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Abstract: The search for efficient methods and procedures to optimize experimental designs is a vital
process in field trials that is often challenged by computational bottlenecks. Most existing methods
ignore the presence of some form of correlations in the data to simplify the optimization process at
the design stage. This study explores several algorithms for improving field experimental designs
using a linear mixed models statistical framework adjusting for both spatial and genetic correlations
based on A- and D-optimality criteria. Relative design efficiencies are estimated for an array of
algorithms including pairwise swap, genetic neighborhood, and simulated annealing and evaluated
with varying levels of heritabilities, spatial and genetic correlations. Initial randomized complete
block designs were generated using a stochastic procedure and can also be imported directly from
other design software. Results showed that at a spatial correlation of 0.6 and a heritability of 0.3,
under the A-optimality criterion, both simulated annealing and simple pairwise algorithms achieved
the highest design efficiencies of 7.4% among genetically unrelated individuals, implying a reduction
in average variance of the random treatment effects by 7.4% when the algorithm was iterated
5000 times. In contrast, results under D-optimality criterion indicated that simulated annealing had
the lowest design efficiency. The simple pairwise algorithm consistently maintained highest design
efficiencies in all evaluated conditions. Design efficiencies for experiments with full-sib families
decreased with increasing heritability. The number of successful swaps appeared to decrease with
increasing heritability and were highest for both simulated annealing and simple pairwise algorithms,
and lowest for genetic neighborhood algorithm.

Keywords: genetic relationships; greedy algorithms; pairwise swap; simulated annealing; spatial
correlations

1. Introduction

Generating field experimental designs often requires the experimental units to be replicated,
randomized and apply some form of blocking to reduce heterogeneity. These properties ensure
that results of an experiment are unbiased, optimal, and allow to perform appropriate inferences
to a larger population [1]. For plant breeding, field trials are an important component that help to
evaluate and select the genotypes (or treatments) with superior performance to be used as future
parents or commercial varieties [2]. Breeding trials are often characterized by testing a large number
of genetic entries with limited replication. The effect of these entries is often estimated by fitting a
linear mixed model (LMM) that considers genotypes as a random effects, and that incorporates genetic
relationships (or correlations) by a variance–covariance matrix obtained based on pedigree information
or molecular markers.
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Several proposed experimental designs exist for field trials, and these can be generated using
widely available statistical software. However, the process of generating an optimal or near-optimal
design, that maximizes the amount of information extracted with limited resources, is often ignored due
to their intensive computational requirements, particularly for experimental designs with large number
of treatments. Some authors have presented efficient procedures to construct experimental designs
for breeding trials, including incomplete blocks, row-column and augmented designs (e.g., John and
Williams [3] and Williams et al. [4]). However, these are mostly restricted to the assumption of
fixed treatments effects, and therefore ignore the information provided by the genetic relationships.
At the same time, it has been shown that modelling field spatial correlations (e.g., by incorporating an
autoregressive residual structure) results in more efficient designs than assuming that residuals are
independent and identically distributed [5,6]. Here, the framework of mixed models is advantageous
over traditional linear models since they allow for specification of appropriate variance–covariance
structures for both factors (e.g., genetic entries) and residuals (thorugh spatial correlation), providing
greater flexibility and more efficient downstream statistical analyses.

To generate experimental designs under the above framework an optimality criterion is used
together with the implementation of an iterative search algorithm. A- and D-optimality information
based criterion are the most widely used procedures in field experiments to generate optimal or
near-optimal designs [7–9] and most recently were used by Butler et al. [6] and Mramba et al. [10]
to design experiments with correlated observations. These procedures are very useful in the process
of selecting an optimal design [11]. A-optimality criterion seeks to minimize the average variance
of random treatment effects and can be expressed as: Aoptim = argmin{trace[M(Ω)]}, where M(Ω)

is the inverse of an information matrix of the treatment (or genetic) effects from a given design
layout Ω. D-optimality was introduced by Wald [12] and minimizes the determinant of M(Ω) which
can be interpreted as minimizing the generalized variance of the treatment effects [11] by choosing
designs which minimize the volume of the joint confidence ellipsoid [13] and is given by Doptim =

argmin{|M(Ω)|} for |M(Ω)| 6= 0.
Often, search algorithms involve interchanging the assigned treatments for a pair of experimental

units and re-evaluating the efficiency of the new design to be compared against the previous one.
Some of the computer search algorithms available include pairwise swap procedure, and its variants
where a single or multiple pairs of treatments are swapped at a time [3], and simulated annealing where
a cooling strategy is employed [14]. Most of the applications of these algorithms focus on the analysis
of data and little has been done on their applications to improve the designs of genetic experiments, yet,
estimated parameters from improved designs can be obtained with increased precision if variability of
treatment effects is minimized [10].

Although there are statistical software such as CycDesigN [15], GenStat [16], SAS [2] and
DiGGer [17]; these programs are not freely available and do not account for both spatial and genetic
relatedness of experiments at the design stage. The focus of the present study is to evaluate performance
of different algorithms based on a linear mixed model framework which optimally accounts for both
sources of correlation in an experiment at the design stage. Hence, the main objective of this study is
to evaluate the efficiency of diverse search algorithms to generate improved randomized complete
block (RCB) designs applying A- or D-optimality criteria, while accounting for both spatial and genetic
correlations using linear mixed models with applications in plant breeding trials. This will be done by
initially generating experimental layouts through a random process and later applying an array of
proposed search algorithms to improve the initial experimental layouts. The procedure also allows
optimizing designs initially generated from other software. Several varying field conditions that
include a range of heritabilities, genetic relatedness structures and spatial correlations were evaluated
in order to throughly assess the practicality of the algortihms presented. An illustration, given in
Section 2.3, describes a practical example where the inclusion of a microsite random error, also known
as the nugget effect or unstructured residual error is provided. The importance of including a nugget
effect has been previously noted on other studies such as Cressie [18] and Gezan et al. [5] where the
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latter study showed that in modeling spatial data, ommision of the nugget error could lead to a bias in
the correlation parameters of the error structure. Hence, the nugget error component could be used
successfully to model potential microsite variability between observations that are closely spaced.

