
algorithms

Article

Computing Fault-Containment Times of
Self-Stabilizing Algorithms Using Lumped
Markov Chains †

Volker Turau ID

Institute of Telematics, Hamburg University of Technology, 21073 Hamburg, Germany; turau@tuhh.de
† An extended abstract of this work appeared at the 19th International Symposium on Stabilization, Safety,

and Security of Distributed Systems 2017 in Boston, USA.

Received: 10 February 2018; Accepted: 2 May 2018; Published: 3 May 2018
����������
�������

Abstract: The analysis of self-stabilizing algorithms is often limited to the worst case stabilization
time starting from an arbitrary state, i.e., a state resulting from a sequence of faults. Considering the
fact that these algorithms are intended to provide fault tolerance in the long run, this is not the most
relevant metric. A common situation is that a running system is an a legitimate state when hit by
a single fault. This event has a much higher probability than multiple concurrent faults. Therefore,
the worst case time to recover from a single fault is more relevant than the recovery time from a
large number of faults. This paper presents techniques to derive upper bounds for the mean time to
recover from a single fault for self-stabilizing algorithms based on Markov chains in combination with
lumping. To illustrate the applicability of the techniques they are applied to a new self-stabilizing
coloring algorithm.

Keywords: distributed algorithms; fault-tolerance; self-stabilization; Markov chain; lumping

1. Introduction

Fault tolerance aims at making distributed systems more reliable by enabling them to continue
the provision of services in the presence of faults. The strongest form is masking fault tolerance, where a
system continues to operate after faults without any observable impairment of functionality, i.e., safety
is always guaranteed. In contrast non-masking fault tolerance does not ensure safety at all times. Users
may experience incorrect system behavior, but eventually the system will fully recover. The potential
of this concept lies in the fact that it can be used in cases where masking fault tolerance is too costly
or even impossible to implement [1]. Self-stabilizing algorithms belong to the category of distributed
algorithms that provide non-masking fault tolerance. They guarantee that systems eventually recover
from transient faults of any scale such as perturbations of the state in memory or communication
message corruption [2]. A critical issue is the length of the time span until full recovery. Examples
are known where a memory corruption at a single process caused a vast disruption in large parts of
the system and triggered a cascade of corrections to reestablish safety. Thus, an important issue for
non-masking fault tolerance is the containment of the effect of faults.

A fault-containing system has the ability to contain the effects of transient faults in space and
time. The goal is to keep the extent of disruption during recovery proportional to the extent of the
faults. An extreme case of fault-containment with respect to space is given when the effect of faults
is bounded to the set of faulty nodes. Azar et al. call this error confinement [3]. More relaxed forms
of fault-containment are known as time-adaptive self-stabilization [4], scalable self-stabilization [5],
strong stabilization [6], and 1-adaptive self-stabilization [7].

A configuration is called k-faulty, if in a legitimate configuration exactly k processes are hit by
a fault (a configuration is called legitimate if it conforms with the specification). A large body of

Algorithms 2018, 11, 58; doi:10.3390/a11050058 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-9964-8816
http://www.mdpi.com/1999-4893/11/5/58?type=check_update&version=1
http://dx.doi.org/10.3390/a11050058
http://www.mdpi.com/journal/algorithms


Algorithms 2018, 11, 58 2 of 21

research focuses on fault-containment for 1-faulty configurations. Two metrics have been introduced to
quantify the containment behavior in the 1-faulty case: contamination radius and containment time [8,9].
A distributed algorithm A has contamination radius r if only nodes within the r-hop neighborhood of
the faulty node change their state during recovery from a 1-faulty configuration. The containment time
of A denotes the worst-case number of rounds any execution of A starting at a 1-faulty configuration
needs to reach a legitimate configuration. In technical terms this corresponds to the worst case time to
recover in case of a single fault. For randomized algorithms the expected number of rounds to reach a
legitimate configuration corresponds to the mean time to recover (MTTR).

Over the last two decades a large number of self-stabilizing algorithms have been published.
Surprisingly the analysis of the vast majority of these algorithms is confined to the worst case
stabilization time starting from an arbitrary configuration. Considering the fact that these algorithms
are intended to provide fault tolerance in the long run this is not the most relevant metric at all.
From a practical point of view the recovery time from a 1-faulty configuration is more interesting.
This statement is justified considering the fact that the probability for a 1-faulty configuration is much
higher than that for a k-faulty configuration with a large value of k. The reason is that a distributed
system consists of independently operating computers where transient faults such as memory faults
in different computers are independent events. Considering this fact it comes as a surprise that most
papers consider only arbitrary initial states (i.e., k-faulty configuration for any k) instead of focusing
on 1-faulty configuration. Only in a few cases fault-containment metrics have been considered [10,11].
This is even more surprising considering the fact that the many techniques available to determine the
worst case stabilization time of an algorithm, e.g., potential functions and convergence stairs, can also
be used to compute the containment time.

This paper discusses a technique to analyze the containment time of randomized self-stabilizing
algorithms with respect to memory and message corruption. The execution of the algorithm is modeled
as a stochastic process. Let X be the random variable that represents the number of rounds the system
requires to reach a legitimate configuration when started in a 1-faulty configuration. Then the MTTR
of the algorithm is equal to E[X], the expected value of X. Thus, we are interested in upper bounds for
E[X]. Sometimes it is possible to derive an explicit expression for E[X] or use results about absorbing
Markov chains for this purpose. These equations may be solvable with a software package based on
symbolic mathematics. However, the state space explosion problem precludes success for many real
world problems. An important technique for the reduction of the complexity of Markov chains is
lumping [12]. Lumping is a method based on the aggregation of states that exhibit the same or similar
behavior. It leads to a smaller Markov chain that retains the same performance characteristics as the
original one. But often lumping is not immediately applicable because the structure of the Markov
chain is too complex. In some of these cases a weaker form of lumping can lead to Markov chains with
a simpler structure that can still be used to derive an upper bound for the absorption time.

The contribution of this paper is a discourse about the containment time of self-stabilizing
algorithms. We present and apply techniques based on Markov chains to compute upper bounds for
this metric. In particular we demonstrate how lumping can be applied to reduce the complexity of the
Markov chains. To demonstrate the usability of the techniques we apply it to a new self-stabilizing
coloring algorithm as a case study. We derive an absolute bound for the expected containment time
and show that the variance is bounded by a surprisingly small constant independent of the network’s
size. We believe that the techniques can also be applied to other algorithms.

2. Related Work

Self-stabilizing algorithms are analyzed with different techniques such as potential functions,
convergence stairs, and Markov chains. The latter are particularly useful for randomized algorithms [13].
Their main drawback is that in order to set up the transition matrix the graph’s adjacency matrix must be
known. This restricts the applicability of this method to small or highly symmetric instances. DeVille et al.
apply model checking tools to Markov chains for cases of networks of small size (n ≤ 7) to determine the



Algorithms 2018, 11, 58 3 of 21

expected stabilization time [14]. An example for highly symmetric networks are ring topologies [15,16].
Fribourg et al. model randomized distributed algorithms as Markov chains using the technique of
coupling to compute upper bounds for the stabilization times [15]. Yamashita uses Markov chains to
model self-stabilizing probabilistic algorithms and to prove stabilization [16]. Mitton et al. consider
a randomized self-stabilizing ∆ + 1-coloring algorithm and model it in terms of urns/balls using a
Markov chain to get a bound for the stabilization time [17]. Their evaluation is restricted to networks
up to 1000 nodes. Crouzen et al. model faulty distributed algorithms as Markov decision processes to
incorporate the effects of random faults when using a non-deterministic scheduler [18]. They used the
PRISM model-checker to compute long-run average availabilities.

3. System Model

This paper uses the synchronous model of distributed computing as defined in the standard
literature [2,8,19]. A distributed system is represented as an undirected graph G(V, E) where V is the
set of nodes and E ⊆ V ×V is the set of edges. Let n = |V| and ∆(G) denote the maximal degree of G.
The topology is assumed to be fixed. If two nodes are connected by an edge, they are called neighbors.
The set of neighbors of node v is denoted by N(v) ⊆ V and N[v] = N(v) ∪ {v}. Each node stores a
set of variables. The values of all variables constitute the local state of a node. Let σ denote the set of
possible local states of a node. The configuration of a system is the tuple of all local states of all nodes.
Σ = σn denotes the set of global states. A configuration is called legitimate if it conforms with the
specification. The set of all legitimate configurations is denoted by L.

