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Abstract: Functional Near InfraRed Spectroscopy (fNIRS) connectivity analysis is often performed
using the measured oxy-haemoglobin (HbO2) signal, while the deoxy-haemoglobin (HHb) is largely
ignored. The in-common information of the connectivity networks of both HbO2 and HHb is not
regularly reported, or worse, assumed to be similar. Here we describe a methodology that allows
the estimation of the symmetry between the functional connectivity (FC) networks of HbO2 and
HHb and propose a differential symmetry index (DSI) indicative of the in-common physiological
information. Our hypothesis is that the symmetry between FC networks associated with HbO2 and
HHb is above what should be expected from random networks. FC analysis was done in fNIRS
data collected from six freely-moving healthy volunteers over 16 locations on the prefrontal cortex
during a real-world task in an out-of-the-lab environment. In addition, systemic data including
breathing rate (BR) and heart rate (HR) were also synchronously collected and used within the FC
analysis. FC networks for HbO2 and HHb were established independently using a Bayesian networks
analysis. The DSI between both haemoglobin (Hb) networks with and without systemic influence
was calculated. The relationship between the symmetry of HbO2 and HHb networks, including the
segregational and integrational characteristics of the networks (modularity and global efficiency
respectively) were further described. Consideration of systemic information increases the path
lengths of the connectivity networks by 3%. Sparse networks exhibited higher asymmetry than dense
networks. Importantly, our experimental connectivity networks symmetry between HbO2 and HHb
departs from random (t-test: t(509) = 26.39, p < 0.0001). The DSI distribution suggests a threshold of
0.2 to decide whether both HbO2 and HHb FC networks ought to be studied. For sparse FC networks,
analysis of both haemoglobin species is strongly recommended. Our DSI can provide a quantifiable
guideline for deciding whether to proceed with single or both Hb networks in FC analysis.

Keywords: fNIRS; functional connectivity; symmetry; prefrontal cortex

1. Introduction

Diffuse near-infrared light can be used to interrogate brain haemodynamics and oxygenation
non-invasively [1,2]. By measuring the light attenuation changes of the reflected light from the head,
functional near infrared spectroscopy (fNIRS) quantifies the relative changes in the brain tissue
concentrations of oxygenated (∆[HbO2]) and deoxygenated (∆[HHb]) haemoglobin in response
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to neuronal activation in the cerebral cortex. The bivariate nature of the paired haemoglobin
reconstruction conveys rich information about the brain haemodynamics and oxygenation but increases
the complexity of the analysis.

Brain connectivity expresses patterns of co-activity among brain regions and it is often investigated
following two major types of relations, (i) associative or simply functional connectivity (FC);
(ii) causal referred to as effective connectivity [3,4]. It is accepted that fNIRS is sensitive to the
haemodynamic response subsequent to the neuronal activity. Ignoring the transient inverse response
phase, the neuronal activity is inferred from the concomitant increase in HbO2 and decrease in
HHb [1,5], consistent with our current understanding of the neurovascular coupling [6,7]. Most
approaches for the analysis of connectivity yield a graph’s binary adjacency matrix characterizing the
connectivity network. These approaches have two inherent shortcomings: (i) the binarization depends
on a threshold that severely affects the graph density with important implications for interpretation [8];
(ii) a step to decide which haemoglobin (Hb) signal is to be used for subsequent analysis or whether
analysing both Hb species is needed. Many researchers have studied different aspects of FC with
fNIRS [9–15]; however, the analysis of connectivity maps is often done only using the fNIRS HbO2 time
courses. It is important to understand whether during the analysis both Hb species time courses are
relevant, or if either provide analogous information and hence univariate analysis of connectivity may
sufficient. In fNIRS connectivity analysis, an important decision is to opt for one of the haemoglobin
species to generate the connectivity network of interest, whether the HbO2 or HHb. A part of the
scientific community favours the connectivity networks derived from the HbO2 signal due to its higher
signal-to-noise (SNR) ratio. Another part favours an analysis based on the HHb signal arguing its
higher specificity to activity and higher robustness to physiological contaminations [16]. The rest of
the community opts either for considering two univariate analysis or a true bivariate analysis [17].

