
algorithms

Article

Approximation Algorithms for the Geometric
Firefighter and Budget Fence Problems

Rolf Klein 1, Christos Levcopoulos 2 and Andrzej Lingas 2,*
1 Institut für Informatik I, Universität Bonn, D-53117 Bonn, Germany; rolf.klein@uni-bonn.de
2 Department of Computer Science, Lund University, 221 00 Lund, Sweden; Christos.Levcopoulos@cs.lth.se
* Correspondence: Andrzej.Lingas@cs.lth.se; Tel.: +46-46-222-45-19; Fax: +46-46-13-10-21

Received: 6 March 2018; Accepted: 10 April 2018; Published: 11 April 2018
����������
�������

Abstract: Let R denote a connected region inside a simple polygon, P. By building barriers (typically
straight-line segments) in P \ R, we want to separate from R part(s) of P of maximum area. All edges
of the boundary of P are assumed to be already constructed or natural barriers. In this paper we
introduce two versions of this problem. In the budget fence version the region R is static, and there is
an upper bound on the total length of barriers we may build. In the basic geometric firefighter version
we assume that R represents a fire that is spreading over P at constant speed (varying speed can
also be handled). Building a barrier takes time proportional to its length, and each barrier must be
completed before the fire arrives. In this paper we are assuming that barriers are chosen from a given
set B that satisfies certain conditions. Even for simple cases (e.g., P is a convex polygon and B the
set of all diagonals), both problems are shown to be NP-hard. Our main result is an efficient ≈11.65
approximation algorithm for the firefighter problem, where the set B of allowed barriers is any set
of straight-line segments with all endpoints on the boundary of P and pairwise disjoint interiors.
Since this algorithm solves a much more general problem—a hybrid of scheduling and maximum
coverage—it may find wider applications. We also provide a polynomial-time approximation scheme
for the budget fence problem, for the case where barriers chosen from a set of straight-line cuts of the
polygon must not cross.

Keywords: budget fence problem; firefighter problem; PTAS; scheduling; set cover; time complexity

1. Introduction

The firefighter problem in graphs has recently received significant attention [1–4]. It models a
situation where a fire, infection, computer virus, etc., spreads through a network, and the goal is to
save as many network nodes as possible by a suitable placement of firefighters.

At the beginning a fire breaks out at the source vertex of the input graph. At each subsequent
time step a bounded number of firefighters (just one in the standard version) may be placed at vertices
that are not already on fire, to defend them. Once defended, a vertex will never catch fire. After the
firefighters have been placed, the fire spreads from each burning vertex to all its undefended neighbors.
The process ends when the fire can no longer spread. All vertices which are not on fire are considered
to be saved. The objective is to determine a placement of firefighters that maximizes the number of
vertices saved.

This graph firefighter problem is NP-hard already for trees [3,5], and hard to approximate
within nα, for any α < 1, in polynomial-time in the general case [2]. Only trees are known to admit
polynomial-time constant-factor (e/(e− 1) ≈ 1.5819) approximation algorithms [2].

Real firefighting takes place in environments different from graphs. The importance of the
problem poses a big challenge to research: how should fire brigades best deploy their forces in order to
efficiently quench or contain a raging fire?
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In this paper we focus on geometric aspects of the problem, leaving aside, for now, additional
constraints imposed by climate, geology, area utilization and other factors. We propose a natural
geometric firefighter problem. Instead of a graph, we consider a polygonal region P with a distinguished
point R where a fire starts spreading through P at a given constant speed. Instead of placing firefighters,
we can build one-dimensional barriers (i.e., straight-line segments or curves) also at a given constant
speed in the area still free of fire, one at a time. Thus, building a barrier takes time proportional to its
length. A barrier must be built continuously and each barrier point must be completed before the fire
reaches any point on the yet not completed fragments of this barrier. The goal is to maximize the area
of P that is separated from the fire by the barriers. All edges of the boundary of P are assumed to be
already constructed or natural barriers. (Our results can be modified to apply to other variants of the
problem. For example, the fire can spread at various speeds, and the time it takes to build various
barriers can also vary.)

We also consider a simpler version termed the budget fence problem. For a polygonal region P,
a contaminated subregion R, and a fence budget l, we want to separate a maximum area of P from R
by drawing barriers within P \ R of total length not exceeding l. In this static case no time constraints
need to be observed.

Both problems have several variants depending on the type of polygonal region and the set B of
barriers allowed.

1.1. Our Contributions

In general, our contributions are pioneering in the crucial geometric aspects of firefighting.
In Theorem 2, we show the NP-hardness of the geometric firefighter problem for convex polygons,

even if the set of allowed barriersis restricted to a set of pairwise disjoint diagonals. Theorem 3
states that the problem is also NP-hard for star-shaped polygons and unrestricted sets of barriers.
These hardness results carry over to the budget fence problem.