Nodes communicate either via locally shared memory or by exchanging messages. In the shared
memory model each node executes a protocol consisting of a list of rules of the form guard −→ statement.
The guard is a Boolean expression over the variables of the node and its neighbors. The statement
consists of a series of commands. A node is called enabled if one of its guards evaluates to true.
The execution of a statement is called a move.

In the message passing model a node performs three actions per round: receiving messages
from neighbors, executing code, and sending messages to neighbors. Direct access to the state of
neighboring nodes is impossible. Two nodes u and v communicate via two link registers: u writes
in its register and v reads from it and v writes in its register and u reads from it. In this model the
state of a node also includes the states of its registers. This works assumes the CONGEST model of
distributed computation [19]. Algorithms in the CONGEST model enforce a O(log n) limitation on
the maximum message size. Hence, with a single message only a constant number of node identifiers
in the range {0, . . . , n} can be transmitted.

Execution of the statements is performed in a synchronous style, i.e., all enabled nodes execute
their code in every round. An execution e = 〈c0, c1, c2, . . .〉, ci ∈ Σ is a sequence of configurations,
where c0 is called the initial configuration and ci is the configuration after the i-th round. In other words,
if the current configuration is ci−1 and all enabled nodes make a move, then this yields ci.

Let A be a distributed algorithm and L ⊆ Σ a set of configurations. A is called self-stabilizing
with respect to L if it satisfies the convergence and closure properties. The first property states that
every execution of A reaches L after a finite number of rounds. The second property states that
A(c) ∈ L for all c ∈ L as long as no fault occurs. The worst case stabilization time STA(G) of A for a
graph G is equal to the maximal number of rounds after which A reaches a legitimate configuration of
G regardless of the initial configuration under the assumption that no errors occur.

Definition 1. A configuration c ∈ Σ of a self-stabilizing algorithm with respect to L is called k-faulty if a
configuration c′ ∈ Σ satisfying L exists such that c differs from c′ in the local states of at most k nodes.

Note that for the message passing model this definition also covers message corruption. This paper
analyzes the most common fault situation: 1-faulty configurations. They arise when a single node v is
hit by a memory corruption or a single message sent by v is corrupted.



Algorithms 2018, 11, 58 4 of 21

The containment behavior of a self-stabilizing algorithm is characterized by the contamination
radius and the containment time.

Definition 2. Let A be a self-stabilizing algorithm.

1. The containment time of A denotes the worst-case number of rounds any execution of A starting at a
1-faulty configuration needs to reach a legitimate configuration.

2. Let Rv be the subgraph induced by the nodes engaged in the recovery process from a 1-faulty configuration
of A triggered by a fault at v. Then max{dist(v, w) | w ∈ Rv} is called the contamination radius.

The stabilization time STA(Rv) is an obvious upper bound for the containment time.

4. Examples

Before presenting techniques to compute these metrics we give some examples using the shared
memory model to illustrate the two definitions.

4.1. Contamination Radius

Consider an algorithm in the shared memory model with contamination radius r. A single fault
will not spread beyond the r-hop neighborhood of the faulty node v. In this case Rv ⊆ Gr

v; Gr
v is

the subgraph induced by nodes w with dist(v, w) ≤ r. As an example consider the well known
self-stabilizing algorithm A1 to compute a maximal independent set (see Algorithm 1). It uses a single
variable state. A configuration is legitimate if nodes with state = IN form a maximal independent set.

Algorithm 1: Self-stabilizing algorithm A1 to compute a MIS .

if state = IN ∧ ∃w ∈ N(v) s.t. w.state = IN then
state := OUT

if state = OUT ∧ ∀w ∈ N(v) w.state = OUT then
if random bit from 0,1 = 1 then

state := IN

Lemma 1. Algorithm A1 has contamination radius two.

Proof. Consider a 1-faulty configuration where node v is hit by a memory corruption. First suppose
the state of v changed from IN to OUT. Let u ∈ N(v) then u.state = OUT. If u has an neighbor w 6= v
with w.state = IN then u will not change its state during recovery. Otherwise, if all neighbors of u
except v had state OUT node u may change state during recovery. But since these neighbors of u have
a neighbor with state IN they will not change their state. Thus, in this case only the neighbors of v
may change state during recovery.

Suppose that v.state changed from OUT to IN. Then v and those neighbors of v with state IN
can change to OUT. Then arguing as in the first case only nodes within distance two of v may change
their state during recovery.

Next we consider another example: ∆ + 1-coloring. Most distributed algorithms for this problem
follow the same pattern. A node that realizes that it has selected the same color as one of its neighbors
chooses a new color from a finite color palette. This palette does not include the current colors
of the node’s neighbors. To be executed under the synchronous scheduler these algorithms are
either randomized or use identifiers for symmetry breaking. Variations of this idea are followed
in [17,20,21]. As an example consider algorithm A2 from [20] (see Algorithm 2). A2 has a single
variable c. A configuration is legitimate if the values of variable c describe a valid ∆ + 1-coloring.



Algorithms 2018, 11, 58 5 of 21

Due to its choice of a new color from the palette algorithm A2 has contamination radius at least ∆(G)

(see Figure 1).

Algorithm 2: Self-stabilizing ∆ + 1-coloring algorithm A2 from [20].

if c 6= max ({0, . . . , ∆}\{w.c | w ∈ N(v)}) then
if random bit from 0,1 = 1 then

c := max ({0, . . . , ∆}\{w.c | w ∈ N(v)})

∆ ∆− 1 ∆− 2

∆

∆− 3

∆− 1,∆

2
· · ·

4, ... ,∆

1

3, ... ,∆

0

2, ... ,∆

Figure 1. The numbers indicate the nodes’ colors. If the left-most node is hit by a fault and changes its
color to ∆− 1, then itself and its neighbor are enabled. With probability 0.5 the second node changes its
color to ∆. This enables the third node which changes its color to ∆− 1 with probability 0.5. This may
causes a cascade of changes in which all nodes on the horizontal line change color.

A minor modification of algorithmA2 dramatically changes matters. AlgorithmA3 (see Algorithm 3)
has contamination radius 1 (see Lemma 2). Note that neighbors of v that change their color during recovery
form an independent set.

Algorithm 3: Self-stabilizing ∆ + 1-coloring algorithm A3.

if ∃w ∈ N(v) s.t. c = w.c then
if random bit from 0,1 = 1 then

c := choose {0, . . . , ∆}\{w.c | w ∈ N(v)}
.

Lemma 2. Algorithm A3 has contamination radius one.

Proof. Consider a 1-faulty configuration where node v is hit by a memory corruption changing its
color to a color c already chosen by at least one neighbor of v. Let Nconflict = {w ∈ N(v) | w.c = c}.
In the next round the nodes in Nconflict ∪ {v} will get a chance to choose a new color. The choices will
only lead to conflicts between v and other nodes in Nconflict. Thus, the fault will not spread beyond the
set Nconflict. With a positive probability the set Nconflict will contain fewer nodes in each round.

4.2. Containment Time

As the contamination radius the containment time strongly depends on the concrete structure of
G. This can be illustrated with algorithm A1. Note that in this case Rv can contain any subgraph H
with ∆(G) nodes. As an example let G consist of H and an additional node v connected to each node
of H. A legitimate configuration is given if the state of v is IN and all other nodes have state OUT
(Figure 2 left). If v changes its state to OUT due to a fault then all nodes may change to state IN during
the next round. Thus, there is little hope for a bound below the trivial bound. Similar arguments hold
for the second 1-faulty configuration of A1 shown on the right of Figure 2.



Algorithms 2018, 11, 58 6 of 21

H

v

H1 Hn· · ·

v

· · ·

Figure 2. 1-faulty configurations of A1 caused by a memory corruption at v. Nodes drawn in bold
have state IN. Subgraph H correspond to Rv. In the left graph, if node v changes to state OUT then all
nodes in H are enabled, thus the worst case stabilization time is equal to that of subgraph H. In the
right graph, if node v changes to IN, then v and its two neighboring nodes all change to OUT resulting
in a configuration similar to the previous example.

