous Stabilization via Static Output Feedback and State Feedback.

IEEE Trans. Autom. Control 1999, 44, 1277–1282.
12. Rosinová, D.; Veselý, V. Robust Static output feedback for discrete-time systems—LMI approach.

Periodica Polytech. Ser. El. Eng. 2004, 48, 151–163.
13. Bianchi, F.D.; Mantz, R.J.; Christiansen, C.F. Multivariable PID control with set-point weighting via BMI

optimisation. Automatica 2008, 44, 472–478. [CrossRef]
14. Blondel, V.; Tsitsiklis, J.N. NP-hardness of some linear control design problems. SIAM J. Control Optim. 1997,

35, 2118–2127. [CrossRef]
15. Mesbahi, M. A semi-definite programming solution of the least order dynamic output feedback synthesis

problem. In Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA,
7–10 December 1999; Volume 2, pp. 1851–1856.

16. Zhang, H.; Shi, Y.; Mehr, A.S. Robust Static Output Feedback Control and Remote PID Design for Networked
Motor Systems. IEEE Trans. Ind. Electron. 2011, 58, 5396–5405. [CrossRef]

17. Borges, R.A.; Calliero, T.R.; Oliveira, C.L.F.; Peres, P.L.D. Improved conditions for reduced-order H∞ filter
design as a static output feedback problem. In Proceedings of the American Control Conference 2011,
San-Francisco, CA, USA, 29 June–1 July 2011.

18. Nemirovskii, A. Several NP-hard problems arising in robust stability analysis. Math. Control Signal Syst.
1993, 6, 99–105. [CrossRef]

19. Fu, M. Pole placement via static output feedback is NP-hard. IEEE Trans. Autom. Control. 2004, 49, 855–857.
[CrossRef]

20. Sanchez Peña, R.; Sznaier, M. Robust Systems, Theory and Applications; Wiley: New York, NY, USA, 1998.
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