Our main result is a constant (≈11.65) approximation greedy algorithm for the firefighter problem
in simple polygons, where the set B of allowed barriers is any set of straight-line segments with
all endpoints on the boundary of P and pairwise disjoint interiors. (In the preliminary conference
version [6], we have not taken into accountthe possibility of delaying fire propagation by previously
inserted not straight-line or intersecting barriers to not yet saved areas. For this reason, we have
erroneously allowed B to be less restricted.) The approximation algorithm runs in time polynomial in
the size of B; see Theorems 4 and 8. This algorithm solves, in fact, a more general problem which is
a hybrid of scheduling and maximum coverage. We are given a finite set of non-splittable jobs with
release, duration, and completion time demands. Each job covers some part of a universe. The objective
is to feasibly schedule a subset of jobs so that the profit from the total part of universe covered is
maximized. Since this hybrid problem is a generalization of the maximum coverage problem, it cannot
be approximated within a factor smaller than e/(e− 1) ≈ 1.5819 in polynomial time unless P = NP [7].

In Theorem 9, we address the budget fence problem in a simple polygon. Here, the set B consists
of any set of straight-line segments within the polygon and outside the contaminated subregion,
having all endpoints on the polygon boundary. We additionally require that those fence segments
the algorithm selects from the given set B must have pairwise disjoint interiors. We present a
polynomial-time approximation scheme (PTAS) based on dynamic programming. It also yields
a low-constant approximation for the geometric firefighter problem with disjoint selected barriers
in simple polygons, provided the geodesic distances of the given straight-line barriers from the fire
source do not differ too much; see Corollary 10.

1.2. Related Results

Several different generalizations and variants of the graph firefighter problem have been studied
in the literature [1–4]. Recently, this problem has also been studied in the context of random geometric
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graphs, whose nodes correspond to random points according to a random distribution; in this setting,
two points are connected by an edge if the distance between them is shorter than a specified constant [8].

There are other papers beside Khuller et al. [9] which study generalizations of the maximum
coverage problem, e.g., Cohen and Katzir [10]. Some of them are also partly related to
scheduling, since they consider picking one element or set at a time, e.g., in Bansal et al. [11].
However, these generalizations are still very different from our hybrid problem, and therefore none
of the techniques used in those papers seem applicable to our problem. Other papers relating set
cover to scheduling also deal with very different problems. See, for example, Bansal and Pruhs [12],
Hassin and Levin [13] and Ghaderi et al. [14]. Following the general approach for submodular function
maximization, as described in Chekuri et al. [15], it may be possible to design an algorithm for our
hybrid problem, although perhaps with a much worse approximation ratio.

Recently, Klein et al. [16] have studied another variation of the geometric firefighter problem,
where the fire is expanding in an open field without any boundaries, and a single (curved) barrier
which surrounds the fire is being built in order to contain it. Very recently, Zambon et al. [17] has
reported on experimental efforts to solve a variant of the geometric firefighter problem for instances of
up to 300 polygon vertices.

To the best of our knowledge, the budget fence problem has not been studied except for very
special cases, e.g., for rectilinear strips [18]. A related problem which has been studied is to select,
among a given set of curves, a minimum number of curves which separates two sets of points [19] .

2. Barriers

By a barrier in a polygonal region we mean a curve of constant algebraic degree that does not
intersect itself and has both endpoints on the polygon’s boundary (in other words, a cut). The barriers
constructed must be disjoint (no intersections allowed), except that their endpoints are allowed to
coincide. Barriers must be built (drawn) from one endpoint to the other at constant speed, a single
barrier at a time, but there is no travel cost between different barrier locations. In the firefighter
problem, no point b on a barrier can be built after the expanding fire has reached b.

As part of the problem definition, a set B of allowed barriers is specified.

3. NP-Hardness

A natural approach to show NP-hardness of the geometric firefighter problem is a reduction
from the graph firefighter problem, which is known to be NP-hard even for trees of maximum degree
three [3]. This approach yields the following theorem.

Theorem 1. The geometric firefighter problem is NP-hard for simple polygons, when the barriers can be chosen
from a given set of pairwise disjoint diagonals of identical length.

Proof. Let T be a rooted tree with maximum degree three which is a part of an instance of the
aforementioned firefighter problem on trees. The fire is supposed to break at the root of T.

First, we draw T in the plane in such a way that each drawn edge has the same length d. Next,
we replace each vertex with a small square of the same size s that is polynomially smaller than the edge
length. The fire is supposed to break at the top of the root square. The edge from the parent (if any) is
supposed to touch the top of the square while the at most three edges to the children are supposed to
touch the bottom of the square. Then, we split each drawn edge into two parallel edges forming an
“edge pipe” of thickness δ that is polynomially smaller than the square size s. The thickness δ is also so
small that the area of such an edge pipe is polynomially smaller than that of a vertex square.