5. Self-Stabilizing Algorithms and Markov Chains

A self-stabilizing algorithm A can be regarded as a transition systems of Σ. In each round the
current configuration c ∈ Σ is transformed into a new configuration A(c) ∈ Σ. Each configuration
of Σ occurs with a specific probability as the new configuration A(c). The source of randomness can
have its origin in the scheduler—a probabilistic scheduler randomly selects enabled nodes to make
a move—or in a random experiment within one of the rules. We assume that the scheduler and the
random experiment are memory-less. Therefore, the execution of algorithm A can be described by a
Markov chain with state set Σ and transition matrix P =

(
pi,j
)
, where pij = Prob(A(ci) = cj) gives

the probability to move from configuration ci to cj ∈ Σ in one round. This work uses the notation for
Markov chains as introduced in [12]. For a self-stabilizing algorithm A this Markov chain is denoted
by CA. In the following we uses the terms configurations of A and states of CA as synonyms.

There is a close relation between the absorbing states of CA and the legitimate configurations L of
A. The closure property of a self-stabilizing algorithm guarantees that a configuration of L is always
mapped to a configuration in L, i.e., A(L) ⊆ L. Whereas a state of a markov chain is called absorbing
if it is impossible to leave this state. Note that a non-legitimate state of A cannot be an absorbing state
of CA. In silent self-stabilizing algorithms we have A(c) = c for all c ∈ L. For non-silent algorithms
we may without loss of generality also assume that A(c) = c for all c ∈ L. If this condition is not given
we can partition L into subsets L1, . . . ,Ls with A(Li) = Li and identify all configurations in Li as
corresponding to the same state. For the computation of the stabilization time this does not make a
difference. Under this assumption the Markov chain CA is an absorbing Markov chain and the set of
absorbing states corresponds to the set of legitimate states of A. We can state the following easy to
prove lemma.

Lemma 3. Let c be a configuration of CA. An absorbing state of CA is reached from c in expected B steps if and
only if A stabilizes in expected B rounds from c.

The computation of the expected time to absorption for an absorbing Markov chain using the
transition matrix P is a simple matrix operation [12]. We assume a labeling of the states such that the t
non-absorbing states come before the a absorbing states. Then P has the following canonical form

P =

(
Q R
0 E

)

Here E is a a× a unit matrix and Q a t× t matrix. For an absorbing Markov chain, the matrix
N = (E−Q)−1 is called the fundamental matrix for P. Let ti be the expected number of steps before
the chain is absorbed, given that the chain starts in the i-th state, and let t be the column vector whose



Algorithms 2018, 11, 58 7 of 21

i-th entry is ti. Then t = Nc , where c is a column vector all of whose entries are 1. The variance of
these numbers of steps is given by the entries of (2N− E)t− tsq where tsq is derived from t by squaring
each entry [12]. Thus, if N is the fundamental matrix of CA then the expected number of rounds after
which algorithm A stabilizes is max Nc provided, the initial configuration is randomly chosen from
the non-legitimate configurations.

There is still a big obstacles to practically apply this procedure. In order to compute the matrix N
the probabilities pi,j need to be known explicitly. Without knowing the graph explicitly it is impossible
to compute the probabilities pi,j = Prob(A(ci) = cj) for all pairs of states ci, cj. This is only possible for
small graphs or when the graph has a symmetric structure, e.g., a ring.

The fundamental matrix contains a lot of information which is not needed for the computation of
the stabilization time. Therefore, a coarser analysis of the Markov chain would be sufficient. A common
approach is to partition Σ into subsets Σ0, . . . , Σl and consider these as the states of a new Markov
chain (see Figure 3). The challenge is to define the transition probabilities of the new chain in a way
that allows to transfer properties of this new chain to the original one.

Σ1 Σ0

Σ2

=⇒

Σ1 Σ0

Σ2

Figure 3. Reducing the number of states of a Markov chain.

A partition P = {Σ0, . . . , Σl} of Σ is called lumpable if the subsets Σi have the property that
for each pair i, j the probability of a state c ∈ Σi to be transformed in one step into a state of Σj is
independent of the choice of c ∈ Σi (Definition 6.3.1 [12]). This probability is then interpreted as the
transition probability from Σi to Σj. More formally, a Markov chain is lumpable with respect to partition
P = {Σ0, . . . , Σl} of Σ if for any Σi, Σj ∈ P and any c1, c2 ∈ Σi

∑
c∈Σj

p(c1, c) = ∑
c∈Σj

p(c2, c).

A lumpable Markov C chain defines a new Markov chain CP with state set P and transition probabilities

p(Σi, Σj) = ∑
c∈Σj

p(ci, c).

The following result proved in [12] , p. 128.

Lemma 4. Let c ∈ Σi be a state of a lumpable Markov chain C. Then the expected time to reach from c an
absorbing state of C is equal to the expected time to reach from Σi an absorbing state of CP.

The last two lemmas prove the following theorem.

Theorem 1. Let A be a self-stabilizing algorithm with Σ the set of configurations. Let P = {Σ0, . . . , Σl} be a
partition of Σ with Σ0 = L such that CA is lumpable with respect to P. For any i an absorbing state of CAP is
reached from Σi in expected B steps if and only if A stabilizes in expected B rounds starting in any c ∈ Σi.



Algorithms 2018, 11, 58 8 of 21

Unfortunately it is rather difficult to make use of Theorem 1 under general conditions. This situations
changes when the theorem is used to compute the containment time of a self-stabilizing algorithm A.
Remember that the containment time ofA denotes the worst-case number of rounds any execution ofA
starting in a 1-faulty configuration needs to reach a legitimate configuration. Thus, the containment time
ofA is STA(Rv), where v is the faulty node. There are two aspects that ease the application of Theorem 1:
Either Rv has a symmetric structure or Rv is small.

To illustrate this approach we consider again algorithm A3. Let v be a node that changes in a
legitimate state its color to c f due to a memory fault (see Figure 4). Let c0 be the new configuration.
This causes a conflict with those neighbors of v that had chosen c f as their color. After the fault only
nodes contained in Rv (a star graph) change their state (see Figure 4 right). Once a neighbor has chosen
a color different from c f then it becomes passive (at least until the next transient fault).

=⇒
fault

Figure 4. A 1-faulty configuration c0 for algorithm A3 where node v was hit by a fault changing its
color to c f causing a conflict. The corresponding graph Rv is depicted at the right side.

The set Σ is equal to the set of all configurations of Rv reachable from c0. To partition this set let d
be the number of neighbors of v that have color c f in c0. Let P = {Σ0, . . . , Σd} where Σj is the subset
of Σ where exactly d− j neighbors of v are in conflict with v. Then Σ0 = {c0} and Σd ⊆ L. Figure 5
shows some configurations belonging to the sets Σ0, Σ2, and Σ3. Let c ∈ Σi. Then A3(c) 6∈ Σj for all
j < i. Unfortunately the partition P is not lumpable because the probability of a configuration c ∈ Σi to
be transformed in one round into a fixed configuration of Σj is not independent of the choice of c ∈ Σi.
But even in these cases Theorem 1 can lead to an upper bound of the stabilization time. This is proved
in the following theorem.

Σ3 : .

Σ2 : …
.

Σ0 : …

Figure 5. Elements of the partition of Σ for a 1-faulty configuration of algorithm A3 as described above.
Σ0 consists of legitimate configurations only.

Theorem 2. Let A be a self-stabilizing algorithm with Σ the set of configurations. Let P = {Σ0, . . . , Σl} be
a partition of Σ with Σ0 = L such that for all i ≥ 0 if c ∈ Σi then A(c) ∈ Σj with j ≥ i. For i < j let
cij ≥ 0 be a constant such that Prob(A(c) ∈ Σj) ≥ cij for all c ∈ Σi. Furthermore, let cij = 0 for j < i and
cii = 1−∑d

j=i+1 cij for i = 0, . . . , d. Let CA be the Markov chain with states P and transition matrix
(
cij
)
.

If an absorbing state of CA is reached from Σi in expected B steps then the expected number of rounds A requires
to stabilize starting in any c ∈ Σi is at most B.

Proof. Note

0 ≤
d

∑
j=i

cij ≤
d

∑
j=i

Prob(A3(c) ∈ Σj) = 1

for each fixed c ∈ Σi. Thus, cii ≥ 0 and therefore the matrix (cij) is a stochastic with cdd = 1 that
describes the new Markov chain CA. Remember that CA denotes the markov chain corresponding to
algorithm A. The difference between CA and CA is that with chain CA a node remains with a higher



Algorithms 2018, 11, 58 9 of 21

probability in its current configuration instead of moving to a state Σi with lower index. Therefore,
the expected number of steps of CA before being absorbed is an upper bound for the corresponding
number in CA. The choice of the probabilities implies that CA is lumpable for partition P. Hence,
we can apply Theorem 1 to complete the proof.