A critical evaluation has not yet been performed on whether the connectivity network revealed
by either haemoglobin species are equivalent - and thus a univariate analysis is enough—or not—and
thus bivariate analysis should be employed considering both Hb species. This issue has not been
investigated yet, as it might not be well understood what kind of information on brain connectivity is
shared between the two Hb connectivity networks and how to quantify such information. Considering
that HbO2 and HHb often exhibit highly anticorrelated patterns during brain activation, one might
expect a strong match between the connectivity graphs generated from either signal. However, this is
not always the case. For instance, classical reconstruction methods based on inverting the modified
Beer-Lambert law introduce cross-talk between the two signals species [6], further artifactually
supporting the univariate argument of equivalent results. In addition, these fNIRS haemodynamic
signals have notable differences in their contribution from factors such as systemic physiology [18–20].
When two brain regions are co-active, this may conceal any substantial differences in the HbO2 and
HHb network structures. Differences in structural connections of FC networks can be described
quantitatively by simple enough methods such as the Jaccard index (Ji). Nevertheless, the Ji is sensitive
to the density of links in each network, which can lead to suggest two networks to be symmetric
only because the number of connections is high. The FC analysis with fNIRS has mostly focused on
describing and understanding the cortical connections within the normal healthy brain. However,
when the connectivity analysis is expanded to the diseased brain, there can be various pathological
conditions that involve the alteration of neurovascular coupling mechanisms (e.g., Alzheimer’s disease
or stroke) and thus differences in the dynamics and in the connectivity networks of HbO2 and HHb
might occur. In addition, having now the capacity to monitor functional brain activity on freely moving
people in the real-world through wearable fNIRS systems, bigger changes in systemic physiology might
occur. Current investigations have expanded the research on more complex realistic settings which
consider, for example, inter-personal interactions [21,22]. Therefore, the analysis of data recorded in
such ecologically-valid settings might require further consideration of which haemoglobin signal is
the best indicator of FC due to differences in systemic interferences between the signals.
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The amount of in-common information between HbO2 and HHb species has been estimated
mainly as a complementary instead of a guiding task for the connectivity analysis. Correlations
between the BOLD signal and the haemoglobin species hinted a latent incongruence between HbO2

and HHb responses [23] with Strangman et al. [24] suggesting to address the issue prior the analysis.
Wolf et al. [25] found different symmetric patterns across brain areas; for instance, while in the visual
cortex the HbO2 and HHb exhibited symmetry, in the motor cortex such symmetry was not found.
These asymmetries may also occur across frequency bands [26]. More importantly, such asymmetry
may substantially alter the FC analysis itself, for instance using during a independent component
analysis (ICA) when analysing resting state connectivity [12] as ICA-based analysis is capable of
removing certain types of noise and artefacts [27]. Despite these early studies, more studies are needed
regarding the understanding of the asymmetry/symmetry between Hb species. There are very few
studies that investigated the symmetry of Hb species prior to the FC analysis and none has studied the
symmetry directly from the Hb connectivity networks. However, in the context of FC networks, we
emphasise that any symmetry analysis metric should take into account the structural features of these
networks. In this paper, our goal is to quantify differences (if any) between the FC networks retrieved
from the analysis based on each Hb species, both at baseline and during task-evoked responses,
in order to understand how these two Hb derived networks are related. To achieve this, we describe
a new metric for the quantification of the symmetry between the FC networks of HbO2 versus the
HHb. In addition, we introduce FC analysis between fNIRS signals and systemic variables, allowing
for the first time an analysis approach that takes into consideration systemic driven fNIRS changes.
We derived a set of connectivity networks for both haemoglobin species complicated functional study
in freely moving participants in an ecological situation. We select an out-of-lab situation due to the
induced walk-related systemic changes whereby the observed response would be affected and therefore
also the expected symmetry values. In this sense, we hypothesize that in healthy subjects during
certain brain functional experiments these non-neuronal confounding factors disproportionately affect
the structure of the connectivity networks causing a decrease in their symmetry. Finally, we propose
a novel index to quantify the extent of symmetry between Hb-derived connectivity networks; and
further suggest a threshold which can aid in the decision of opting for one Hb signal over the other
or either keeping both. The decision of opting for one signal over the other or either keeping both
has important implications for interpretation. The analysis based on incomplete brain networks
information could lead to deceptive inference. For instance, as the different Hb species FC networks
depart from symmetry, their associated connectivity graph will consequently be dissimilar. Reducing
connectivity analysis to a single Hb species under disparate responses will pose a greater risk for
misinterpretation. Also, it can be argued that upon showing symmetry or asymmetry, this may justify
univariate analysis saving otherwise mandatory bivariate FC connectivity analysis and to draw wrong
conclusions when e.g., predicting whether a person is a healthy control or a patient [28,29].