2. Materials and Methods

2.1. Statistical Model for Randomized Complete Block Designs

The linear mixed model (LMM) framework for RCB designs can be expressed as y = Xβ +Zg+ e,
where y is a vector of observed phenotypes (responses); X is an incidence matrix of fixed block
effects; β is a vector of fixed block effects; Z is an incidence matrix of random treatment effects;
g is a vector of random treatment effects, with g ∼ MVN(0, G), where G = σ2

gA for genetically
correlated observations, with A being the numerator relationship matrix calculated from pedigree
information or molecular markers to account for additive genetic relatedness between individuals
and G is a variance–covariance matrix for genetic relationships. For instance, G = σ2

gI for genetically
unrelated individuals. The vector e represents residual errors, with, e ∼ MVN(0, R), where R is
a variance–covariance matrix for modelling correlated errors. Most often, R is modelled with an
autoregressive error structure of order 1 [19]. To obtain the variance–covariance matrix of random
treatment effects, linear mixed model normal equations are solved as described by Henderson [20]
and Hooks et al. [21] to give

M(Ω) = Var(ĝ− g) = (Z
′
R−1Z + G−1 − Z

′
R−1X(X

′
R−1X)−1X

′
R−1Z)−1 (1)

from which the trace and determinant of the matrix M(Ω) are calculated based on A- and D-optimality
criteria, respectively (For further details see [10]).

2.2. Algorithms

The algorithms implemented to generate improved designs are:

1. Simple Pairwise (SP), that swaps a single pair of treatments at a time,
2. Greedy Pairwise (GP), that swaps more than a single pair of treatments at a time,
3. Genetic Neighbourhood (GN), that takes into consideration the genetic relatedness of the direct

neighbouring of a experimental units to perform swaps, and
4. Simulated Annealing (SA), that swaps a pair of treatments at a time, but accepts poor designs at

random with a given probability which diminishes with time.

The procedure for these algorithms involves randomly generating m initial experimental layouts,
denoted as Ωi. For each layout, the variance–covariance matrix of the treatment effects M(Ω) is
obtained, and its criterion value is calculated (as trace or determinant (or log(determinant)) with A-
and D-optimality, respectively). Next, from the m designs, the “best” experimental layout is selected,
where “best” refers to the design with the smallest trace under A-optimality and design with the largest
determinant under the D-optimality. After this, an optimization algorithm is applied for p iterations.
For all implemented algorithms, the output is a list of objects including the improved experimental
layout, a vector with criterion values and iterations of the sequentially accepted (successful) designs,
and a vector of all criterion values from all iterations, whether the swap was successful or not.
Following is a description of the implemented algorithms.

For the SP algorithm, the following steps are undertaken after selecting the best initial Ωi with
criteria value τi : (1) randomly interchange a single pair of treatments within a randomly selected block
to produce a new layout, τj ; (2) re-calculate a new criterion value τj ; (3) if τi > τj, accept Ωj as the
new layout; and (4) repeat steps 1 to 3 for a total of p iterations and produce the output.

GP algorithms are a more aggressive variant of the simple pairwise algorithm (SP) that allow
multiple treatments to be randomly interchanged within a block. In order to evaluate a spectrum of
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alternative implementations, this algorithm was implemented by varying the number of treatments
to be swapped simultaneously, denoted as Gα, where α refers to the number of treatments swapped.
The implemented algorithm allows specification of any even number of treatments to be swapped
at a time. Tested procedures were denoted as GP4, GP14 and GP98 for randomly swapping 4,
14 and 98 treatments simultaneously on each iteration within a randomly selected block, respectively.
Numbers 14 and 98 were chosen as a percentage (≈50%) of the treatments to be swapped at a time,
in an experiment with 30 and 196 treatments, respectively, whereas 4 was chosen as a close value to
2 to detect any small changes in improvement of the design when a single pair or double pairs of
treatments are swapped in each iteration. Steps 1 to 4 apply as described under the SP procedure.

The GN algorithm is defined as a method that makes use of genetic relatedness of the eight
neighbouring experimental units found in a 3× 3 matrix using information provided by the numerator
relationship matrix (A) of the corresponding genotypes. Steps for this algorithm are: (1) randomly
generate m initial designs and select the best (Ωi) with the smallest trace, τi ; (2) randomly select a
treatment tl from Ωi; (3) identify the genetic correlation coefficients from the numerator relationship
matrix for all experimental units within the nearest neighborhood of τl ; (4) if there exists a pairwise
genetic relationship of 0.25 or higher between τl and any other treatment τk for l 6= k within the
neighbouring matrix, then replace either one of the treatments with a another treatment that is at
a distance of more than a unit (row or column) away; (5) if there are no treatments further than a
unit away even though these neighbours are genetically correlated, randomly interchange τl with τk ;
(6) calculate the new criterion value, τj , based on the new design layout Ωj; (7) if τi > τj, accept Ωj,
otherwise reject Ωj; and (8) repeat steps 2 to 7 for a total of p iterations. Note that if all the experimental
units from a neighbourhood are genetically unrelated, then the SP is applied.

SA is a probabilistic meta-heuristic and stochastic optimization procedure that prevents the search
from getting trapped in a local optima by accepting some solutions with a set probability and lowering
the temperature with time to make sure that poorer solutions are accepted with lower probabilities [14].
The SA algorithm implemented in this study is described as follows: (1) randomly interchange a pair
of treatments within a randomly selected block to produce a new layout, Ωj and re-calculate a criterion
value, τj; (2) if τi > τj, accept Ωj as the new layout with probability 1.0; else do the following step,
(3) calculate4 = τj − τi and set a cooling temperature Tc[i] = 1/i, for the i-th iteration, and calculate
v = exp (−4 /Tc[i]); (4) draw a random value u from a uniform distribution, and if u < v accept Ωj;
and (5) repeat steps 1 to 4 for a total of p iterations.