In the rest of this paper the introduced techniques including Theorem 2 are exemplary applied to
a self-stabilizing (∆ + 1)-coloring algorithm Acol using the message passing model.

6. Algorithm Acol

This section introduces coloring algorithm Acol (see Algorithm 4). Computing a ∆ + 1-coloring
in expected O(log n) rounds with a randomized algorithm is long known [22,23]. Algorithm Acol
follows the pattern sketched in Section 4.1. We derived it from an existing algorithm (Algorithm 19 [24])
by adding the self-stabilization property. The presented techniques can also be applied to other
randomized coloring algorithms such as [17,20,21]. The main difference is that Acol assumes the
synchronous CONGEST message passing model. AlgorithmAcol stabilizes after O(log n) rounds with
high probability whereas the above cited self-stabilizing algorithms all require a linear number of rounds.
Since synchronous local algorithms can be converted to asynchronous self-stabilizing algorithms [25],
there are self-stabilizing ∆ + 1-coloring algorithms faster than Acol . However, they entail a burden on
memory resources and cause high traffic costs.

At the start of each round each node broadcasts its current color to its neighbors. Based on the
information received from its neighbors a node decides either to keep its color (final choice), to choose
a new color or no color (value ⊥). In particular, with equal probability a node v draws uniformly
at random a color from the set {0, 1, . . . , δ(v)}\tabu or indicates that it made no choice (see function
randomColor). Here, tabu is the set of colors of neighbors of v that already made their final choice.

Algorithm 4: Algorithm Acol as executed by a node v in each round.

Set<Color> tabu := ∅, occupied := ∅;
broadcast(c, final) to all neighbors w ∈ N(v);
for all neighbors w ∈ N(v) do

receive(cw, finalw) from node w;
if cw 6= ⊥ then

occupied := occupied ∪ {cw};
if finalw then tabu := tabu ∪ {cw} ;

if c = ⊥∨ c > δ(v) then
final := false;

else
if final then

if c ∈ tabu then final := false ;
else

if c 6∈ occupied then final := true ;

if final = false then c := randomColor(v, tabu) ;

function Color randomColor(Node v, Set<Color> tabu)
if random bit from 0,1 = 1 then return ⊥ ;
return random color from {0,1,. . . , δ(v)}\tabu;

In the original algorithm a node maintains a list with the colors of those neighbors that made their
final choice. A fault changing this list is difficult to contain. Furthermore, in order to notice a memory
corruption at a neighbor, each node must continuously send its state to all its neighbors and cannot



Algorithms 2018, 11, 58 10 of 21

stop to do so. This is the price of self-stabilization and well known [2]. These considerations lead to
the design of Algorithm Acol . Each node only maintains the chosen color and whether its choice is
final (variables c and final). In every round a node sends the values of c and final to all neighbors.
Acol uses two additional variables tabu and occupied. They are reset at the beginning of every round.
To improve fault containment a node’s final choice of a color is only withdrawn if it coincides with the
final choice of a neighbor. To achieve a ∆ + 1-coloring a node makes a new choice if its color is larger
than its degree. This situation can only originate from a fault.

First we prove correctness and analyze the stabilization time of Acol . A configuration is called a
legal coloring if the values of variable c form a ∆ + 1-coloring. It is called legitimate if it is a legal coloring
and v. f inal = true for each node v.

Lemma 5. A node v can change the value of variable f inal from true to f alse only in the first round or when a
fault occured just before the start of this round.

Proof. Let v.c = cr at the beginning of the round. In order for v to set v. f inal to f alse one of the
following conditions must be met at the start of the round: cr > δ(v), cr = ⊥, or v has a neighbor w
with w. f inal = true and w.c = cr.

The lemma is obviously true in the first case. Suppose that cr = ⊥ and v. f inal = true at the
round’s start. If during the previous round v. f inal was set to true then v.c can not be ⊥ at the start
of this round. Hence, at the start of the previous round f inal already had value true. But in this case
v.c was not changed in the previous round and thus, cr 6= ⊥, contradiction. Finally assume the last
condition. Then v and w cannot have changed their value of c in the previous round, because then
f inal = true would be impossible at the start of this round. Thus, v sent (cr, true) in the previous round.
Hence, if w.c = cr at that time, w would have changed w. f inal to f alse, again a contradiction.

Lemma 6. A node setting f inal to true will not change its variables as long as no error occurs.

Proof. Let v be a node that executes f inal := true. If v changes the value back to f alse in a later round
then by Lemma 5 a fault must have occured. Thus in an error-free execution node v will never change
variable f inal again. Since a node can only change variable c if f inal = f alse the proof is complete.

Lemma 7. If at the end of a round during which no error occured each node v satisfies v. f inal = true then the
configuration is legitimate and remains legitimate as long as no error occurs.

Proof. Note that no node changed its color during that round. If at the start of the round v. f inal = true
was already satisfied then none of v’s neighbors also having f inal = true had the same color as v.
Next consider a neighbor w of v with w. f inal = f alse at the start of the round. Since v sent (v.c, true)
at the start of this round, node w would have set f inal to f alse if it had chosen the same color as v.
Contradiction. Finally consider that case that v. f inal = f alse at the start of the round. Since v changed
f inal to true, none of its neighbors had chosen the same color as v. Thus, the configuration is legitimate.
Obviously, this property can only be changed by a fault.

With these lemmas the next theorem is proved along the same lines as Lemma 10.3 in [24].

Theorem 3. Algorithm Acol is self-stabilizing and computes a ∆ + 1-coloring within O(log n) rounds with
high probability (i.e., with probability at least 1− nc for any c ≥ 1). Acol has contamination radius 1.

Proof. According to Lemma 7 it suffices to prove that all nodes terminate within O(log n) time with
high probability. Let v ∈ V. Lemma 6 implies that the probability that v terminates in round r > 1
is equal to the probability that v sets v. f inal to true in round r − 1. This is the probability that v
selects a color different from ⊥ and from the selections of all neighbors that chose a value different
from ⊥ in round r − 2. Suppose that indeed v.c 6= ⊥ at the end of round r − 2. Then v.c 6∈ v.tabu.



Algorithms 2018, 11, 58 11 of 21

The probability that a given neighbor u of v selects the same color u.c = v.c in this round is at most
1/2(δ(v) + 1− |v.tabu|). This is because the probability that u selects a color different from ⊥ is 1/2,
and v has δ(v) + 1− |v.tabu| different colors to select from. Since r > 1 all nodes in v.tabu have
f inal = true and will never change this value. Thus, at most δ(v)− |tabu| neighbors select a new color.
By the union bound, the probability that v selects the same color as a neighbor is at most

δ(v)− |v.tabu|
2(δ(v) + 1− |v.tabu|) <

1
2

.

Thus, if v selects a color v.c 6= ⊥, it is distinct from the colors of its neighbors with probability at
least 1/2. It holds that v.c 6= ⊥ with probability 1/2. Hence, v terminates with probability at least 1/4.

The probability that a specific node v doesn’t terminate within r rounds is at most (3/4)r . By the
union bound, the probability that there exists a vertex v ∈ V that does not terminate within r rounds
is at most n(3/4)r. Hence, Acol terminates after r = (c + 1)4 log n rounds, with probability at least
1− n(3/4)r ≥ 1− 1/nc (note that log 4/3 > 1/4).

6.1. Fault Containment Time of Algorithm Acol

There is a significant difference between the shared memory and the message passing model when
analyzing the containment time. Firstly, a 1-faulty configuration also arises when a single message
sent by a node v is corrupted. Secondly, this may cause v’s neighbors to send messages they would
not send in a legitimate configuration. Even though the states of nodes outside Gr

v do not change,
these nodes may be forced to send messages. Thus, in general the analysis of the containment time
cannot be performed by considering Gr

v only. This is only possible in cases when a fault at v does not
force nodes at distance r + 1 to send messages they would not send had the fault not occurred.

In the following the fault containment behavior of Acol for 1-faulty configurations is analyzed.
Two types of transient errors are considered:

1. A single broadcast message sent by v is corrupted. Note that the alternative of using δ(v) unicast
messages instead a single broadcast has very good fault containment behavior but is slower due
to the handling of acknowledgements.

2. Memory corruption at node v, i.e., the value of at least one of the two variables of v is corrupted.

The first case is analyzed analytically whereas for the second case Markov chains and lumping,
(Theorem 2) are used. The independent degree δi(v) of a node v is the size of a maximum independent
set of N(v). Let ∆i(G) = max{δi(v) | v ∈ V}.