2. Materials and Methods

2.1. Experimental Protocol

For this research, we used data from a study originally presented in [30]. In brief, the study
investigated the role of prefrontal cortex during a prospective memory task in an ecological setting.
Prospective memory is defined as the ability to remember to carry out delayed intentions [31]. During
prospective memory tasks, 6 participants were asked to respond to an infrequent cue e.g., a familiar
face (social) or a parking meter (non-social), while performing another demanding task within the
experimental area (counting certain items such as the number of signs containing the word “Queen”
or the number of unobstructed stairways, or the number of doorbells, etc.) known as the ongoing
(OG) task. The protocol included: (i) two Rest conditions (i.e., counting the number of Os on a piece of
paper while the participant is standing stationary, and walking a short distance doing nothing else);
(ii) a Baseline (BL) condition (i.e., the experimenter showing the experimental area to the participant);
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(iii) two OG-only conditions (i.e., walking around the streets counting certain items without knowledge
of any other instruction) were included one before and one after the prospective memory tasks. The first
OG task is defined as ‘uncontaminated’ as participants do not have the representation of the delayed
intention in their mind and have not encountered the prospective memory cues yet. The second OG
task is called ‘contaminated’ (OGc) as participants have already performed the prospective memory
task and the representation of pre-formed intentions can remain; (iv) a social and non-social prospective
memory condition. The prospective memory tasks consisted in a social (SocPM; performing the OG
task while responding to social cues, e.g., fist bumping an experimenter) and non-social (NonSocPM;
performing the OG task while responding to non-social cues, e.g., fist bump parking meters). The Rest
conditions were repeated in opposite order at the end of the experimental session. The tasks were
carried out at self-pace. Figure 1a shows the different activities during the conditions.

Figure 1. (a) Examples of the baseline, ongoing, social prospective memory, non-social prospective
memory, and ongoing contaminated conditions during the experiment; (b) functional near infrared
spectroscopy (fNIRS) channels distribution.

2.2. Data Acquisition and Processing

Changes in prefrontal cortex haemoglobin responses were monitored by using a Wearable Optical
Topography (WOT, Hitachi High-technologies Corporation, Tokyo, Japan) fNIRS system on 6 freely
moving healthy adults. The fNIRS system integrates 6 light sources (705 nm and 830 nm) and
6 detectors arranged in an alternating geometry and creating 16 measurements channels (Figure 1b),
with an inter-optode separation of 3 cm. The WOT system operates at a sampling frequency of 5 Hz.
The headset covers the dorsolateral and rostral prefrontal cortex (Figure 1b). The changes in heart
rate and breathing rate were simultaneously recorded using a wearable monitoring belt (Bioharness,
Zephyr Technology, Annapolis, MD, USA). Heart rate and breathing rate were sampled at 250 Hz
and 25 Hz respectively, and internally averaged by the device to provide output data at 1 Hz. Three
cameras were used to record the entire experimental session and to recover the start and end of each
condition. All the recordings were synchronised.

Relative changes in HbO2 and HHb from an arbitrary zero baseline at the beginning of the
measurement period were calculated by the fNIRS system processing unit [32]. Using the modified
Beer-Lambert law the concentration values were calculated and expressed in molar concentrations
(mmol/L) multiplied by the path length (mm) as they are not corrected for the optical path length.
The processing included down-sampling to 1 Hz, and motion artifacts identification and correction
was performed through a wavelet-based method [33]. Physiological noise reduction was achieved by
using a band-pass filter (3rd order Butterworth band-pass filter, 0.008–0.2 Hz) to remove slow trends
and physiological noise (e.g., respiration). The general pipeline is shown in Figure 2.
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Figure 2. Preprocessing flowchart. fNIRS measurements were acquired by using a wearable optical
topography fNIRS system. Then, the haemoglobin (Hb) signals were reconstructed and preprocessed,
and the systemic information was added. A set of connectivity networks were determined by the
PC [34] algorithm by using the implementation in pcalg R package [35]. Finally, the symmetry between
functional connectivity networks and global efficiency and modularity across networks were computed.

2.3. Functional Connectivity Analysis

Often, brain connectivity investigations are aimed to draw inferences from a cohort of participants
at group-level. For a group-level analysis, three typical approaches are: (i) an averaged representation
typically called virtual-typical-subject (VTS) [36–38]; (ii) the individual-structure (IC); (iii) the
common-structure (CS). The VTS representation uses an averaged-data version of the cohort, whereby
a model is learned. The IS approach considers a single model for each subject, and, after a sort of model
marginalization generates a single model with coinciding patterns among them. For the CS approach
a unique model is learned (as in VTS). However, the set of individual parameters are preserved
for each subject. Our aim is to analyse how the contribution derived from systemic factors affects
the asymmetry between HbO2 and HHb connectivity networks. In order to articulate our results
(see Section 3), we opt for a group-level analysis by using a VTS representation.

Connectivity networks were generated for each Hb signal and each condition using a Bayesian
network (BN) [39]. Bayesian networks were previously used for the investigation of brain connectivity
in studies such as [36–38,40–45]. Formally, a BN is a pair <G(V, E), θ> for encoding the structure or
skeleton G(V, E) and the parametrization of the network θ. The structure G(V, E) is a directed acyclic
graph conformed to a set of nodes (V) and links between them (E). For our purpose, the sets V and E
represent the set of brain regions (channels measurements) and the functional associations between
them, respectively. The BNs framework determines the connectivity between pairs of observed nodes
(fNIRS channels measurements) by examining the probabilistic independence relationships between
them. Statistical independence tests are carried out so that the links in a connectivity network can
be established. There are many algorithms described in the literature for automatically learning of
the structure G which either consider the directionality of the links or not. In our case, we have used
the PC algorithm [34] (PC stands for the initials of its creators Peter Spirtes and Clark Glymour) as
we are dealing with functional connectivity (FC), and thus we only need the discovery of statistical
associations between fNIRS channels regardless of the direction. Hence, we only considered the first
phase of the PC algorithm that recovers the skeleton (undirected graph) of the BN.