In this way, we obtain a simple polygon T′. Furthermore, we set the propagation speed of the
fire and the speed of drawing a barrier so that in a time unit, the fire can propagate within the radius
of d + s in an open area and a barrier of length δ can be drawn. Observe that the fire while reaching
vertices may be delayed by the time taken by a traversal of polynomially small fraction of the edge
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length d since in general the distance to traverse in a vertex square may slightly exceed s. This however
does not affect the main arguments. Finally, we define the set of allowed barriers to be the diagonals of
length δ “closing” the pipes at their ends further away from the root square.

Now the crucial observation is that drawing such an allowed diagonal e saves roughly the area of
k vertex squares, i.e., ks2, in T′, where k is the number of vertices without firefighter saved by placing a
firefighter at the root of the subtree of T corresponding to the subpolygon of T′ cut off by e.

In this way we can efficiently reduce an instance (of the decision version) of the aforementioned
known NP-hard firefighter problem on the tree T to an instance (of the decision version) of the
geometric firefighter problem on the polygon T′.

If we allow for a large range of the lengths of barriers, then we obtain NP-hardness for the
geometric firefighter problem with diagonal barriers even for convex polygons.

Theorem 2. The geometric firefighter problem is NP-hard even for convex polygons, even if the set of allowed
barriers is restricted to a set of pairwise disjoint diagonals.

Proof. We reduce from the subset-sum problem [20]. Let {a1, a2, ..., ak} be the set of positive integers,
s := ∑k

i=1 ai, and let t be the desired target sum in the subset-sum problem we want to solve by using
the firefighter algorithm for convex polygons.

The convex polygon P is constructed as follows. It has 3k vertices. Of these vertices, 2k lie on
a circle C of radius r (to be determined later) centred at the fire source. Every third vertex vi of the
convex polygon lies in the interior of this circle C.

Vertex vi can be cut off by a diagonal of length ai; see Figure 1. The resulting triangle is of height h,
independent of index i, so that its area equals h · ai/2. Two consecutive vertices of polygon P situated
on C are at distance greater than 2t. ( The precise location of the vertex vi is not essential, as long as it
lies on or inside the circle C.)

C

P

ai

> 2t r

vi

h

Figure 1. Constructing firefighter instances to show NP-hardness.

The set B of possible barriers in this proof is the set of all k diagonals ai, for i = 1, 2, ..., k.
Let us assume that barriers can be built at speed one. Defining the fire’s speed, v, by v(t + 0.5) = r

ensures that the firefighter can build barriers of total length at most t + 0.5 before the fire reaches the
circle and the whole process terminates. Hence, no diagonal of length >2t can be built. On the other
hand, if we make radius r large enough to satisfy

( ai
2

)2
<

(
1− t2

(t + 0.5)2

)
r2,

Then vt <
√

r2 − (ai/2)2 holds, meaning that the fire has not reached the ith triangle at time t
(the shaded region in Figure 1).
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Therefore, finding the optimal solution for the firefighting problem is equivalent to finding
the subset of integers from the subset-sum problem whose sum is as close to t as possible, without
exceeding t.

We observe that an additive error less than 1/k2 in the lengths of the diagonals would be tolerable
in this construction. Thus, vertices can be described by rationals of length polynomial in the bit length
of the input.

The proof of Theorem 2 would not work if the firefighter were allowed to build barriers freely
anywhere in the polygon. But it turns out that the complexity of the problem does not decrease in this
more liberal setting.

Theorem 3. The geometric firefighter problem and the budget fence problem are NP-hard for star-shaped
polygons even if there is no restriction as to where the barriers can be built, and curved barriers are allowed.

Proof. First, we shall show that the geometric firefighter problem for a simple polygon is NP-hard
even if the endpoints of the barriers are not required to be vertices of the polygon. This holds both in
the case where the barriers have to be straight-line segments, and in the case where they are allowed to
be arbitrary curves.

We modify the construction used in the proof for the convex polygons, where 2k of the points
lie on the circle C and k points lie inside C. The modification is as follows. We will use unnecessarily
huge values to simplify the arguments.

Firstly, we become more specific concerning the edges connecting consecutive vertices lying on
the circle C. This means that the circle C may have to be much larger than it had to be in the previous
proof. We require that each one of these longer edges has length at least 10s2, where s is the sum of all
the integers in the instance of the subset-sum problem. (It is still acceptable if some of these diagonals
are much larger, but their length has to be bounded by a polynomial in s.) We will assume without loss
of generality that s > t, that each integer ai is smaller than t and that k > 10 (otherwise the problem is
easy to solve).

Secondly, we adjust the relative speed of the firefighter with respect to the fire. As before,
the firefighter has enough time to build barriers of total length precisely t, until the fire reaches anyone
of the small diagonals ei of length ai, which are the candidate barriers and cut the corresponding
triangles. But, in addition, we require that the speed of the fire is 60s2 times larger than the speed of
the firefighter.

Thirdly, we replace each small triangle cut by one of the small diagonals ei by a square qi of area
9s3 · ai (In this way, its side has length smaller than 3 · s2, which suffices in order to make all these
squares fit around the circle C with no overlaps.). Recall that ai is the length of ei. The square is placed
in such a way that the diagonal ei cuts off this square from the rest of the polygon, and ei is in the
middle of one of the sides of the square.