The SA method has two parameters that have to be tuned, i.e., initial temperature and cooling
rate. In this study, the initial temperatures are the initial criterion values (that is, traces or determinants)
of the initial designs before optimization process. The starting initial temperature was chosen to be the
best criterion value among the initial designs. For instance, under the A-optimality criterion, choose a
design that has the smallest trace (equivalent to starting temperature) as the main initial design to be
optimized further. The cooling rate was viewed as part of step 3 above, and also, it can be viewed as
a stopping rule. For example, the stopping rule can be the difference between the current criterion
value and the previously calculated value (say, a difference of 0.05) observed for a consecutive number
of iterations. The stopping rule for the motivating example was set to be the number of iterations
p = 20,000 and for all other illustrations, it was set to p = 5000 interations.

2.3. Evaluation of Algorithms

The above four algorithms were evaluated under varying experimental conditions to assess their
effectiveness to improve field designs. Conditions considered include narrow-sense heritabilities,
m = 1 initial designs, h2, of 0.1, 0.3, and 0.6, where h2 = σ2

g /(σ2
g + σ2

e ); unrelated individuals
(independent), half-sib and full-sib families; and a spatial correlation of ρ = 0.6. Every combination of
conditions was repeated λ = 10 times for p = 5000 iterations. All implementation and evaluation of
algorithms was done using the statistical package R [22].



Algorithms 2018, 11, 212 5 of 21

The following scenarios were considered: Ω(30)
A , Ω(30)

D and Ω(196)
A . The first two represent RCB

designs with 30 genotypes generated using A- and D-optimality criteria, respectively. In these layouts,
the designs had six blocks each of dimensions five rows by six columns. Here, pedigree from half-sib
families consisted of five male parents each with six individuals, and full-sib families consisted on
a half-diallel with five parents for a total of 10 families each with three individuals. Scenario Ω(196)

A
represents an RCB design with 196 genotypes generated using A-optimality criterion with four blocks
of dimensions 14 rows by 14 columns per block. Pedigree files for half-sib families had 32 known
parents each with six offspring, whereas full-sib families had 30 parents with several half-diallels for a
total of 68 families each with approximately three offspring. Note that, GP98 was implemented only
for Ω(196)

A scenario to swap 50% of the total genotypes at every single iteration, and GP14 represents

swapping about 50% of the genotypes for Ω(30)
A and Ω(30)

D scenarios.
A detailed practical example was implemented with all algorithms in order to investigate the

level of design efficiencies and rates of convergence that can be obtained for a specified condition
with all algorithms having to improve the same initial RCB experimental design. This was done using
A-optimality criterion for an experiment with 30 genotypes, 6 blocks of sizes 5 rows by 6 columns,
and comprised of half-sib families with five male parents each with six individuals, for h2 = 0.1,
ρ = 0.6, and an arbitrary nugget effect of 0.1. Initially, m = 1000 designs were randomly generated and
the best one selected for optimization. All the proposed algorithms were made to improve this initial
design by going through p = 20,000 iterations. Traces from both successful and unsuccessful swaps
were observed together with the time taken for each algorithm. The practical example was run from a
64-bit windows operating system Intel(R) Core(TM) i7-4720HQ CPU@2.60GHz, RAM 8.0 GB.

To evaluate the improvement of a design, relative overall design efficiency (ODE), that quantifies
how efficient the improved design is relative to an initially non-improved design for A- and
D-optimality was calculated as a proportion or percentage difference between the initial best criterion
and the final optimal-value:

γA
ij =

Āij − A(opt)ij

Āij
; γD

ij =
D̄ij − D(opt)ij

D̄ij
; (2)

for i = 1, 2, · · · , ξ conditions; j = 1, 2, · · · , λ replicates

where Āij and D̄ij are averages of m initial traces and log-determinants, respectively, for i-th condition
and j-th replicate, A(opt)ij and D(opt)ij are the smallest trace and log-determinant, respectively, obtained
from an improved design. Finally, ODE calculations over the λ = 10 replicates per condition were
summarized. A schematic diagram that represents a summary of the procedure to improve a given
randomized complete block design is displayed in Figure 1 and Table 1 shows the simulation conditions
implemented for the motivating example.

The R-code that was used for the algorithms described in this paper have been provided in
Appendix A. The R-code to generate the initial RCBD before optimization is shown in Appendix B
while Appendices C and D provide the R-code for generating the numerator relationship matrix
and the variance–covariance matrix, respectively. Supplementary materials that include additional
R-code, a worked-out example using RMarkdown and the pedigree information are also available for
illustration purposes.
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Figure 1. Schematic diagram to summarize the procedure for improving a randomized complete block
(RCB) design.

Table 1. Simulation conditions for the motivating example assuming a spatial correlation ρ = 0.6 and

a nugget error of 0.1 for the three designs: Ω(30)
A , Ω(196)

A and Ω(30)
D , where Ω(30)

A represents an RCB
design with 30 treatments (genotypes) arranged in 6 blocks of sizes 5 rows by 6 columns and optimized
using an A-optimality criterion. Initial m = 1000 designs were generated and the overall best design
(design with smallest trace under A-optimality or largest determinant under D-optimality) selected to
be optimized. The algorithm was stopped after p = 20,000 iterations. Final designs for each condition
represented the improved design and the ODE % are calculated using Equations (1) and (2). Each of
the nine conditions was repeated λ = 10 times for all four algorithms: SP, GP4, GP14 and SA.

Condition h2 Pedigree

1 0.1
Indep2 0.3

3 0.6

4 0.1
Half-sib5 0.3

6 0.6

7 0.1
Full-sib8 0.3

9 0.6
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3. Results

Averages and standard errors (S.E.) of overall design efficiency (ODE %) for the three scenarios,
that is, Ω(30)

A , Ω(196)
A and Ω(30)

D for all algorithms are presented in Tables 2–4, respectively. Figure 2
displays visible trends of ODEs by genetic relatedness and heritability levels whereas Figure 3
shows the average number of successful swaps out of 5000 (that is, swaps that were accepted
due to the resulting design having a smaller criterion value than the previous layout) for each
algorithm. These results indicate that, for all experiments conducted based on Ω(30)

A and Ω(196)
A

scenarios, simulated annealing (SA) and simple pairwise (SP) algorithms achieved the highest ODE
averages in all evaluated conditions followed by GP4 (for Ω(30)

A ) or GP98 (for Ω(196)
A ) and lowest for

genetic neighbourhood (GN). Also, the overall highest ODEs were achieved when h2 = 0.3 among
genetically unrelated individuals for all algorithms. Among full-sib families, highest ODEs were
achieved when h2 = 0.1 and decreased with increasing heritability for all algorithms evaluated under
Ω(30)

A and Ω(196)
A scenarios. SA recorded the highest average ODE of 7.403% (S.E. = 0.063) followed by

SP with average ODE of 7.398% (S.E. = 0.066) all obtained when h2 = 0.3 among genetically unrelated
individuals. Algorithms SA, SP, GP4 and GP14 evaluated with half-sib families under Ω(30)

A had
highest ODEs obtained for treatments with the lowest heritability of 0.1, whereas GN achieved its
highest ODE when h2 = 0.3 for the same genetic structure.