In order to do so, each processed fNIRS time series was split according to experimental conditions
into blocks for baseline (BS), ongoing (OG), social prospective memory (SocPM), non-social prospective
memory (NonSocPM), and ongoing contaminated (OGc). The block-splitting task was done using
the start and end timestamps obtained from the analysis of video recordings. We then obtained an
averaged block for every condition according to the VTS group-level analysis. Four connectivity
networks are retrieved for every condition corresponding to the two-haemoglobin species (HbO2,
HHb) and the inclusion or not of systemic information—heart rate (HR) and breathing rate (BR)—as
nodes in the network.
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To contextualise our findings with relevant features of the recovered FC networks, we computed
the global efficiency (GE) and modularity (MOD), which are summary measures of functional
integration and functional segregation in complex networks analysis, respectively. GE measures
how efficiently information is exchanged over the network [46]. GE values are in the [0, 1] range.
Since GE is defined as the average of the inverse shortest distance between nodes, disconnected nodes
have infinity distance, producing then 0 efficiency. On the contrary, connected nodes by one-edge
path have 1 efficiency, and the global efficiency is the average of such efficiencies for all pair of nodes.
MOD estimates the extent of community structure of a network, where the community structure is an
arrangement of the network in which groups of nodes exhibit high intra-group connections and low
inter-group connections [47]. The MOD values are in the [0, 1] range, where 0 means that the number
of intra-group edges is no better than a random division, and values approaching 1 indicating strong
community structure. However, in practice values typically fall in the range [0.3, 0.7] and higher values
are rare [48]. For this work, we apply a group-level analysis by obtaining a set of FC networks for the
VTS representation, furthermore we obtained the summary measures GE and MOD to characterise
patterns of such networks.

2.4. Quantification of Network Symmetry

Networks similarity was quantified in terms of the symmetry between the connectivity matrices
(graph adjacency matrices) between networks, compared using the Jaccard index (Ji) [49]. The Ji of
two connectivity matrices A and B is defined as:

Ji(A, B) =
|A∩ B|
|A∪ B| (1)

where |•| indicates the cardinality of the set. The Ji yields values in the range between 0 and 1, ranging
from totally dissimilar to fully identical connectivity matrices, respectively. The Ji is a convenient metric
to study the symmetry of functional networks because it ignores absent connections between graph
nodes. Nevertheless, the symmetry is affected by the networks density. In general, comparing two
densely connected networks, functional networks will result in a large Ji, whilst comparing two sparse
networks will likely result in a low Ji. This is further discussed in Section 3.1. This is a mathematical
artefact with no relation to physiology which should be discounted before interpreting symmetry.
To separate the mathematical effect of the Ji index from the pure physiological effect, we propose a
differential symmetry index (DSI) which discounts baseline Ji values expected for random networks.

Let DHbO2 , DHHb be the network density for the HbO2 and HHb networks respectively. A graph
density is calculated according to Equation (2):

DHbX =
2`

n(n− 1)
(2)

with ` being the number of links, n the number of nodes, and X represents one of the Hb species.
Let f(·) be the chosen symmetry function (Ji in our case). Then the DSI is presented in Equation (3).

DSI =
∣∣∣f(DHbO2 , DHHb)− f̂ (DHbO2 , DHHb)

∣∣∣, (3)

where f̂ (·) is the expected baseline symmetry. The expected baseline symmetry can be obtained
from an analytical model describing the symmetry values produced by random connectivity
networks. f̂ (DHbO2 , DHHb) can be approximated by multiple linear regression, radial basis functions
approximation or interpolation methods. We choose a bilinear interpolation because of its
computational simplicity. Using bilinear interpolation, f̂ (DHbO2 , DHHb) is approximated according to
Equation (4):

f̂ (DHbO2 , DHHb) ≈ a0 + a1DHbO2 + a2DHHb + a3(DHbO2 · DHHb), (4)
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where the model coefficients a = (a0, . . . , a3) are found by solving the linear system in Equation (5).
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, (5)

where, Dm
HbO2

, Dm
HHb are the connection densities of the m-th FC network from oxy-haemoglobin

(HbO2) and deoxy-haemoglobin (HHb), respectively. Note that the DSI represents the residuals of a
symmetry model for random networks discounting the mathematical baseline and leaving what is
assumed to be the physiological contribution. The DSI has been implemented in Matlab 2017b and can
be downloaded at https://github.com/multimodalspectroscopy/DSI.git.