6.2. Message Corruption

If a message broadcast by v contains a color c f different from v.c or the value f alse for variable
f inal then the message (c f , f alse) has no effect on any w ∈ N(v) regardless of the value of c f ,
since w. f inal = true for all w ∈ N(v). Thus, this corrupted message has no effect at all. In order to
compute the containment time for Acol we first compute the contamination radius.

Lemma 8. The contamination radius of algorithm Acol after a single corruption of a broadcast message sent by
node v is 1. At most δi(v) nodes change their state during recovery.

Proof. It suffices to consider the case that v broadcasts message (c f , true) with c f 6= v.c.
Let Nconflict(v) = {w ∈ N(v) | w.c = c f }. The nodes in Nconflict(v) form an independent set, because
they all have the same color. Thus |Nconflict(v)| ≤ δi(v).

Let u ∈ V\N[v]. This node continues to send (u.c, true) after the fault. Thus, a neighbor of u that
changes its color will not change its color to u.c. This yields that no neighbor of u will ever send a
message with u.c as the first parameter. This is also true in case u ∈ N(v)\Nconflict(v). Hence, no node
outside Nconflict(v) ∪ {v} will change its state, i.e., the contamination radius is 1.



Algorithms 2018, 11, 58 12 of 21

Let w ∈ Nconflict(v). When w receives the faulty message it sets w. f inal to false. Before the faulty
message was sent no neighbor of v had the same color as v. Thus, in the worst case a node w ∈ Nconflict(v)
will choose v.c as its new color and send (v.c, f alse) to all neighbors. Since v. f inal = true, this will not
force state to change at v. Thus, v keeps broadcasting (v.c, true) and no neighbor w of v will ever reach
the state w.c = v.c and w. f inal = true. Hence, v will never change its state.

With this result Theorem 3 implies that the containment time of this fault is O(log δi(v)) on
expectation. The following theorem gives a bound for the expected value of the containment time
including its variance. Since the variance of a random variable is the expected value of the squared
deviation from the mean, this theorem shows that the containment time does not deviate much from
its expected value. A concrete bound can be obtained from this result using Chebyshev’s inequality.

Theorem 4. The expected containment time of algorithm Acol after a corruption of a message broadcast by node
v is at most 1

ln 2 Hδi(v) + 1/2 rounds (Hi is the ith harmonic number) with a variance of at most

1
ln2 2

δi(v)

∑
i=1

1
i2

+
1
4
≤ π2

6 ln2 2
+

1
4
≈ 3.6737.

Proof. After receiving message (c f , true) all nodes w ∈ Nconflict(v) set w. f inal to f alse and with equal
probability w.c to ⊥ or to a random color cw ∈ {0, 1, . . . , δ(w)}\w.tabu. Note that |w.tabu| ≤ δ(w)

because w.tabu = {u.c | u ∈ N(w)\v} ∪ {c f }. At the end of the round during which the corrupted
message was received, node w can choose v’s current color, because it may not be contained in the set
tabu. This can not happen in the following rounds. Thus, if w chooses a color different from ⊥ in the
following rounds then this color is different from the colors of all of w’s neighbors. Also in this case w
will terminate after the following round because then it will set f inal to true. Thus, after one round
w has chosen a color that is different from the colors of all neighbors with probability at least 1/2.
Furthermore, this color will not change again. After one additional round w reaches a legitimate state.

Let the random variable Xd with d = |Nconflict(v)| denote the number of rounds until the system
has reached a legal coloring. For w ∈ Nconflict(v) let Yw be the random variable denoting the number
of rounds until w has a legal coloring. By Lemma 8 Xd = max{Yw | w ∈ Nconflict(v)}. For i ≥ 1 let
G(i) = Prob(Xd ≤ i) = Prob(max{Yw | w ∈ Nconflict(v)} ≤ i). Since the random variables Yw’s are
independent G(i) = Prob(X ≤ i)|Nconflict(v)| where X is a geometric random variable with p = 0.5.
Thus G(0) = 0 and

G(i) =

(
i

∑
j=1

p(1− p)j−1

)d

.

Then E[Xd] = ∑∞
i=1 iProb(Xd = i). Let q = 1− p. Now for i ≥ 1

Prob(Xd = i) = G(i)− G(i− 1) = (1− qi)d − (1− qi−1)d

=
d

∑
j=0

(
d
j

)
(−1)j+1(1− qj)qj(i−1) =

d

∑
j=1

(
d
j

)
(−1)j+1(1− qj)

qj (qj)i.

This implies

E[Xd] =
d

∑
j=1

(
d
j

)
(−1)j+1(1− qj)

qj

∞

∑
i=1

i(qj)i =
d

∑
j=1

(
d
j

)
(−1)j+1

(1− qj)
=

d

∑
j=1

(
d
j

)
(−1)j+1

∞

∑
l=0

(qj)l

=
∞

∑
l=0

d

∑
j=1

(
d
j

)
(−1)j+1(ql)j =

∞

∑
l=0

(
1 +

d

∑
j=0

(
d
j

)
(−1)j+1(ql)j

)
=

∞

∑
l=0

(1− (1− ql)d).

The result follows from Lemma 9. The expression for the variance is proved in Lemma 10.



Algorithms 2018, 11, 58 13 of 21

Lemma 9. For fixed 0 < q < 1 and fixed d ≥ 1

∞

∑
l=0

(1− (1− ql)d) ∈ [− 1
ln q

Hd,− 1
ln q

Hd + 1] and
∞

∑
l=0

(1− (1− ql)d) ≈ − 1
ln q

Hd +
1
2

.

Proof. The function f (x) = 1− (1− qx)d is for fixed values of d decreasing for x ≥ 0. Furthermore,
f (0) = 1. Hence,

∞

∑
l=0

(1− (1− ql)d) ≥
∫ ∞

0
f (x)dx ≥

∞

∑
l=0

(1− (1− ql)d)− 1.

Using the substitution u = 1− qx the integral becomes

− 1
ln q

∫ ∞

0

1− ud

1− u
du = − 1

ln q

∫ 1

0

d−1

∑
i=0

uidu = − 1
ln q

d

∑
i=1

1
i
= − 1

ln q
Hd.

Approximating
∫ i+1

i f (x)dx with ( f (i) + f (i + 1))/2 yields

∞

∑
l=0

(1− (1− ql)d) ≈
∫ ∞

0
f (x)dx +

f (0)
2

= − 1
ln q

Hd +
1
2

Lemma 10. For d > 0 the variance of the containment time is at most

Var[Xd] =
1

ln2 2

d

∑
i=1

1
i2

+
1
4
≤ π2

6 ln2 2
+

1
4
≈ 3.6737.

Proof.

Var[Xd] = E[X2
d]− E[Xd]

2 =
∞

∑
i=1

i2Prob(X = i)− E[Xd]
2

By Lemma 11

∞

∑
i=1

i2Prob(X = i) =
∞

∑
l=1

(2l + 1)(1− (1− ql)d) = 2
∞

∑
l=1

l(1− (1− ql)d) + E[Xd]

Now Lemma 12 and Lemma 4 yield

Var[Xd] ≈
2

ln2 2

d

∑
i=1

Hi
i
+ E[Xd]− E[Xd]

2 ≈ 2
ln2 2

d

∑
i=1

Hi
i
+

Hd
ln 2

+
1
2
−
(

Hd
ln 2

+
1
2

)2

=
1

ln2 2

(
2

d

∑
i=1

Hi
i
− H2

d

)
+

1
4

2
d

∑
i=1

Hi
i
− H2

d = 2
d

∑
i=1

i

∑
j=1

1
ij
− (1 +

1
2
+ · · ·+ 1

d
)2

= 2
d

∑
i=1

1
i2

+ 2
d

∑
i=1

i−1

∑
j=1

1
ij
− 2

d

∑
i=1

i−1

∑
j=1

1
ij
−

d

∑
i=1

1
d2 =

d

∑
i=1

1
i2

=
π2

6



Algorithms 2018, 11, 58 14 of 21

Lemma 11. Let d > 0, q ∈ (0, 1) and Prob(X = i) =
d
∑

j=1
(d

j)
(−1)j+1(1−qj)

qj (qj)i. Then

∞

∑
i=1

i2Prob(X = i) =
∞

∑
l=1

(2l + 1)(1− (1− ql)d)

Proof.