Based on a Ω(30)
D scenario, the best performing algorithm with highest average ODE among all

conditions was SP, closely followed by GP4, GP14, GN and SA which recorded the lowest average ODE.
Under this scenario, the overall highest ODEs were observed among genetically unrelated individuals
for SP, GP4, and GP14 when h2 = 0.3. Among half-sib families, highest ODEs occurred when h2 = 0.3
but no clear trends among full-sib families were observed.

Both Ω(30)
A and Ω(30)

D took, on average, about 2 min to improve a given initial experimental design

for p = 5000 iterations, whereas Ω(196)
A required about 25 min for the same number of iterations.

Figure 3 shows that the number of successful swaps decrease with increasing heritability especially for
Ω(30)

A and Ω(196)
A scenarios with small difference in numbers between SA and SP algorithms but larger

differences are noted under Ω(30)
D scenario. The number of successful swaps out of 5000 appeared to

be highest for SA and SP under A-optimality criterion. From Ω(30)
D scenario, the number of successful

swaps were highest for SA which recorded above 2500 out of the 5000 swaps but this was not
refelcted in terms of improving the overall design efficiency under this criterion in contrast with
other algorithms.

Table 2. Average ODEs from 10 replicates per condition are reported together with standard errors
(S.E.) for simple pairwise (SP), greedy pairwise (GP4 and GP14), simulated annealing (SA) and genetic

neighborhood (GN) procedures for Ω(30)
A RCB designs at a spatial correlation of 0.6.

Condition SP GP4 GP14 SA GN

Pedigree h2 ODE % S.E. ODE % S.E. ODE % S.E. ODE % S.E. ODE % S.E

Indep
0.1 6.347 0.060 5.501 0.060 3.747 0.093 6.385 0.072 - -
0.3 7.398 0.066 6.194 0.080 4.371 0.053 7.403 0.063 - -
0.6 5.109 0.044 4.414 0.057 3.110 0.054 5.222 0.064 - -

Half-sib
0.1 5.826 0.026 5.082 0.055 3.610 0.065 5.781 0.045 1.853 0.042
0.3 5.375 0.056 4.640 0.082 3.192 0.052 5.428 0.047 1.940 0.088
0.6 3.066 0.028 2.663 0.023 1.858 0.033 3.131 0.028 1.064 0.033

Full-sib
0.1 4.109 0.030 3.611 0.026 2.543 0.038 4.045 0.027 1.343 0.034
0.3 2.656 0.029 2.265 0.021 1.601 0.034 2.667 0.032 0.920 0.027
0.6 1.247 0.006 1.065 0.009 0.755 0.012 1.247 0.013 0.460 0.011
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Table 3. Average ODEs reported together with standard errors (S.E.) for simple pairwise (SP), greedy
pairwise (GP4 and GP98), simulated annealing (SA) and genetic neighborhood (GN) procedures for

Ω(196)
A RCB designs at a spatial correlation of 0.6.

Condition SP GP4 GP98 SA GN

Pedigree h2 ODE % S.E. ODE % S.E. ODE % S.E. ODE % S.E. ODE % S.E

Indep
0.1 1.633 0.013 1.354 0.018 0.481 0.008 1.629 0.015 - -
0.3 2.794 0.020 2.387 0.017 0.864 0.024 2.736 0.034 - -
0.6 3.232 0.024 2.754 0.039 1.080 0.028 3.270 0.027 - -

Half-sib
0.1 2.032 0.023 1.776 0.019 0.690 0.018 2.016 0.019 0.216 0.014
0.3 2.684 0.018 2.269 0.009 0.851 0.024 2.670 0.019 0.381 0.013
0.6 2.801 0.027 2.402 0.029 0.890 0.025 2.818 0.009 0.351 0.020

Full-sib
0.1 2.813 0.018 2.471 0.022 0.888 0.025 2.827 0.014 0.324 0.015
0.3 2.240 0.016 1.886 0.023 0.702 0.020 2.226 0.021 0.297 0.011
0.6 1.873 0.011 1.588 0.013 0.623 0.016 1.926 0.013 0.280 0.013

Table 4. Average ODEs reported together with standard errors (S.E.) for simple pairwise (SP), greedy
pairwise (GP4 and GP14), simulated annealing (SA) and genetic neighborhood (GN) procedures for

Ω(30)
D RCB designs at a spatial correlation of 0.6.

Condition SP GP4 GP14 SA GN

Pedigree h2 ODE % S.E. ODE % S.E. ODE % S.E. ODE % S.E. ODE % S.E

Indep
0.1 1.807 0.014 1.600 0.014 1.029 0.014 0.085 0.019 - -
0.3 2.324 0.017 1.993 0.013 1.335 0.030 0.104 0.025 - -
0.6 2.247 0.021 1.930 0.021 1.265 0.032 0.178 0.027 - -

Half-sib
0.1 1.766 0.012 1.576 0.015 1.115 0.015 0.130 0.034 0.446 0.015
0.3 2.287 0.023 2.054 0.024 1.377 0.022 0.150 0.041 0.614 0.013
0.6 2.253 0.024 1.933 0.020 1.315 0.019 0.090 0.023 0.637 0.023

Full-sib
0.1 1.666 0.011 1.514 0.013 1.037 0.009 0.097 0.025 0.431 0.010
0.3 2.168 0.013 1.935 0.025 1.307 0.026 0.119 0.025 0.634 0.017
0.6 2.225 0.027 1.913 0.023 1.316 0.025 0.125 0.019 0.669 0.022