The proposed DSI quantifies the similarity with respect to the structure between connectivity
networks and has been constructed without knowledge of the active channels. The DSI can be applied
regardless the experimental design, as it does not rely on specific assumptions regarding the origin of
the FC networks neither the chosen paradigm (block-design or event-related).

3. Results

3.1. Network Symmetry Analysis

Understanding brain networks must be done with respect to random networks. For this reason,
we simulated synthetic random networks as follows: pairs of random networks representative of
the Hb species were generated starting with one random link (`1 = `2 = 1) each one. Because our
experimental dataset has 16 channels we fixed the random networks size to sixteen nodes (n = 16).
Henceforth, we continue increasing their density by randomly adding one link at time until both
networks are fully connected (`1 = `2 = L with L = (n × (n − 1))/2). For each pair of edges cardinality
<`1, `2> we repeated the process 50 times. Then, the connection densities and their associated Ji were
calculated for every scenario. Finally, the mean Ji across the 50 repetitions was calculated.

Figure 3 shows the relationship between the density of networks and their average random
Ji symmetry. Also, the symmetries between the HbO2 and HHb experimental networks retrieved
from the six participants with systemic information is projected over the expected symmetry space
in Figure 3. The experimental functional connectivity (FC) networks exhibit low densities but with
comparatively higher symmetry than would be expected from random behaviour. Then, we can expect
small absolute changes in both symmetry and density values when systemic variables are added.
The symmetry of experimental FC networks (M = 0.2, SD = 0.07) significantly differ from the symmetry
of the random networks pairs (M = 0.09, SD = 0.02) (t-test: t(509) = 26.39, p < 0.0001 assuming equal
variances; C.I. 95% for the Difference (0.11,0.13)) (see Figure 3 blue rectangle).

Focusing on the symmetry values due to physiological changes, we apply the DSI to the FC
networks derived from Hb species as per Equation (3). First, from the Ji values of the random FC
networks pairs, the a coefficients of the bilinear interpolation in Equation (4) to approximate f̂ (·) were
computed (a = (0.0768, −0.0484, −0.0485, 1.0512)). The mean Ji based symmetry from pairs of random
networks and the approximated bilinear model are presented in Figure 4.

Figure 5a shows the separation of the Ji based networks symmetry between the experimental
and the expected baseline random values described by the bilinear model. Figure 5b shows the DSI
values for fNIRS network. The distribution of the DSI values (residual differences between observed
symmetry and the expected baseline counterpart) suggests that most fNIRS FC networks exhibit
symmetry below DSI < 0.2. This suggests an empirical threshold for deciding when to proceed with
connectivity analysis across both Hb; networks pairs with DSI < 0.2 could be considered as asymmetric,
and the FC analysis including the two Hb-derived networks is encouraged.

https://github.com/multimodalspectroscopy/DSI.git
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Figure 3. Jaccard symmetry response from experimental and random connectivity networks pairs
varying density. The x-axis represents HbO2 density and the y-axis represents HHb density. Color
encodes the extent of symmetry. The background symmetry field corresponds to values expected
for random synthetic networks from disconnected to complete connected ([0−1]) in both networks.
Triangles correspond to experimental functional connectivity (FC) networks pairs from the six-subjects
across conditions. High-density networks are those with a large number of connections (` ≈ L).
The results for high symmetry values are observed only for high-density random networks pairs but
not for our experimental fNIRS FC networks pairs.

Figure 4. Symmetry space from random networks. Surfaces obtained from the Ji values (a) and the
approximation from the bilinear model (b). The graphical comparison and the differences between
both surfaces (c). Higher order interpolation models can yield a better approximation with increasing
degree of complexity.

Figure 5. (a) Projection of the symmetry values of fNIRS FC networks obtained by Jaccard index (blue
dots) over the random baseline approximated by a bilinear model (green surface); (b) differential
symmetry index (DSI) values grouped by condition and its distribution (left margin histogram).
A threshold (grey dashed line) derived from the distribution of DSI values is also shown.
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3.2. Integrational Analysis of Connectivity

The networks in Figure 6 shows the links existing in the corresponding pair of HbO2 and HHb
networks for each condition. Also, Figure 6 depicts the FC networks obtained with and without the
systemic factors (heart rate and breathing rate). Regarding in-common links, the inclusion of systemic
variables increases the number of such relations during BL, OG, and NonSocPM conditions by 4, 8, and
2 increments respectively. The OGc condition remains unchanged and SocPM condition diminished in
2 links. More connections were found in the PM blocks (Figure 6c,d,h,i) in respect to the OG blocks
(Figure 6b,g,e,j). These connections are more observed between the two hemispheres and, some of
them, at the left and right lateral prefrontal cortex (PFC). Also, Figure 6b,g shows a set of connections
between the close channels 13–14, 15–16, 2–5, 7–8, 9–12 within the same region. On the other hand,
connections between corresponding channels (Ch. 2–14, 4–16, 3–10, 7–13) in the two lateral PFC were
also found (Figure 6d,i). This could be caused by a higher involvement of lateral PFC, which has
been observed in prospective memory tasks and a major involvement of medial PFC is related to OG
activities [31]. Table 1 summarises the changes in density and symmetry values from the combined
networks presented in Figure 6. The five FC networks exhibits an increase in density of 2%, 3%, 2%, 2%
and 5% for BL, OG, SocPM, NonSocPM, and OGc conditions respectively. In terms of Jaccard symmetry,
BL, OG, and NonSocPM conditions showed increasing values of 4%, 8%, and 1% respectively while
the SocPM and OGc conditions decreased by 4% and 3% respectively. Unlike random networks, fNIRS
FC networks tends to have absolute low values of symmetry. Thus, the addition of the systemic
information produced small changes in both symmetry and density.