This finishes the construction. It remains to show that any optimal solution saves an area of size
at least 9s3 · t if and only if the answer to the subset-sum problem is “yes”, i.e., there is a subset of
integers whose total sum is t. Clearly, if there is such a subset of integers whose total sum is t it follows
that barriers can be constructed along the corresponding diagonals before the fire comes, and so an
area of size 9s3 · t can be saved.

What happens if the answer to the subset-sum problem is “no”? Then the area saved by cutting
off squares along diagonals is no more than 9s3 · (t− 1), which leaves an area of size at least 9s3 to be
saved in some other way (other than by building barriers along diagonals), if we should be able to
achieve the goal of 9s3 · t.

Is there some way to save area of size 9s3 in some other way, for example by using curved barriers?
Recall that the total length of barriers which the firefighter can build until the fire comes to the first
square is t. From that moment, the fire has to advance a geodesic distance no longer than 30s2 before
the whole process is over. Since the speed of the fire is 60s2 times larger than the speed of the firefighter,
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it follows that: from the moment the fire reaches the first square until the whole process is over the
firefighter can build barrier(s) of (total) length no more than (30s2)/(60s2), and hence 1/2. So, the total
length of the barrier which the firefighter can build during the whole process is not larger than t + 0.5.
With such a possible length, the maximum area one can save is O(t2), if one does not utilize “valves”
like the small diagonals which cut off the squares. A generous, straightforward estimate, to simplify
the argument, would be that no more than 4t2 area can be saved, which is still far off the value 9s3

which we would have to achieve.
In the following second part of the proof, we shall show that the polygon constructed in the first

part can be modified to be star-shaped.
The modification is that instead of attaching a small square to each one of the diagonals ei,

we attach a rectangle whose one side is ei, and whose area is the same as the area of the corresponding
square in the previous proof, i.e., 9 · s3 · ai. Thus, the height of each one of the rectangles is 9s3.
We observe that the whole polygon is now visible from the fire-centre, and hence it is star-shaped.

Furthermore in order to ensure that the fire can move across any such rectangle sufficiently fast,
we now require that the speed of the fire is 30 · s3 larger than the speed of building barriers. Hence,
we adjust the size of the circle C, and enlarge it so that the distance from the fire source (circle center)
to the closest diagonal ei should be t · (30 · s3). In this way, as in the previous proof, the firefighter has
precisely the time needed to build barriers of total length t before the fire reaches the first diagonal ei,
but still the total length of barriers which can be built before the whole process is over is not larger
than t + 0.5.

Otherwise, the argument goes as for the previously constructed polygon in this proof, but instead
of valves we consider barriers cutting off (pieces of) rectangles.

The proof of Theorem 3 applies equally well to the budget fence problem.

4. An Approximation Algorithm for the Geometric Firefighter Problem

In this section we present an efficient greedy algorithm for solving the geometric firefighter
problem for a finite barrier set B, that achieves a constant approximation factor, where B consists of
disjoint straight-line segments with both endpoints on the boundary of P.

Our algorithm works in a more general setting, related to job scheduling and maximum coverage.
Each barrier b ∈ B of the firefighter problem can be considered a job. It has a duration (the time needed
to build it) and a completion time (the last point in time where the fire permits the construction of b to
be completed). Each job is assumed to cover a subset of some finite universe U. The elements of U
carry profits, and a job’s profit equals the sum of profits of all elements it covers.

The goal is to compute a feasible job schedule whose total profit (i.e., the sum of all profits of jobs
scheduled) is maximized. Since this problem generalizes the max-coverage problem, it inherits its
inapproximability results. Thus, no approximation factor smaller than ≈1.5819 can be guaranteed by
any polynomial time algorithm, unless P = NP [7]. (However, this inapproximability result does not
necessarily apply to our original firefighter problem).

We will now present an approximation algorithm GlobalGreedy that runs in low polynomial
time in the size of B and guarantees an approximation factor of ≈11.65. After proving this result,
we comment more precisely on how this can be applied to the geometric firefighter problem.

GlobalGreedy maintains a feasible time schedule L of jobs, with precise start and completion
times for each of the jobs in L. (We may think of the schedule as a list of jobs, sorted according to their
scheduled start time, although a more advanced data structure can be employed in order to perform
searches and changes of the list more efficiently). The algorithm starts with the empty schedule L.
It considers each input job J exactly once for possible insertion into the schedule L. If J is rejected,
it will never be considered again for inclusion. If J is scheduled and inserted into the schedule L,
its scheduled starting time will never change. However, it may still happen that J is later deleted from
L, in order to make it possible for some other job to be scheduled (partly) during the scheduled time
for J. Once J is deleted, it will never again be considered for insertion into the schedule.
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Since GlobalGreedy inspects each job only once for possible insertion, the order in which the jobs
are considered is crucial. To define this order, and for easier reference in the subsequent proof, we
assign colours to all elements of universe U. These colours may change during the process. In the
beginning, all elements are coloured red. Each time GlobalGreedy inserts a job J into the schedule L
the following happens: all red elements covered by J are irrevocably associated to J, and change colour
to green. We will call these elements the property elements of J, and denote by the property profit of J the
total profits of all the property elements of J.