Results from the practical example that was conducted for an RCB design with h2 = 0.1 and
ρ = 0.6 based on Ω(30)

A are displayed in Figure 4 which plots traces obtained from successful swaps and
their overall design efficiencies. Also, Figure 5 shows the rate of convergence by plotting all the 20,000
traces obtained for each algorithm. From this illustration, the results indicate that the SP algorithm
had the highest design efficiency of 6.713% with the highest number of successful swaps (192) and
took about 5.8 min for the 20,000 iterations. This was closely followed by the SA algorithm that had
an ODE of 6.258% with 139 successful swaps and took about 5.8 min. GP4 algorithm had an ODE of
5.552% with 104 successful swaps and also took about 5.8 min and finally, the GN algorithm recorded
the lowest ODE of 2.053% with 12 successful swaps and took about 6.1 min.
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Figure 2. Overall design efficiency (ODE %) for (a) Ω(30)
A , (b) Ω(30)

D , and (c) Ω(196)
A scenarios evaluated

for simple pairwise (SP), greedy pairwise (GP4, GP14, GP98), simulated annealing (SA) and genetic
neighborhood (GN) algorithms iterated p = 5000 times, with each condition replicated λ = 10 times,
with m = 100 initially unimproved designs.
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Figure 3. Average number of swaps for (a) Ω(30)
A , (b) Ω(30)

D , and (c) Ω(196)
A scenarios evaluated for simple

pairwise (SP), greedy pairwise: GP4, GP14, GP98, simulated annealing (SA) and genetic neighborhood
(GN) algorithms iterated p = 5000 times, with each condition replicated λ = 10 times, with m = 100
initially unimproved designs.
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practical Ω(30)
A example.
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4. Discussion

Optimization algorithms are commonly used in agriculture and forestry research for several
planning and management problems [23,24]. In the current study, an array of these algorithms was
implemented and evaluated to assess how well the efficiency of experimental designs can be improved
once spatial and genetical correlation is considered. In particular, the evaluation of algorithm efficiency
to improve experimental designs focused on the use of RCB designs in field trials with application in
plant breeding. Family structure such as half-sib or full-sib families requires appropriate modelling
of their genetic relationships (i.e., correlations) and similarly, their phyisical proximity within rows
and/or columns needs to be accounted for as genotypes in close range will share microsite and thus
will be correlated. Here, accounting for spatial correlations within rows and columns was necessary to
minimize this experimental bias. Incorporation of these correlations not only on the desing stage but
also in the analysis stage has been shown by Gezan et al. [5], for RCB desgins, to produce designs that
are nearly as efficient as those generated using more complex models such as row-column designs that
were analyzed assuming uncorrelated residual errors.

From the detailed practical example that examined a specific condition, results indicated that
the SP algorithm is the best as it managed to improve the initial experiment by reducing the average
variance of treatment effects by 6.713%. This was followed closely by the SA algorithm with an
ODE of 6.258%. The more aggressive algorithm GP4, under the evaluated experimental conditions,
was underperfoming but it might do better in other design conditions. Also, the algorithm GN had
only 12 successful swaps, which was much less than SP and SA algorithms which recorded 192 and
139 swaps, respectively.

Results from Tables 2 and 3 have shown that SP and SA algorithms achieved the highest relative
design efficiencies under all experimental conditions for Ω(30)

A and Ω(196)
A scenarios with the next best

algorithm appearing to be the GP4 algorithm followed by GP14 for Ω(30)
A scenario or GP98 for Ω(196)

A
scenario, and last by the GN algorithm. These results could be attributable to the fact that SP swaps
a single pair of treatments per iteration, thus taking small steps in the search for an optimal design
which makes it more likely to find an optimal condition than GP algorithms that take larger random
steps. SA algorithm performed well under A-optimality criterion since it has the ability not to be
trapped in a local minima by accepting a proportion of bad solutions using an exponential distribution
and a cooling schedule. It is expected that this algorithm will have better performance in tha case
of hundreds or thousand entries, where the likelihood of being trapped in local minuma is higher.
SA algorithm achieved the lowest relative design efficiencies for the same number of iterations of
5,000 under Ω(30)

D scenario as shown in Table 4. It is not very clear why this occurs, but it was observed
that it accepted too many bad (or random) solutions as it tried not to be trapped in a local minima,
hence, making its progress difficult to maximize the objective function.

This study demonstrated that the incorporation of genetic relationships can affect the optimality of
a given design. However, large design improvements have been observed among genetically unrelated
individuals, which agrees with findings from Filho and Gilmour [25] although they did not analyse
varied levels of spatial correlations. Optimization based on A-criterion has revealed, from the present
study, that a substantial decrease in average variance of treatment effects (i.e., trace) among full-sib
families can be achieved for treatments with small levels of narrow-sense heritabilities (h2 = 0.1).
For the case of full-sibs with large narrow-sense heritabilities levels such as 0.6 and with a spatial
correlation of 0.6, little improvements on the design efficiencies were noted. For experimental designs
that were evaluated under Ω(30)

A scenario, the amount of design improvement was, for some conditions,

about four times larger than that realized under Ω(196)
A scenario. This means that more iterations

(>50,000) might be required for larger experiments than it would take for a smaller experiment to
to reach an adequate optimal solution [10]. The number of successful swaps displayed in Figure 3
indicates that they decrease with increasing heritability for all families for experiments evaluated
under Ω(196)

A and Ω(30)
A scenarios for almost all algorithms.
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The choice of A- or D-optimality criteria depends on the desired objective function to be
minimized. Both criteria are a convex function of eigenvalues [11,13]. Here, A-optimality is a function
of the arithmetic mean of the eigenvalues of this matrix whereas D-optimality is a function of the
geometric mean of these eigenvalues [11]. It is recommended to favor the use of the A-optimality
criterion, given the additional computational time required to calculated the determinant within
the D-optimality, particularly for large experiments such as the Ω(196)

A scenarios. If additional
approximations to the procedures are required to accelerate the optimization process, then a similar
approach to the one described by Butler et al. [26] can be implemented.