∞

∑
i=1

i2Prob(X = i) =
d

∑
j=1

(
d
j

)
(−1)j+1(1− qj)

qj

∞

∑
i=1

i2(qj)i

=
d

∑
j=1

(
d
j

)
(−1)j+1(1− qj)

qj

(
2q2j

(1− qj)3 +
qj

(1− qj)2

)

=
d

∑
j=1

(
d
j

)
(−1)j+1

(
2qj

(1− qj)2 +
1

1− qj

)

=
d

∑
j=1

(
d
j

)
(−1)j+1

∞

∑
l=0

(2l + 1)(qj)l

=
∞

∑
l=1

(2l + 1)
d

∑
j=1

(
d
j

)
(−1)j+1(ql)j

=
∞

∑
l=1

(2l + 1)(1− (1− ql)d)

For the first equation we refer to the proof of Theorem 4. The second equality makes use of

∞

∑
i=1

i2xi =
2x2

(1− x)3 +
x

(1− x)2

and the fourth equality uses the following two identities

∞

∑
l=0

xl =
1

(1− x)
and

∞

∑
l=0

lxl =
x

(1− x)2 .

Lemma 12. Let d > 0 and q ∈ (0, 1) then

∞

∑
l=1

l(1− (1− ql)d) ≤ 1
(ln q)2

d

∑
i=1

Hi
i

Proof. We approximate ∑∞
l=1 l(1− (1− ql)d) with

∫ ∞
0 x(1− (1− qx)d)dx. Note that x(1− (1− qx)d)

has a single local maximum in the interval [0, ∞). If the local maximum is within the interval [y, y + 1]
with y ∈ N then the error is ∫ y+1

y
x(1− (1− qx)d)dx.



Algorithms 2018, 11, 58 15 of 21

This leads to a small overestimation of the sum as Figure 6b shows.

∞

∑
l=1

l(1− (1− ql)d) ≤
∫ ∞

0
x(1− (1− qx)d)dx

=
−1

(ln q)2

∫ 1

0
ln(1− u)

(1− ud)

1− u
du

=
−1

(ln q)2

d−1

∑
i=0

∫ 1

0
ln(1− u)uidu

=
1

(ln q)2

d

∑
i=1

Hi
i

.

The first equation uses the substitution u = 1− qx. The final result is based on the following identity

∫ 1

0
ln(1− u)uidu =

−Hi+1

i + 1
.

Theorem 4 gives an upper bound for the containment time and its variance of algorithm Acol .
To evaluate the quality of these upper bounds we modeled the behavior of this fault situation as
a Markov chain and computed E[Xd] and Var[Xd] using a software package based on symbolic
mathematics. Using Theorem 3.3.5 from [12] these computations showed that 1

ln 2 Hd + 1/2 matches
very well with E[Xd] and that E[Xd] ≈ 2 log d (see Figure 6a). Furthermore, the gap between Var[Xd]

and the bound given in Theorem 4 is less than 0.2 (see Figure 6b).

0 20 40 60 80 100

2.0

4.0

6.0

8.0

d

E[Xd ]
log d

(a)

0 20 40 60 80 100

3.00

3.50

3.67

d

Var[Xd ]
Approximation of Var[Xd ]

(b)

0 20 40 60

3.0

3.2

3.4

3.6

d

E[Ad ]
Var[Ad ]

(c)

Figure 6. Comparisons of computed with approximated values from Theorems 4 and 15. (a) Comparison
of computed value of E[Xd] with log d (Theorem 4); (b) Comparison of computed value of Var[Xd] with
approximation (Theorem 4); (c) E[Ad] and Var[Ad] from Lemma 15.

6.3. Memory Corruption

This section demonstrates the use of Markov chains and the application of Theorem 2. We consider
the case that the memory of a single node v is hit by a fault. The analysis breaks down the stabilizing
executions into several states and then computes the expected time for each of these phases. First we
look at the case that the fault causes variable v. f inal to change to f alse. If v.c does not change, then a
legitimate configuration is reached after one round. So assume v.c also changes. Then the fault will
not affect other nodes. This is because no w ∈ N(v) will change its value of w.c since w. f inal = true
and v. f inal = f alse. Thus, with probability at least 1/2 node v will choose in the next round a color
different from the colors of all neighbors and terminate one round later. Similar to Xd let random



Algorithms 2018, 11, 58 16 of 21

variable Zd denote the number of rounds until a legal coloring is reached (d = |Nconflict(v)|). It is easy
to verify that E[Zd] = 3 in this case.

The last case is that only variable v.c is affected (i.e., v. f inal remains true). The main difference to
the case of a corrupted message is that this fault persists until v.c has again a legitimate value. Let c f
be the corrupted value of v.c and suppose that Nconflict(v) = {w ∈ N(v) | w.c = c f } 6= ∅. A node
outside S = Nconflict(v) ∪ {v} will not change its state (cf. Lemma 8). Thus, the contamination radius
is 1 and at most δi(v) + 1 nodes change state. Let d = |Nconflict(v)|. The subgraph GS induced by S is a
star graph with d + 1 nodes and center v.

Lemma 13. To find a lower bound for E[Zd] we may assume that w can choose a color from {0, 1}\tabu with
tabu = ∅ if v. f inal = f alse and tabu = {v.c} otherwise and v can choose a color from {0, 1, . . . , d}\tabu
with tabu ⊆ {0, 1}.

Proof. When a node u ∈ S chooses a color with function randomColor the color is randomly selected
from Cu = {0, 1, . . . , δ(v)}\tabu. Thus, if w and v choose colors in the same round, the probability that
the chosen colors coincide is |Cw ∩ Cv|/|Cw||Cv|. This value is maximal if |Cw ∩ Cv| is maximal and
|Cw||Cv| is minimal. This is achieved when Cw ⊆ Cv and Cv is minimal (independent of the size of Cw)
or vice versa. Thus, without loss of generality we can assume that Cw ⊆ Cv and both sets are minimal.
Thus, for w ∈ Nconflict(v) the nodes in N(w)\{v} already use all colors from {0, 1, . . . , δ(v)} but 0 and
1 and all nodes in N(v)\Nconflict(v) already use all colors from {0, 1, . . . , δ(v)} but 0, 1, . . . , d. Hence,
a node w ∈ Nconflict(v) can choose a color from {0, 1}\tabu with tabu = ∅ if v. f inal = f alse and
tabu = {v.c} otherwise. Furthermore, v can choose a color from {0, 1, . . . , d}\tabu with tabu ⊆ {0, 1}.
In this case tabu = ∅ if w. f inal = f alse for all w ∈ Nconflict(v).

Thus, in order to bound the expected number of rounds to reach a legitimate state after a memory
corruption we can assume that G = GS and u. f inal = true and u.c = 0 (i.e., c f = 0) for all u ∈ S.
After one round u. f inal = f alse for all u ∈ S. To apply Theorem 2 the set Σ of all configurations is
partitioned into d + 4 subsets as follows:

I: Represents the faulty state with u.c = 0 and u. f inal = true for all u ∈ S.
Ci: Node v and exactly d− i non-center nodes will not be in a legitimate state after the following

round (0 ≤ i ≤ d). In particular v. f inal = f alse and w.c = v.c 6= ⊥ or v.c = w.c = ⊥ for exactly
d− i non-center nodes w.

P: Node v has not reached a legitimate state but will do so in the next round. In particular
v. f inal = f alse and v.c 6= w.c for all non-center nodes w.

F: Node v is in a legitimate state, i.e., v. f inal = true and v.c 6= w.c for all non-center nodes w, but w.c
may be equal to ⊥.

Note that I is the initial and F the absorbing state of the lumped Markov chain. Also when
the system is in state F, then it is not necessarily in a legitimate state. This state reflects the set of
configurations considered in the last section.

Lemma 14. Table 1 describes the transition probabilities of the lumped Markov chain.



Algorithms 2018, 11, 58 17 of 21

Table 1. This table summarizes the probabilities for all transitions.

Number Transition Probability

1 I −→ P d−1
2d + 1

d

(
1
2

)d+1

2 I −→ C0 d−1
d

(
1
2

)d+1
+ 1

2d

3 I −→ Cj ( d
d−j)

(
1
2

)d+1
(0 < j ≤ d)

4 Ci −→ Cj (d−i
d−j)

(
1
2

)d−i+1
+ 1

d−i+1 (
d−i
j−i)

(
1
4

)d−i
(3d−j − 2d−j) (0 ≤ i ≤ j ≤ d)

5 Ci −→ P 1
d−i+1

(
3
4

)d−i
+ d−i−1

2(d−i+1) (0 ≤ i < d)

6 Cd −→ P 1/2
7 P −→ F 1

Proof. We consider each case separately. The last two cases are trivial.