Finally, if some job J is later deleted from the schedule L, in order to make place in the schedule for
some other job, then the property elements of J change colour from green to grey during the deletion
of J.

GlobalGreedy starts with the empty schedule L, and colours all elements of the universe red.
Then it runs the following while-loop, one iteration for every input job J, possibly altering the schedule
L, until there are no more jobs left unconsidered. Finally it outputs the schedule L. The order in which
the jobs are considered is defined inside the while loop. A parameter µ ∈ (0, 1) specifies when jobs
will be deleted from the schedule L in order to accommodate job J currently under consideration.

while there is still any unconsidered job do
Consider an unconsidered job J which maximizes the ratio of the total profit of the red elements it
covers, divided by its duration. Insert J into schedule L if and only if this can be done respecting the
deadline for J and without any re-scheduling of other jobs, except for possibly deleting consecutive jobs
in L whose property profits are altogether not greater than µ times the total profit of all red elements
covered by J. (In case there are several options for when to schedule J satisfying this condition, choose
one of them arbitrarily.) If J is inserted, change to green the colour of all red elements covered by J.
For each job J′ deleted from schedule L, change from green to grey the property elements of J′.
end-while

Theorem 4. The above algorithm GlobalGreedy runs in polynomial time and achieves an approximation factor
of ≈11.65 if parameter µ is set to

√
2− 1 ≈ 0.41.

Proof. We will need the following lemma. For ease of reference, let us denote by Π(green) the total
profit of all green elements in U, at a given time, and similarly for the other colours.

Lemma 5. At each time, we have
Π(grey) ≤ µ

1− µ
Π(green).

Proof. By induction on the number of job insertions with deletions. Before the first job is deleted from
the schedule L, there are no grey elements, and the lemma holds. Suppose that, upon inserting job J,
jobs with a total green profit of z are deleted from L. All this green profit turns grey. But, by definition
of GlobalGreedy, job J wins at least z/µ new green profit, so that

µ

1− µ
Π(green)′ − Π(grey)′ ≥ µ

1− µ
(Π(green)− z +

z
µ
) − (Π(grey) + z)

=
µ

1− µ
Π(green) − Π(grey) ≥ 0.

Let us run algorithm GlobalGreedy. All jobs in the final schedule are called green, and those jobs
that were inserted into L and later removed, grey.

Now let us define OPT to be any specific schedule achieving maximum profit. We change to blue
the colour of all elements still red that are covered by OPT (noting that no green or grey elements
become blue). Such a blue element is assigned, as a blue property element, to the first job J in OPT
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that covers it. Job J cannot be green or grey, because then it would no longer cover red elements.
Consequently, if we name such a job J blue, the three colour classes are pairwise disjoint.

In order to prove Theorem 4 we are using a paying scheme, where each green or grey job J pays
money to any blue job J′ performed at least partially during the same time as J (note that every job
ever inserted into L is assigned a unique execution time that will never be altered by GlobalGreedy).
The paying scheme is specified as follows.

The Paying Scheme.
Case 1: The execution time of J′ is totally included within the execution time of J. In this case,

J gives to J′ money equal to the property profit of J, times the ratio of the duration of J′ divided by the
duration of J.

Case 2: In all other cases where the execution intervals of J and J′ overlap, J gives to J′ money
equal to 1/µ times the property profit of J.

Lemma 6. A green or grey job J pays at most 1 + 2/µ times its property profit to blue jobs.

Proof. J pays 1/µ times its property profit to at most two blue job whose execution intervals include
the start or end time of J. In addition, J pays money to blue jobs whose scheduled times are totally
included within the execution interval of J, in linear proportion to their respective duration; together,
these payments do not exceed the property profit of J.

The following lemma shows that each blue job is well-paid by this scheme.

Lemma 7. By the above paying scheme, each blue job receives an amount of money not smaller than its
property profit.

Proof. We define the efficiency ratio of any coloured job J to be the ratio of its property profit π divided
by the duration δ of J.

Let J′ be any blue job. Let us study the iteration of the while-loop when GlobalGreedy considered
J′ for possible inclusion into the schedule L. Let J1, J2, ..., Jk be the jobs in schedule L during that step,
whose execution times (partially) overlap with the execution time of J′. Since J′ became a blue job,
it was rejected by GlobalGreedy. Thus, the total property profits of J1, J2, ..., Jk must have been be at
least µ times the red property profit of J′, which is no less than µ times its current blue property profit
because all blue property profits of J′ were red during that iteration.

Moreover, by the order according to which GlobalGreedy considers jobs for possible insertion
into L, it follows that the efficiency ratio of each one of the jobs J1, J2, ..., Jk must be at least as large as
the efficiency ratio of J′.