The algorithms and procedures presented in this study can be easily extended to other complex
experimental designs such as non-orthogonal experiments that can be implemented with appropriate
extensions of the linear mixed models together with an optimality criterion of choice. In addition,
other variants of the search algorithms can also be used; for instance, for the GN algorithm a value
different from 0.25 could be chosen to determine when, and which, treatments should be swapped.
It was not evaluated if changing this threshold value would increase the efficiency of the GN algorithm.

In summary, the potential to improve experimental designs such as RCB designs has been shown
in this study to be highest when SP and SA algorithms were used under A-optimality criterion. For both
A- and D-optimality criteria, SP presented the highest overall design efficiencies. In conclusion, the use
of a SP algorithm based on A-optimality criterion, under a linear mixed model framework that
incorporates genetic relatedness and/or spatial correlations is promising. The procedure enables
generation of more efficient field designs (by reducing the average variance of the treatment effects) to
be used in operational plant breeding programs or in other design of experiments.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4893/11/12/212/s1:
Examples.pdf, ped30hs.csv, ped30fs.csv, ped196HS.csv, ped196FS.csv, and final.R.

Author Contributions: L.K.M. and S.A.G. conceived and designed the experiments and wrote the paper;
L.K.M. performed the experiments and analyzed the data.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the University of Florida’s Institute of Food and Agricultural
Sciences (UF/IFAS) for funding the study as part of a Ph.D. thesis for Mramba.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. R-Code for the Algorithms

Appendix A.1. Simple Pairwise Algorithm (SP)

Optimize.rcbd<- function(matdf,n,traceI,criteria,Rinv,Ginv,K) {
newmatdf <- matdf
trace <- traceI
mat <- NULL
mat <- rbind(mat, c(value = trace, iterations = 0))
Design_best <- newmatdf
Des <- list()
TRACE <- c()
newmatdf <- SwapPair(matdf = matdf)
for (i in 2:n) {
newmatdf <- SwapPair(matdf = newmatdf)
TRACE[i] <- NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K)
Des[[i]] <- newmatdf
if (NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K) < trace) {
print(sprintf("Swapping within blocks: %d", i, "complete\n",
sep = ""))
Design_best <- Des[[i]] <- newmatdf
Design_best <- newmatdf

http://www.mdpi.com/1999-4893/11/12/212/s1
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trace <- NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K)
mat <- rbind(mat, c(trace = trace, iterations = i))
}
if (NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K) > trace & nrow(mat) <= 1) {
newmatdf <- matdf
Des[[i]] <- matdf
Design_best <- matdf
}
if (NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K) > trace & nrow(mat) > 1) {
newmatdf <- Des[[length(Des) - 1]]
Des[[i]] <- newmatdf
Design_best <- newmatdf
}
}
ODE = (((mat[1,"value"]) - (mat[nrow(mat),"value"]))/(mat[1,"value"]))*100
print(sprintf("ODE due to swapping pairs of treatments within blocks is: %f",
ODE, "complete\n", sep = ""))
list(TRACE = c(as.vector(mat[1, "value"]), TRACE[!is.na(TRACE)]), mat = mat,
Design_best = Design_best)
}

Appendix A.2. Simulated Annealing Algorithm (SA)

Optimize_SimAnn_rcbd<- function(matdf,n,traceI,criteria,Rinv,Ginv,K) {
newmatdf <- matdf
trace <- traceI
mat <- NULL
mat <- rbind(mat, c(value = trace, iterations = 0))
Design_best <- newmatdf
Des <- list()
TRACE <- c()
newmatdf <- SwapPair(matdf = matdf)
for (i in 2:n) {
newmatdf <- SwapPair(matdf = newmatdf)
TRACE[i] <- NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K)
Des[[i]] <- newmatdf
if (NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K) < trace) {
print(sprintf("Swapping within blocks: %d", i, "complete\n",
sep = ""))
Design_best <- Des[[i]] <- newmatdf
Design_best <- newmatdf
trace <- NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K)
mat <- rbind(mat, c(trace = trace, iterations = i))
}
Temp<-c()
if (NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K) > trace)
{
dif <- setdiff(NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K),trace)
Temp[i] <- 1/i
accept = exp(-dif/Temp[i])
u = runif(1)
if (u < accept){
Design_best <- Des[[i]] <- newmatdf
Design_best <- newmatdf
trace <- NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K)
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}
if (u > accept & nrow(mat) <= 1) {
newmatdf <- matdf
Des[[i]] <- matdf
Design_best <- matdf
}
if (u > accept & nrow(mat) > 1) {
newmatdf <- Des[[length(Des) - 1]]
Des[[i]] <- newmatdf
Design_best <- newmatdf
}
}
}
ODE = (((mat[1,"value"]) - (mat[nrow(mat),"value"]))/(mat[1,"value"]))*100
print(sprintf("ODE due to simulated annealing is: %f", ODE, "complete\n",
sep = ""))
list(TRACE = c(as.vector(mat[1, "value"]), TRACE[!is.na(TRACE)]), mat = mat,
Design_best = Design_best)
}

Appendix A.3. Greedy Pairwise Algorithm (GP)

OptimizeGreedy.rcbd<- function(matdf,n,traceI,criteria,gsize,Rinv,Ginv,K) {
newmatdf <- matdf
trace <- traceI
mat <- NULL
mat <- rbind(mat, c(value = trace, iterations = 0))
Design_best <- newmatdf
Des <- list()
TRACE <- c()
newmatdf <- SwapGreedy(matdf = matdf,gsize = gsize)
for (i in 2:n) {
newmatdf <- SwapGreedy(matdf = newmatdf,gsize = gsize)
TRACE[i] <- NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K)
Des[[i]] <- newmatdf
if (NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K) < trace) {
print(sprintf("Swapping greedly within blocks: %d", i, "complete\n",
sep = ""))
Design_best <- Des[[i]] <- newmatdf
Design_best <- newmatdf
trace <- NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K)
mat <- rbind(mat, c(trace = trace, iterations = i))
}
if (NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K) > trace & nrow(mat) <= 1) {
newmatdf <- matdf
Des[[i]] <- matdf
Design_best <- matdf
}
if (NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K) > trace & nrow(mat) > 1) {
newmatdf <- Des[[length(Des) - 1]]
Des[[i]] <- newmatdf
Design_best <- newmatdf
}
}
ODE = (((mat[1,"value"]) - (mat[nrow(mat),"value"]))/(mat[1,"value"]))*100
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print(sprintf("ODE due to greedly swapping pairs of treatments within
blocks is: %f", ODE, "complete\n", sep = ""))
list(TRACE = c(as.vector(mat[1, "value"]), TRACE[!is.na(TRACE)]), mat = mat,
Design_best = Design_best)
}