Figure 6. Combined HbO2-HHb functional connectivity networks recovered from a virtual-typical-
subject. Top (a–e) and bottom (f–j) rows show the networks without and with systemic variables
information respectively. From left to right, columns representing the conditions: baseline (a,f),
ongoing (b,g), social prospective memory (c,h), non-social prospective memory (d,i), and ongoing
contaminated (e,j). Functional links determined from HbO2 and HHb are shown in solid red and
dashed blue respectively and in-common links in bold magenta.

Finally, Figure 7 presents the GE and MOD with respect to density. In general, a contrapositive
behaviour for SocPM and BL networks was observed (greater values of GE and smaller values of
MOD). This trend is somewhat expected; fully connected networks have maximum GE and minimal
modularity, and in the opposite extreme, strictly modular networks have little efficiency. More
specifically for GE, a positive trend is observed and roughly the BL-OG-OGc-NonSocPM-SocPM order
can be recognised. On the other hand, for MOD results a negative trend can be seen with almost
the opposite order. Also, more than the half of the HbO2 networks were found to be over the mean
MOD value.
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Table 1. Density, Jaccard and DSI symmetry changes with/without systemic information from the
virtual-typical-subject. Experimental connectivity networks from baseline, ongoing, social prospective
memory, non-social prospective memory, and ongoing contaminated conditions.

FC Network Density Jaccard Symmetry DSI Symmetry

Condition With
Systemic

Without
Systemic

With
Systemic

Without
Systemic

With
Systemic

Without
Systemic

Baseline (BL) 0.22 ↑ 0.20 0.24 ↑ 0.20 0.15 ↑ 0.11

Ongoing (OG) 0.25 ↑ 0.22 0.26 ↑ 0.18 0.18 ↑ 0.09

Social PM (SocPM) 0.29 ↑ 0.27 0.18 ↓ 0.22 0.09 ↓ 0.12

Non-Social PM (NonSocPM) 0.27 ↑ 0.25 0.14 ↑ 0.13 0.06 ↑ 0.04

Ongoing Condition (OGc) 0.29 ↑ 0.24 0.11 ↓ 0.14 0.02 ↓ 0.04

Figure 7. Measures of integration (global efficiency) and segregation (modularity) in functional networks.
The size, shape, colour and padding of markers encode the amount of symmetry, experimental
condition, Hb signal and the inclusion or exclusion of systemic data, respectively.

4. Discussion

We have developed and presented a new method that allows the quantification of the symmetry
between the FC network maps of HbO2 and HHb. This novel approach is based on the DSI and the
Jaccard index; and can help in improving the interpretation of functional connectivity (FC) analyses
with fNIRS. In addition, we have demonstrated for the first time how systemic data can be integrated
within the HbO2 and HHb FC networks to disentangle spurious relation between brain regions.
Considering that the brain networks are dynamically produced, we can expect some variations in their
structures across subjects, or even longitudinally within the same person [10,15]. The DSI is able to
separate the symmetric response of the FC networks between HbO2 and HHb derived from physiology
by removing the mathematical contribution of the Jaccard index. This provides us with a new tool
to decide whether HbO2 or HHb networks individually would lead to a better representation of the
functional paths, or if both signals must be used to assess FC.