Let us first handle the case where k = 1. If the execution time of J′ is totally included within the
execution time of J1, job J′ receives from J1

π(J1)
δ(J′)
δ(J1)

≥ π(J′)
δ(J′)
δ(J′)

= π(J′),

According to Case 1 of the paying scheme. In all other configurations, J1 gives to J′ the amount of

1
µ

π(J1) ≥
1
µ
(µπ(J′)) = π(J′)

By Case 2, and we are done. If k > 1, then the same arguments apply to J1, J2, ..., Jk.

By Lemmas 6 and 7,

Π(blue) ≤
(

1 +
2
µ

)
(Π(green) + Π(grey)) .
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Now Lemma 5 allows us to bound all profits by green profits, and we obtain for the profits of
OPT and GlobalGreedy

|OPT| ≤ Π(green) + Π(grey) + Π(blue)

≤ 2
µ + 1

µ(1− µ)
Π(green) = 2

µ + 1
µ(1− µ)

|GlobalGreedy|.

The factor is minimized for µ =
√

2− 1 to the value 6 + 4
√

2 ≈ 11.657. This completes the proof
of Theorem 4.

The same proof works if the jobs to be scheduled have release times, in addition to duration and
completion times. Also, their durations might depend on their actual start times, as long as there
are only a polynomial number of changes. We summarize our main result as follows, observing that
3/2−

√
2 is the inverse of 6 + 4

√
2.

Theorem 8. Let U be a set of elements, each associated with a real profit, and let J be a set of jobs, where each
job J in J covers a given subset of universe U, and is given a release time, a completion deadline and a duration.
Algorithm GlobalGreedy runs in polynomial time and constructs a feasible schedule whose total profit is at least
3/2−

√
2 ≈ 0.086 times the maximum possible profit.

In the geometric firefighter problem, universe U can be defined as follows. The set B of allowed
barriers consists of a number of straight-line barriers with pairwise disjoint interiors and all endpoints
on the boundary of P. We take the arrangement of all barriers of B inside polygon P, pick a
representative point uc from each cell c, and let the profit of uc be the area of c; observe that all
points in c share their fates with uc, with respect to the fire. Universe U equals the set of the points uc,
and each barrier b covers those points uc whose cells are separated by b from the fire’s starting point.
We observe that U is of size linear in the size of B since each barrier is placed on the border of at most
two cells. Also, each cell that can be saved from the fire at all by barriers in B, can be saved by a single
barrier in B. Thus, the above theorem yields an ≈ 0.086 approximation to the geometric firefighter
problem (on a Real RAM that can compute square roots in constant time), where the set B of allowed
barriers consists of a number of straight-line barriers with pairwise disjoint interiors.

5. A PTAS for the Budget Fence Problem and a Special Case of the Firefighter Problem

Recall that an instance of the budget fence problem consists of a simple polygon P of n
edges, a “contaminated” connected region R contained within P (it can be degenerated to a point),
the available total fence length l, and an allowed set B of barriers, none of them intersecting the interior
of R. The objective is to fence off from R the largest possible area of polygon P by barriers from B of
total length not exceeding l. While B may contain candidates that cross each other, an algorithm may
use only barriers whose interiors are pairwise disjoint.

In the absence of time constraints, this problem seems of a more combinatorial nature than the
firefighter problem. First, let us assume that B consists of diagonals of P. Then the following standard
dynamic programming and discretization approach yields a close approximation.

For each pair a, b of vertices of P, and a number parameter s, we consider the problem Q(a, b, s)
of finding a shortest simple path saving at least an area of size s, from a to b in clockwise direction;
the path can contain diagonals from B and edges of P between a and b, but only the total length of
diagonals counts.

Let max be the maximum area that can be saved by a single diagonal. Clearly, no path can save
more area than max× n. We may assume the parameter s belongs to S = {i×max× n/p(n) | 0 ≤ i ≤
p(n)∧ i ∈ Z+}, where p(n) is an appropriate polynomial. Then, we can solve Q(a, b, s) by considering
solutions to all pairs Q(a, c, s1) and Q(c, b, s2), where c is a vertex between a and b in clockwise direction
on the perimeter of P, s1, s2 ∈ S, and s1 + s2 ≥ s. We pick the pair that minimizes the length of the
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path from a to b through c and compare it with the direct diagonal connection between a and b if this
diagonal exists in B. We obtain an approximate solution of the budget fence problem for P by picking
the largest s ∈ S such that the minimum length path solving Q(a, a, s) for some vertex a of P has length
less than or equal to l.

Any feasible solution includes at most dn/2e diagonals. By the definitions of S and our dynamic
programming scheme, the area saved by each of them can be underestimated by at most n×max

p(n) .
Hence, since the optimal solution saves at least max, the approximation factor of our dynamic
programming method is 1

1−n2/p(n) . It follows that it is sufficient to set p(n) to cn2, for a sufficiently
large constant c, in order to obtain a (1 + ε) approximation.