1. Note that u. f inal = true and u.c = 0 for all u ∈ S.
Case 0: v.c = ⊥. Impossible.
Case 1: v.c = 0. Impossible, since non-center nodes have c = 0 and f inal = true.
Case 2: v.c = 1. This happens with probability 1/2d. All non-center nodes w choose w.c = ⊥,
this happens with probability 1/2d.
Case 3: v.c > 1. This happens with probability (d− 1)/(2d). Non-center nodes can make any
choice. This gives the total probability for this transition as (d− 1)/(2d) + 1/(d2d+1).

2. Note that u. f inal = true and u.c = 0 for all u ∈ S.
Case 0: v.c = ⊥. Non-center nodes choose c = ⊥. The case has probability 1/2d+1

Case 1: v.c = 0. Impossible (see transition I −→ P).
Case 2: v.c = 1. At least one non-center nodes w choose w.c = 1, all others choose w.c = ⊥.

This case has probability 1
2d ∑d

l=1 (
d
l)
(

1
2

)d
= 1

2d

(
1
2

)d
(2d − 1).

Case 3: v.c > 1. This case is impossible.
3. Note that u. f inal = true for all u ∈ S.

Case 1: v.c = 0. This happens with probability 1/2(d− i + 1). None of the d− i non-center nodes

w sets w.c = 0, this has probability
( 3

4
)d−i

.
Case 2: v.c = 1. Similar to case 1.
Case 3: v.c > 1. (requires d− i > 1). This happens with probability d−i−1

2(d−i+1) . Non-center nodes
can make any choice.

4. Note that u. f inal = f alse for all u ∈ S.
Case 1: v.c = ⊥. This happens with probability 1

2 . d − j non-center nodes choose c = ⊥
(with probability 1/2d−j), the other j− i non-center nodes choose c 6= ⊥ (with probability 1/2j−i).

The total probability for this case is (d−i
d−j)

(
1
2

)d−i+1
.

Case 2: v.c = 0. This happens with probability 1/(2(d − i + 1)). Exactly j − i non-center
nodes choose c = 1 (with probability 1/4j−i), 1 ≤ l ≤ d − j non-center nodes choose c = 0



Algorithms 2018, 11, 58 18 of 21

(with probability 1/4l) and all other non-center nodes choose c = ⊥ (with probability 1/2d−j−l).
The total probability for this case is

1
2(d−i+1) (

d−i
j−i)

(
1
4

)j−i
∑

d−j
l=1 (

d−j
l )
(

1
4

)l ( 1
2

)d−j−l

= 1
2(d−i+1) (

d−i
j−i)

(
1
4

)j−i
∑

d−j
l=1 (

d−j
l )
(

1
2

)d−j+l

= 1
2(d−i+1) (

d−i
j−i)

(
1
4

)j−i ( 1
2

)d−j
∑

d−j
l=1 (

d−j
l )
(

1
2

)l

= 1
2(d−i+1) (

d−i
j−i)

(
1
2

)d+j−2i
∑

d−j
l=1 (

d−j
l )
(

1
2

)l

= 1
2(d−i+1) (

d−i
j−i)

(
1
2

)d+j−2i (( 3
2
)d−j − 1

)
= 1

2(d−i+1) (
d−i
j−i)

(
1
4

)d−i (
3d−j − 2d−j

)
Case 2: v.c = 1. Similar to Case 1.
Case 3: v.c > 0. This does not lead to Cj but to P.

5. Note that u. f inal = f alse for all u ∈ S.
Case 1: v.c = 0. This happens with probability 1/2(d− i + 1). None of the d− i non-center nodes
w sets w.c = 0, this has probability (3/4)d−i.
Case 2: v.c = 1. Similar to case 1.
Case 3: v.c > 1. This happens with probability d−i−1

2(d−i+1) . Note d > i. Non-center nodes can make
any choice.

We first calculate the expected number E[Ad] of rounds to reach the absorbing state F.
With Theorem 4 this will enable us to compute the expected number E[Zd] of rounds required to
reach a legitimate system state. To build the transition matrix of the lumped Markov chain the d + 4
states are ordered as I, C0, C1, . . . , Cd, P, F. Let Q be the (d + 3)× (d + 3) upper left submatrix of P.
For s = −1, 0, 1, . . . , d + 1 denote by Qs the (s + 2)× (s + 2) lower right submatrix of Q, i.e., Q = Qd+1.
Denote by Ns the fundamental matrix of Qs (notation as introduced in Section 5). Let 1s be the column
vector of length (s + 2) whose entries are all 1 and εs = Ns1s. For s = 0, . . . , d, εs is the expected
number of rounds to reach state F from state Cd−s and εd+1 is the expected number of rounds to reach
state F from I, i.e., εd+1 = E[Ad] (Theorem 3.3.5, [12]). Identifying P with Cd+1 we have ε−1 = 1.

Lemma 15. The expected number E[Ad] of rounds to reach F from I is at most 5 and the variance is at most 3.6.

Proof. Note that Qs and Ns are upper triangle matrices. Let

Ei −Qi =


1− a1 −a2 . . . −ai+2

0
Ei−1−Qi−1

...
0

 Ni =


x1 x2 . . . xi+2

0
Ni−1

...
0


Ei = (Ei −Qi)Ni gives rise to (i + 2)2 equations. Adding up the i + 2 equations for the first row of Ei
results in

εi = (1− a1)
−1

(
1 +

i+2

∑
l=2

alεi+1−l

)
(1)

It is straightforward to verify that ε−1 = 1 and ε0 = 3. Hence

εi = (1− a1)
−1

(
1 +

i

∑
l=2

alεi+1−l + 3ai+1 + ai+2

)



Algorithms 2018, 11, 58 19 of 21

Next we show by induction on i that εi ≤ 4 for i = −1, 0, 1, . . . , d. So assume that εl ≤ 4 for
l = −1, 0, 1, . . . , i− 1 with i < d. Then

εi ≤ (1− a1)
−1

(
1 + 4

i

∑
l=2

al + 3ai+1 + ai+2

)

since ai ≥ 0. Using the fact 1− a1 = ∑i+2
l=2 al this inequality becomes

εi ≤ (1− a1)
−1(1 + 4(1− a1 − ai+1 − ai+2) + 3ai+1 + ai+2) = 4 +

1− ai+1 − 3ai+2

1− a1

Coefficient aj denotes the transition probability from Cd−i to Cd+j−(i+1) for j = 1, . . . , i + 1 and
ai+2 that for changing from Cd−i to P. For i ≤ d the following values from Lemma 14 are used:

a1 =

((
i

i + 1− l

)(
1
2

)i+1
+

1
i + 1

(
i

l − 1

)(
1
4

)i
(3i+1−l − 2i+1−l)

)

ai+1 =

(
1
2

)i+1
and ai+2 =

1
i + 1

(
3
4

)i
+

i− 1
2(i + 1)

. Thus,

3ai+2 =
3

i + 1

(
3
4

)i
+

3(i− 1)
2(i + 1)

> 1

holds for i ≥ 2. This yields
1− ai+1 − 3ai+2

1− a1
< 0

and therefore εi ≤ 4. To bound εd+1 we use Equation 1 with i = d + 1. Note that in this case a1 = 0
since a transition from I to itself is impossible. Hence

E[Ad] = εd+1 = 1 +
d+3

∑
l=2

alεd+2−l ≤ 1 + 4
d+3

∑
l=2

al = 5

Thus, Var[Ad] = ((2Nd+1 − Ed+1)1d+1 − 12
d+1)[1] = 2 ∑d+3

i=1 xiεd+2−i − εd+1 − ε2
d+1 Figure 6c

shows that Var[Ad] ≤ 3.6.

Lemma 16. The expected containment time after a memory corruption at node v is at most 1
ln 2 Hδi(v) + 11/2

with variance less than 7.5.