4.1. Symmetry between HbO2 and HHb Connectivity Networks

The analysis of random networks suggested a relation between density and the symmetry in FC
networks (see Figure 3). In particular, we showed that the networks derived from fNIRS recordings
exhibit symmetry values between HbO2 and HHb above its random counterpart. In synthetic random
networks, the symmetry value is higher when the connectivity density in both networks increases.
This is consistent with the experimental observation that, for highly dense diffuse optical tomography
spatial configurations, both HbO2 and HHb networks include a high number of functional links [11].
Such higher channels density is often associated with a higher number of links i.e., denser networks
(` ≈ L). In this case, the decision of choosing one of the two Hb species is not crucial, as we expect high
symmetries between them. In case of low channel density data sets, we cannot ignore the differences in
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the symmetry between HbO2 and HHb FC networks. Most of the current fNIRS technologies are still
spatially low channel density devices [2], hence likely to be accompanied with a less dense-connectivity
graph. Therefore, the symmetry between HbO2 and HHb FC networks must be investigated and
taken into consideration to draw more correct neuroscientific conclusions based on fNIRS-derived
FC measures. Regarding the fNIRS networks presented here, the social and non-social prospective
memory (SocPM and NonSocPM) conditions achieved more symmetric responses (Figure 6 bigger
markers) between the HbO2 and HHb FC networks. In this sense, this could be related the prospective
memory task itself. In fact, prospective memory involves the integration of several executive functions
(e.g., planning, retrospective/working memory, cognitive flexibility and inhibitory control, attentional
monitoring, etc. [50]) and requires the conscious interruption of the OG task to fulfill the delayed
intention, thus being more complex than only the OG task or the rest conditions. Our data suggests
that the memory-related tasks within our current functional protocol produced higher symmetric FC
networks between the Hb species compared to the other tasks. In addition, the walking-related tasks
were found to produce more asymmetrical FC networks between the Hb species. These results refer
to the particular prospective memory protocol described here. Additional work is needed to further
expand and investigate the proposed DSI method with additional functional paradigms, different
experimental designs and brain regions.

The frontal cortex is highly interconnected, both between cytoarchitectonic subdivisions within the
frontal lobes, and also between these subregions and regions elsewhere. Indeed, this interconnectivity
has been argued to be the main reason why neuronal density within PFC is so low compared to other
regions of the brain: it means that more space is available for white matter connections (for review
see [51]). The white matter connections within frontal cortex and with non-frontal regions are usefully
given by [52–54]. However, the structural connections are only one way of considering connectivity.
A further approach is to consider the functional connectivity as considered here. For fMRI, this has been
conducted for a range of tasks (e.g., [55]). While broadly speaking, as one might expect, cortical regions
that have direct white matter connections tend to show greater coactivations, the cognitive functions
that the frontal cortex are performing are sometimes determined by the regions with which they are
co-active. Thus for instance, for a range of types of mental activity (e.g., mentalising, multitasking,
working memory), medial rostral PFC coactivates with posterior cingulate, during performance of
episodic memory tasks, it is lateral rostral PFC that coactivates with posterior cingulate [55]. Therefore,
decoding the functional organisation of the frontal cortex depends critically upon understanding
the differential patterns of connections between tasks, not just the coactivations across them or the
structural connections between them. With this in mind, it is important to consider these changes in
patterns of activation in the context of naturalistic settings. This is because it has been known for a
long time that the frontal lobes respond to degrees of novelty, technical difficulty (and danger) and
also control voluntary and spontaneous/self-generated behaviour (e.g., [56]). Thus, removing the
participant from the natural setting in which a mental process would normally be used in order to
study differential patterns of coactivation risks (as in a typical lab experiment) seriously compromises
the ecological or construct validity of the task. (“Ecological validity” refers to the degree to which
results found in experimental lab settings relate to results in the “real life” situations one wishes to
understand, and the term “construct validity” refers to the degree to which one is measuring the
mental process or system that one intends to measure. See [57] for explanation.)

An exciting possibility arising from the results here would be to create maps of predicted
coactivations between FC subregions based on our anatomical knowledge and discover, for specified
cognitive tasks, the perturbation from them. For instance, FC follows broadly the same principles of
activation in other brain regions, which is that there is a tendency towards contralateral coactivations.
Indeed, for participants carrying out prospective memory tasks (as here, but in a lab), it is common
to see bilateral rostral PFC activation when the participant is maintaining an intention [58]. Other
subregions can show negatively correlated activity. For instance, the fronto-marginal tract connects
medial and lateral regions of the frontal pole, and during maintenance of an intention it is common to
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see significant activation increases in the lateral frontal pole accompanied by significant decreases in the
medial frontal pole (BA 10). For performance of the ongoing task only (i.e., where there is no intention
maintenance), this pattern is reversed [58]. But this is not true of every task, and deviations from these
kinds of pattern almost certainly have functional significance for understanding mind-brain relations.
Yet cognitive neuroscientists do not currently understand them well. However, they may hold an
important key to understanding plasticity in the brain, relevant to, for example, functional recovery
from brain injury. So, it is of high importance that we discover the underlying principles. In this way,
establishing the relation between structural connectivity and functional connectivity and how these
are attenuated by task and physiological factors is a key aim for the cognitive neuroscience community,
and the methods demonstrated here offer a new way of approaching this while maintaining a gold
standard for ecological and construct validity.

The DSI has been constructed without knowledge of the active channels, but it can also be
constrained to the functional active channels. In principle, given that the DSI aims to eliminate the bias
due to the artificial contribution of the comparison function e.g., Ji, over some particular feature e.g.,
the density of the network; it seems plausible to think that the abstract construct could be adjusted
to work with other objects encoding information about haemodynamics other than the connectivity
networks. For instance, a promising use of DSI could include the assessment of similarity between
HbO2 and HHb activation maps, or on a different example, the DSI could evaluate the (dis-)similarity
among HbO2 or HHb activation maps longitudinally acquired for a subject. However, different
comparison functions and different features would combine to generate different bias, which is what
our second term of the DSI removes. Further work is necessary to allow the development of a more
generally applied second term.