Note that this method can be immediately adapted to work for any finite set B of straight-line
barriers within P \ R with all endpoints on the polygon boundary (extending the set of vertices).
Hence, we have the following theorem.

Theorem 9. There is a PTAS for the budget fence problem for a simple polygon P and a contaminated region R,
where the set B of allowed barriers is any finite set of straight-line segments within P \ R having all endpoints
on the boundary of P and the selected barriers have pairwise disjoint interiors.

Remarkably, a good approximation to the budget fence problem can also yield a good
approximation to the firefighter problem, under the assumptions from above (barriers are straight-line
segments within P and all barriers chosen must have pairwise disjoint interiors). In fact, we obtain the
following corollary from Theorem 9.

Corollary 10. Let P be the input polygon and let the set B of allowed barriers in P be a finite set of straight-line
segments within P having all endpoints on the boundary of P. Next, let minB and maxB be, respectively,
the minimum and maximum geodesic distance of a barrier in B from the fire source. For any δ, ε > 0,
the firefighter problem in P can be approximated within 2dlog1+δ

maxB
minB
e(1 + δ)(1 + ε) in polynomial time,

under the assumption that the chosen barriers have pairwise disjoint interiors.

Proof. For i = 1, ..., dlog1+δ
maxB
minB
e − 1, divide B into classes Bi such that the geodesic distance

between the barriers in Bi and the fire source falls in the interval [minB(1 + δ)i, minB(1 + δ)i+1].
There exists j ∈ {1, ..., dlog1+δ

maxB
minB
e − 1} such that the barriers in Bj save at least 1

dlog1+δ
maxB
minB

e of the

area saved by an optimal solution to the geometric firefighter instance. Therefore, it is sufficient to
approximate within 2(1 + δ)(1 + ε) an optimal solution Oi to the instance constrained to barriers in Bi
for i = 1, ..., dlog1+δ

maxB
minB
e, and then choose the best solution in order to obtain the corollary.

Fix i ∈ {1, ..., dlog1+δ
maxB
minB
e}. First, find a set of at most k barriers in Bi that jointly save the largest

area. This can be easily done in polynomial time. If Oi contains at most k barriers which jointly save at
least 1

2 area saved by Oi then we are done. To handle the opposite case, we proceed as follows.
Let t be the time it takes for the fire to reach the geodesic distance minB(1 + δ)i+1 from the source.

Note that Oi contains at most one barrier that is finished after the time t elapsed. For proof’s sake,
remove such a barrier (if any) and all the barriers that need at least t

k−1 time to be build. Let O′i be the
resulting set of barriers. Since at most k barriers have been removed, the barriers in O′i save at least half
the area saved by Oi. Sort the barriers in O′i by their ratio between the saved area and barrier length in
non-decreasing order. Consider the maximum prefix of the sorted sequence of barriers that can be
build within the time t/(1 + δ). By the definition of the sorted sequence, the area saved by the barriers
in the prefix is at least 1

1+δ −
1

k−1 of the area saved by the barriers in O′i . We can pick k sufficiently
large so the area saved by the barriers in the prefix is at least 1

(1+δ)
√

1+ε
of that saved by the barriers

in O′i . We can obtain at least
√

1 + ε approximation of the area saved by the barriers in the prefix by
running our PTAS for the budget fence problem on the polygon P with the set of allowed barriers
Bi and the length constraint equal to the time t/(1 + δ) multiplied by the speed of building a barrier.
Consequently, we obtain an 2(1 + δ)(1 + ε) approximation of Oi.
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6. Generalizations and Refinements

In this paper we have introduced a geometric version of the firefighter problem, and the closely
related budget fence problem. There is a number of generalizations and interesting questions deserving
further research.

For example, Algorithm GlobalGreedy could as well be applied to a situation where some parts
of the polygonal domain P are more important than others. Moreover, by adjusting the deadlines of
the jobs, we can handle the cases when the speed of the fire and/or of building the barriers may vary.

The proof of a constant approximation ratio for GlobalGreedy would still work even if the
barrier considered in the next iteration of the while-loop has only approximately largest efficiency ratio.
The approximation constant would increase somewhat, but it would still be a constant. This observation
may enable faster computation of the next candidate barrier to be considered, and improve the overall
time performance of the algorithm.

Acknowledgments: The authors are very grateful to anonymous reviewers of the preliminary conference version
of this paper as well as anonymous reviewers for this journal for their valuable comments. This work has been
supported in part by the grant Kl 655/19 (DACH project) and the grant 2017-03750 of Swedish Research Council.

Author Contributions: Rolf Klein, Christos Levcopoulos and Andrzej Lingas equally contributed to research
discussions and writing down their outcomes.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Anshelevich, E.; Chakrabarty, D.; Hate, A.; Swamy, C. Approximability of the Firefighter Problem:
Computing Cuts over Time. Algorithmica 2012, 62, 520–536.