Appendix A.4. Genetic Neighborhood Algorithm (GN)

Optimize_GNN_rcbd<- function(matdf,n,traceI,criteria,Amat, Rinv, Ginv, K) {
newmatdf <- matdf
trace <- traceI
mat <- NULL
mat <- rbind(mat, c(value = trace, iterations = 0))
Design_best <- newmatdf
Des <- list()
TRACE <- c()
newmatdf <- Neighbor_rcbd(matdf,Amat)
for (i in 2:n) {
newmatdf <- Neighbor_rcbd(matdf,Amat)
TRACE[i] <- NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K)
Des[[i]] <- newmatdf
if (NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K) < trace) {
print(sprintf("Swapping treatments: %d", i, "complete\n",
sep = ""))
Design_best <- Des[[i]] <- newmatdf
Design_best <- newmatdf
trace <- NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K)
mat <- rbind(mat, c(trace = trace, iterations = i))
}
if(NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K) > trace && nrow(mat)<=1){
newmatdf <- matdf
Des[[i]] <- matdf
Design_best <- matdf
}
if(NewValue.rcbd(matdf=newmatdf, criteria, Rinv, Ginv, K) > trace && nrow(mat)>1){
newmatdf <- Des[[length(Des) - 1]]
Des[[i]] <- newmatdf
Design_best <- newmatdf
}
}
ODE = (((mat[1,"value"]) - (mat[nrow(mat),"value"]))/(mat[1,"value"]))*100
print(sprintf("ODE due to applying GNN procedure: %f", ODE, "complete\n",
sep = ""))
list(TRACE = c(as.vector(mat[1, "value"]), TRACE[!is.na(TRACE)]), mat = mat,
Design_best = Design_best)
}

The GN algorithm also requires the function Neighbor_rcbd:

Neighbor_rcbd<-function(matdf,Amat) {
bl<-sample(matdf[,"Reps"],1)
temp1<- matdf[matdf[, "Reps"] == bl,]
rb <-length(unique(temp1[,"Row"]))
cb <-length(unique(temp1[,"Col"]))
mat<-matrix(c(temp1[,"Treatments"]),nrow=rb,ncol=cb,byrow=TRUE)
x<-sample(temp1[,"Treatments"],1)
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m2<-cbind(NA,rbind(NA,mat,NA),NA)
cord <- expand.grid(Row = 1:rb, Col = 1:cb)
ret<-c()
for(i in 1:-1)
for(j in 1:-1)
if(i!=0 || j !=0)
ret<-rbind(ret,m2[cord$Row+i+1+nrow(m2)*(cord$Col+j)])
neigh<-ret[,which(mat==x)]
neigh<-c(x,neigh[!is.na(neigh)]) # add the genotype plus its neighbors
test<-t(combn(neigh,2))
temp<-cbind(test[,1],test[,2],Amat[test])
swapsData<-subset(temp, temp[,3] >= 0.25)
samp1 <- setdiff(as.vector(temp1[,"Treatments"]),c(x,as.vector(temp[,2])))
if(nrow(swapsData)!=0 && length(samp1) !=0)
{
val1<-c()
val2<-c()
for(i in 1:nrow(swapsData))
{
val1[i]<-swapsData[i,1]
val2[i]<-sample(samp1,1)
matdf<-Swap_Specific(matdf,g1=val1[i],g2=val2[i],bl=bl)
}
return(matdf[order(matdf[,"Row"],matdf[,"Col"]),])
}
if(nrow(swapsData)!=0 && length(samp1)==0)
{
val1<-c()
val2<-c()
for(i in 1:nrow(swapsData))
{
val1[i]=swapsData[i,1]
val2[i]=swapsData[i,2]
matdf<-Swap_Specific(matdf,g1=val1[i],g2=val2[i],bl=bl)
}
return(matdf[order(matdf[,"Row"],matdf[,"Col"]),])
}
if(nrow(swapsData)==0) return(SwapPair(matdf))
}

Appendix B. R-Code for Generating Initial Randomized Complete Block Design (RCBD)

Appendix B.1. Generate a RCBD

rcbd<- function(blocks, Treatments,rb,cb, Tr, Tc, irregular=FALSE) {
genot0 <- as.numeric(as.factor(Treatments))
n <- length(Treatments)
Treatments <- c(replicate(blocks, sample(genot0, n, replace = FALSE)))
Reps <- rep(1:blocks, each = length(unique(Treatments)))
if(blocks==1){
cord <- cbind(Row=rep(1:Tr,each=Tc), Col=rep(1:Tc,Tr))
matdf <- cbind(cord, Reps=c(rep(1,n)),Treatments)
row.names(matdf)<-NULL
}
if(cb == Tc & Tr > rb & irregular==FALSE){
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cord <- cbind(Row=rep(1:Tr,each=cb), Col=rep(1:Tc,rb))
matdf <- cbind(cord,Reps, Treatments)
row.names(matdf)<-NULL
}
if(rb == Tr & Tc > cb & irregular==FALSE){
Row=rep(rep(1:Tr,each=cb),Tc/cb)
Col <- rep(split(1:Tc, cut(seq_along(1:Tc), blocks, labels = FALSE)),each=Tr)
Col <- unlist(Col)
cord <- cbind(Row,Col)
matdf <- cbind(cord,Reps, Treatments)
row.names(matdf)<-NULL
}
if(Tr > rb & Tc > cb & irregular==FALSE){
Row=rep(rep(1:Tr,each=cb),Tc/cb)
Col <- rep(split(1:Tc, cut(seq_along(1:Tc), Tc/cb, labels = FALSE)),each=Tr)
Col <- unlist(Col)
cord <- cbind(Row,Col)
matdf <- cbind(cord,Reps, Treatments)
row.names(matdf)<-NULL
}
if(irregular==TRUE){
cord <-cbind(Row=Row,Col=Col)
matdf <- cbind(cord, Reps, Treatments)
row.names(matdf)<-NULL
}
matdf[order(matdf[,"Row"],matdf[,"Col"]),]
}