4.2. Inclusion of Systemic Data in fNIRS Functional Connectivity Analysis

The contribution of non-neuronal physiological changes to the fNIRS signal have been widely
investigated over the past years. Previous studies [10,29,59,60] have found that excluding the impact
of systemic confounders leads to discrepancies in the connectivity maps. On the other hand, taking
physiological interferences into consideration will likely increase the number of the overall connections.
Consequently, this can reduce (in average) the length of functional paths between two any nodes.
However, not accounting for them might lead to a misleading interpretation due to the appearance
of spurious associations. This risk can be reduced by simultaneously measuring physiological data
alongside fNIRS, performing digital filtering as a preprocessing step, or including systemic confounders
when modelling the fNIRS signal reconstruction, processing and analysis to compute relative changes
in Hb species [19,61–63]. However, to date, only few researchers have considered the inclusion of
physiological measurements when dealing with fNIRS FC analysis [10,60,64]. Here, we investigated
the possibility of including systemic data (heart rate and breathing rate) in the FC analysis in order to
obtain a more accurate representation of the symmetry between FC networks. In general, we found
structural variations within FC networks and we observed changes in HbO2 and HHb connectivity
density and symmetry when systemic data were included. Based on our group-level results presented
in Figure 7, we showed that the addition of systemic information tends to change both integrational
and segregational characteristic measures of the networks.

Concerning the integration, a decrease in the global efficiency was observed in four out of
five networks corresponding to the baseline, social prospective memory, non-social prospective
memory, and ongoing contaminated conditions, in both Hb-derived networks. By contrast, only
during the ongoing task the HbO2 network seems to increase the global efficiency. This could be
caused by the inclusion of confounding variables that removes spurious relationships and generate
a re-route of the functional paths between regions, resulting in a larger one. On the other hand,
the segregational measure, the modularity, presents the opposite pattern in respect to the global
efficiency. The modularity of both Hb networks increases when non-neuronal signals are taken
into account. The inclusion of physiological variables is performed by considering them as nodes.
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These systemic nodes become mediators between channel nodes, creating new paths and producing
a reorganization of groups of nodes (community structure). Here, we found that the 80% of the
functional networks are above 0.3 modularity, a value from which a network is considered to have a
significant community structure.

The experimental results presented here are preliminary and are based on data from a small
sample size. Although the statistical results shown here are strong, we will further validate the
proposed method on bigger data sets. In addition, we have included the contribution of only heart
and breathing rate and evaluated their effect on 16 fNIRS channels recorded on the prefrontal cortex
during a prospective memory task. In our future studies, we will enrich our investigations with a
wider set of physiological variables (e.g., galvanic skin response, blood pressure). It would also be
interesting to investigate how the symmetry between HbO2 and HHb connectivity networks varies in
case of different cognitive tasks and task designs (e.g., block, event-related, continuous), and across
different brain regions, and with less/more dense channels configurations.

5. Conclusions

In this work, we have tackled the problem of quantifying the in-common information expressed
from HbO2 and HHb functional connectivity (FC) networks. This is achieved by our proposed
Differential Symmetry Index or DSI.

We found that performing a symmetry analysis between the HbO2 and HHb FC networks can help
in deciding if it is more appropriate to use one Hb signal (either HbO2 or HHb) or both when computing
FC. This becomes particularly relevant when we deal with fNIRS experiments with low-density FC
networks or with naturally sparse functional networks—as in typical commercially-available fNIRS
devices. Simultaneously, it is possible to infer that having high-density data makes such contrast likely
redundant as a high symmetry between HbO2 and HHb networks may be expected. From a data
set including six healthy subjects performing a series of cognitive tasks in an ecological environment
while walking, we recovered the task-related FC networks. We found that the FC networks of HbO2

and HHb retrieved from the social and non-social prospective memory tasks are more symmetric than
the networks from the other tasks. Furthermore, we investigated the segregational and integrational
impact on the networks when including walk-related breathing rate and heart rate systemic factors.
By including these non-neuronal factors, the information expressed by the functional networks was
elucidated. A set of spurious associations vanished (conjectured from the increase in path length and
a decrease in global efficiency), and the distribution of functional links changed (inferred from the
change in modularity). In summary, the resulting symmetry values were significantly different from
the expected ones as shown by the random networks analysis. Therefore, the FC analysis must include
a subsequent integration-segregation measures analysis and the addition of a symmetry analysis
between HbO2 and HHb FC networks is highly recommended. The DSI distribution suggested that
values over 0.2 indicate that Hb networks are symmetric.
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