2. Cai, L.; Verbin, E.; Yang, L. Firefighting on Trees: (1-1/e)-Approximation, Fixed Parameter Tractability and a
Subexponential Algorithm. In Proceedings of the 19th International Symposium ISAAC 2008, LNCS 5369,
Gold Coast, Australia, 15–17 December 2008; pp. 258–269.

3. Finbow, S.; King, A.; MacGillivray, G.; Rizzi, R. The firefighter problem for graphs of maximum degree three.
Discret. Math. 2007, 307, 2094–2105.

4. Floderus, P.; Lingas, A.; Persson, M. Towards more efficient infection and fire fighting. In Proceedings
of the Computing: The Australasian Theory Symposium (CATS 2011), CRPIT 119, Perth, Australia,
17–20 January 2011; pp. 69–74.

5. Finbow, S.; MacGillivray, G. The Firefighter Problem: A survey of results, directions and questions.
Australas. J. Comb. 2009, 43, 57–78.

6. Klein, R.; Levcopoulos, C.; Lingas, A. Approximation algorithms for the geometric firefighter and budget
fence problems. In Lecture Notes in Computer Science, Proceedings of the 11th Latin American Symposium in
Theoretical Informatics (LATIN 2014), Montevideo, Uruguay, 31 March–4 April 2014; Springer: Berlin/Heidelberg,
Germnay, 2014; Volume 8392, pp. 261–272.

7. Feige, U. A threshold of ln n for approximating set cover. J. ACM 1998, 45, 634–652.
8. Barghi, A.; Winkler, P. Firefighting on a random geometric graph. Random Struct. Algorithms 2013, 46,

466–477, doi:10.1002/rsa.20511.
9. Khuller, S.; Moss, A.; Naor, J.S. The budgeted maximum coverage problem. Inf. Process. Lett. 1999, 70, 39–45.
10. Cohen, R.; Katzir, L. The Generalized Maximum Coverage Problem. Inf. Process. Lett. 2008, 108, 15–22.
11. Bansal, N.; Gupta, A.; Krishnaswamy, R. A Constant Factor Approximation Algorithm for Generalized

Min-Sum Set Cover. In Proceedings of the Twenty-First Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA), Austin, TX, USA, 17–19 January 2010; pp. 1539–1545.

12. Bansal, N.; Pruhs, K. The Geometry of Scheduling. In Proceedings of the 51th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), Las Vegas, NV, USA, 23–26 October 2010; pp. 407–414.

13. Hassin, R.; Levin, A. An Approximation Algorithm for the Minimum Latency Set Cover Problem.
In Proceedings of the 13th Annual European Symposium on Algorithms (ESA), Mallorca, Spain,
3–6 October 2005; pp. 726–733.



Algorithms 2018, 11, 45 12 of 12

14. Ghaderi, R.; Esnaashari, M.; Meybodi, M.R. An Adaptive Scheduling Algorithm for Set Cover Problem in
Wireless Sensor Networks: A Cellular Learning Automata Approach. Int. J. Mach. Learn. Comput. 2012, 2,
pp. 626–632.

15. Chekuri, C.; Vondrák, R.; Zenklusen, R. Submodular Function Maximization via the Multilinear Relaxation
and Contention Resolution Schemes. In Proceedings of the STOC’11 43rd ACM Symposium on Theory of
Computing, San Jose, CA, USA, 6–8 June 2011; pp. 783–792. Available online: http://arxiv.org/pdf/1105.
4593v3.pdf (accessed on 30 July 2012).

16. Klein, R.; Langetepe, E.; Levcopoulos, C.; Lingas, A.; Schwarzwald, B. On a Fire Fighter’s Problem.
In Proceedings of the 31st International Symposium on Computational Geometry (SoCG 2015), Eindhoven,
The Netherlands, 22–25 June 2015; pp. 768–780.

17. Zambon, M.J.O.; de Rezende, P.J.; de Souza, C.C. Exact Solutions for the Geometric Firefighter Problem.
In Proceedings of the 28th Canadian Conference on Computational Geometry (CCCG), Vancouver, BC,
Canada, 3–5 August 2016; pp. 221–229.

18. Altshuler, Y.; Bruckstein, A.M. On Short Cuts or Fencing in Rectangular Strips. arXiv 2010, arXiv:1911.5920v1.
19. Cabello, S.; Giannopoulos, P. The Complexity of Separating Points in the Plane. In Proceedings of the 29th

ACM Symposium on Computational Geometry, Rio de Janeiro, Brazil, 17–20 June 2013; pp. 379–386.
20. Garey, M.R.; Johnson, D.S. Computers and Intractability. A Guide to the Theory of NP-Completeness; W.H. Freeman

and Company: New York, NY, USA, 1979.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://arxiv.org/pdf/1105.4593v3.pdf
http://arxiv.org/pdf/1105.4593v3.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Our Contributions
	Related Results

	Barriers
	NP-Hardness
	An Approximation Algorithm for the Geometric Firefighter Problem
	A PTAS for the Budget Fence Problem and a Special Case of the Firefighter Problem
	Generalizations and Refinements
	References