Appendix B.2. Generate Multiple RCBD

MultipleDesigns <- function(DesN, blocks, Treatments, rb,cb, Tr, Tc,Amat=FALSE,
criteria="A", h2, rhox,rhoy, s20,irregular=FALSE) {
matrix0 <- list()
initialValues1 <- c()
initialValues2 <- c()
for (i in 1:DesN) {
print(sprintf("generating initial design: %d", i, "complete\n",
sep = ""))
flush.console()
matrix0[[i]] <- rcbd(blocks, Treatments, rb,cb, Tr, Tc, irregular)
initialValues1[i] <- VarCov.rcbd(matdf = matrix0[[i]], rhox,rhoy,
h2, s20, Tr, Tc, criteria, Amat, irregular)[[1]]
a <- which.min(initialValues1)
newmatdfA <- matrix0[a][[1]]
min_initialValues1 <- initialValues1[a][[1]]
}
return(list(newmatdf = newmatdfA, trace0 = initialValues1,
min_value = min_initialValues1, meanA = mean(initialValues1)))
}

Appendix C. Generate a Numerator Relationship Matrix

GenA <- function(male, female) {
if (nargs() == 1) {
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stop("require male and female entries")
}
if (length(male) != length(female)) {
stop("length of male and female differ")
}
male[is.na(male)] <- 0 # convert all NA to zeros
female[is.na(female)] <- 0 # convert all NA to zeros
n <- length(male)
N <- n + 1
A <- matrix(0, ncol = N, nrow = N)
male <- (male == 0) * (N) + male
female <- (female == 0) * N + female
for (i in 1:n) {
A[i, i] <- 1 + A[male[i], female[i]]/2
for (j in (i + 1):n) {
if (j > n)
break
A[i, j] <- (A[i, male[j]] + A[i, female[j]])/2
A[j, i] <- A[i, j]
}
}
A <- as(A, "sparseMatrix")
return(A[1:n, 1:n])
}

Appendix D. Calculate the Variance-Covariance Matrix

VarCov.rcbd <- function(matdf, rhox, rhoy, h2, s20, Tr, Tc, criteria="A",
Amat=FALSE,irregular=FALSE) {
if(nrow(matdf)==length(unique(matdf[,"Treatments"]))){
X <- as.matrix(matdf[, "Reps"])
}
if(nrow(matdf) > length(unique(matdf[,"Treatments"]))){
X <- Matrix::sparse.model.matrix(~as.factor(matdf[, "Reps"])-1)
}
s2e <- (1 - s20) * (1 - h2)
stopifnot(s2e > 0)
m = length(unique(matdf[,"Treatments"]))
if(is.matrix(Amat)){
G <- h2 * as.matrix(Amat)
Ginv <- round(chol2inv(chol(as.matrix(G))),7)
Ginv <- as(Ginv, "sparseMatrix")
}
else{
Ginv <- round((1/h2) * Matrix::Diagonal(m),7)
Ginv <- as(Ginv, "sparseMatrix")
}
Z<- Matrix::sparse.model.matrix(~as.factor(matdf[, "Treatments"]) - 1)
# calculating R and its inverse for spatial analysis
bb <- length(unique(matdf[,"Reps"]))
matdf <- matdf[order(matdf[,"Row"],matdf[,"Col"]),]
if(irregular==TRUE){
R <- Matrix::Diagonal(nrow(matdf))
for(i in 1:(nrow(matdf)-1)) {
x1 <- matdf[,"Col"][i]
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y1 <- matdf[,"Row"][i]
for (j in (i+1):nrow(matdf)){
x2 <- matdf[,"Col"][j]
y2 <- matdf[,"Row"][j]
R[i,j]<-(rhox^abs(x2 -x1))*(rhoy^abs(y2 -y1))
}
}
R = as.matrix(round(s2e*R,7))
R[lower.tri(R)] <- t(R)[lower.tri(R)]
R <- as(R, "sparseMatrix")
Rinv <- round(chol2inv(chol(R)),7)
Rinv <- as(Rinv, "sparseMatrix")
}
if(irregular==FALSE){
sigx <- Matrix::Diagonal(Tc)
sigx <- rhox^abs(row(sigx) - col(sigx))
sigy <- Matrix::Diagonal(Tr)
sigy <- rhoy^abs(row(sigy) - col(sigy))
R <- round(s2e * kronecker(sigy, sigx),7)
R <- as(R, "sparseMatrix")
Rinv <- round(chol2inv(chol(R)),7)
Rinv <- as(Rinv, "sparseMatrix")
}
C11 <- Matrix::crossprod(as.matrix(X), as.matrix(Rinv)) %*% as.matrix(X)
C11inv <- solve(C11)
k1 <- Rinv %*% as.matrix(X)
k2 <- Matrix::tcrossprod(as.matrix(C11inv), as.matrix(X))
k3 <- k2 %*% Rinv
K <- k1 %*% k3
K <- as(K, "sparseMatrix")
temp0 <- Matrix::crossprod(Z, Rinv) %*% Z + Ginv - Matrix::crossprod(Z, K) %*% Z
C22 <- solve(temp0)
C22 <- as(C22, "sparseMatrix")
Ginv = round(Ginv,7)
Rinv = Matrix::drop0(round(Rinv,7))
K = round(K,7)
C22 = round(C22,7)
if (criteria == "A") {
return(c(traceI = sum(Matrix::diag(C22)), Ginv = Ginv, Rinv = Rinv, K=K))
}
if (criteria == "D") {
deTm = Matrix::det(C22)
return(c(doptimI = log(deTm), Ginv = Ginv, Rinv = Rinv, K=K))
}
}
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