Algorithms 2018, 11, 58 20 of 21

Proof. For a set X of configurations and a single configuration c denote by E(c, X) the expected value
of the number of transitions from x to a state in X. Let L be the set of legitimate system states. Then

E(I,L) = ∑
e∈T(I,L)

l(e)p(e)

= ∑
x∈F

∑
e1∈T(I,x)

∑
e2∈T(x,L)

(l(e1) + l(e2))p(e1)p(e2)

= ∑
x∈F

∑
e1∈T(I,x)

l(e1)p(e1) ∑
e2∈T(x,L)

p(e2) + p(e1) ∑
e2∈T(x,L)

l(e2)p(e2)


= ∑

x∈F
∑

e1∈T(I,x)
(l(e1)p(e1) + p(e1)E(x,L))

= ∑
x∈F

E(I, x) + ∑
e1∈T(I,x)

p(e1)E(x,L)


≤ E(I, F) + max{E(x,L) | x ∈ F} ∑
e1∈T(I,F)

p(e1)

= E(I, F) + max{E(x,L) | x ∈ F} ≤ 5 +
1

ln 2
Hδi(v) + 1/2

The last step uses Lemma 4 and 15. The bound on the variance is proved similarly.

Theorem 3 and 4, Lemma 8 and 16 together prove the following Theorem.

Theorem 5. Acol is a self-stabilizing algorithm for computing a (∆ + 1)-coloring in the synchronous model
within O(log n) time with high probability. It uses messages of size O(log n) and requires O(log n) storage per
node. With respect to memory and message corruption it has contamination radius 1. The expected containment
time is at most 1

ln 2 H∆i + 11/2 with variance less than 7.5.

Corollary 1. Algorithm Acol has expected containment time O(1) for bounded-independence graphs. For unit
disc graphs this time is at most 8.8.

Proof. For these graphs ∆i ∈ O(1), in particular ∆i ≤ 5 for unit disc graphs.

7. Conclusions

The analysis of self-stabilizing algorithms is often confined to the stabilization time starting from
an arbitrary configuration. In practice the time to recover from a 1-faulty configuration is much more
relevant. This paper presents techniques to analyze the containment time of randomized self-stabilizing
algorithms for 1-faulty configurations. The execution of an algorithm is modeled as a Markov chain,
its complexity is reduced with the lumping technique. The power of this technique is demonstrated
by an application to a ∆ + 1-coloring algorithm. We believe that the technique can also be applied to
other self-stabilizing algorithms. We leave the application to problems such as maximal independents
sets and maximal matchings for future work.

Funding: Research was funded by Deutsche Forschungsgemeinschaft DFG (TU 221/6-2).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Gärtner, F.C. Fundamentals of Fault-tolerant Distributed Computing in Asynchronous Environments.
ACM Comput. Surv. 1999, 31, 1–26. [CrossRef]

2. Dolev, S. Self-Stabilization; MIT Press: Cambridge, MA, USA, 2000.
3. Azar, Y.; Kutten, S.; Patt-Shamir, B. Distributed Error Confinement. ACM Trans. Algorithms 2010, 6. [CrossRef]

http://dx.doi.org/10.1145/311531.311532
http://dx.doi.org/10.1145/1798596.1798601


Algorithms 2018, 11, 58 21 of 21

4. Kutten, S.; Patt-Shamir, B. Adaptive Stabilization of Reactive Protocols. In Lecture Notes in Computer Science,
Proceedings of the International Conference on Foundations of Software Technology and Theoretical Computer Science,
Chennai, India, 16–18 December 2004; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3328, pp. 396–407.

5. Ghosh, S.; He, X. Scalable Self-Stabilization. J. Parallel Distrib. Comput. 2002, 62, 945–960. [CrossRef]
6. Dubois, S.; Masuzawa, T.; Tixeuil, S. Bounding the Impact of Unbounded Attacks in Stabilization. IEEE Trans.

Parallel Distrib. Syst. 2012, 23, 460–466. [CrossRef]
7. Beauquier, J.; Delaet, S.; Haddad, S. Necessary and sufficient conditions for 1-adaptivity. In Proceedings of

the 20th International Parallel and Distributed Processing Symposium, Rhodes Island, Greece, 25–29 April
2006; pp. 10–16.

8. Ghosh, S.; Gupta, A.; Herman, T.; Pemmaraju, S. Fault-containing self-stabilizing distributed protocols.
Distrib. Comput. 2007, 20, 53–73. [CrossRef]

9. Köhler, S.; Turau, V. Fault-containing self-stabilization in asynchronous systems with constant fault-gap.
Distrib. Comput. 2012, 25, 207–224. [CrossRef]

10. Ghosh, S.; Gupta, A. An exercise in fault-containment: Self-stabilizing leader election. Inf. Process. Lett. 1996,
59, 281–288. [CrossRef]

11. Turau, V.; Hauck, B. A fault-containing self-stabilizing (3 - 2/(Delta+1))-approximation algorithm for vertex
cover in anonymous networks. Theor. Comput. Sci. 2011, 412, 4361–4371. [CrossRef]

12. Kemeny, J.G.; Snell, J.L. Finite Markov Chains; Springer: Berlin/Heidelberg, Germany, 1976.
13. Duflot, M.; Fribourg, L.; Picaronny, C. Randomized Finite-state Distributed Algorithms As Markov Chains.

In Lecture Notes in Computer Science, Proceedings of the International Symposium on Distributed Computing, Lisbon,
Portugal, 3–5 October 2001; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2180, pp. 240–254.

14. DeVille, R.; Mitra, S. Stability of Distributed Algorithms in the Face of Incessant Faults. In Lecture Notes in
Computer Science, Proceedings of the Symposium on Self-Stabilizing Systems, Lyon, France, 3–6 November 2009;
Springer: Berlin/Heidelberg, Germany, 2009; Volume 5873, pp. 224–237.

15. Fribourg, L.; Messika, S.; Picaronny, C. Coupling and Self-Stabilization. Distrib. Comput. 2006, 18, 221–232.
[CrossRef]

16. Yamashita, M. Probabilistic Self-Stabilization and Random Walks. In Proceedings of the 2011 Second
International Conference on Computing, Networking and Communications (ICNC), Osaka, Japan,
30 November–2 December 2011; pp. 1–7.

17. Mitton, N.; Fleury, E.; Guérin-Lassous, I.; Séricola, B.; Tixeuil, S. On Fast Randomized Colorings in Sensor
Networks. In Proceedings of ICPADS; IEEE: New York, NY, USA, 2006; pp. 31–38.

18. Crouzen, P.; Hahn, E.; Hermanns, H.; Dhama, A.; Theel, O.; Wimmer, R.; Braitling, B.; Becker, B. Bounded
Fairness for Probabilistic Distributed Algorithms. In Proceedings of the 11th International Conference on
Application of Concurrency to System Design (ACSD), Newcastle Upon Tyne, UK, 20–24 June 2011; pp. 89–97.

19. Peleg, D. Distributed Computing: A Locality-Sensitive Approach; SIAM Society for Industrial and Applied
Mathematics: Philadelphia, PA, USA, 2000.

20. Gradinariu, M.; Tixeuil, S. Self-stabilizing Vertex Coloring of Arbitrary Graphs. In Proceedings of the 4th
International Conference on on Principles of Distributed Systems (OPODIS 2000), Paris, France, 20–22 December
2000; pp. 55–70.

21. Dolev, S.; Herman, T. Superstabilizing Protocols for Dynamic Distributed Systems. Chic. J. Theor. Comput. Sci.
1997, 4, 1–40.

22. Luby, M. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM J. Comput. 1986,
15, 1036–1055. [CrossRef]

23. Johansson, Ö. Simple Distributed δ + 1-coloring of Graphs. Inf. Process. Lett. 1999, 70, 229–232. [CrossRef]
24. Barenboim, L.; Elkin, M. Distributed Graph Coloring: Fundamentals and Recent Developments; Morgan &

Claypool Publishers: Williston, VT, USA, 2013.
25. Lenzen, C.; Suomela, J.; Wattenhofer, R. Local algorithms: Self-stabilization on speed. In Proceedings of the

Symposium on Self-Stabilizing Systems, Lyon, France, 3–6 November 2009; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 17–34.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1006/jpdc.2001.1824
http://dx.doi.org/10.1109/TPDS.2011.158
http://dx.doi.org/10.1007/s00446-007-0032-2
http://dx.doi.org/10.1007/s00446-011-0155-3
http://dx.doi.org/10.1016/0020-0190(96)00121-4
http://dx.doi.org/10.1016/j.tcs.2010.11.010
http://dx.doi.org/10.1007/s00446-005-0142-7
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1016/S0020-0190(99)00064-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Model
	Examples
	Contamination Radius
	Containment Time

	Self-Stabilizing Algorithms and Markov Chains
	Algorithm Acol
	Fault Containment Time of Algorithm Acol
	Message Corruption
	Memory Corruption

	Conclusions
	References

