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Abstract: From a broad perspective, we study issues related to implementation, testing,
and experimentation in the context of geometric algorithms. Our focus is on the effect of quality of
implementation on experimental results. More concisely, we study algorithms that compute convex
hulls for a multiset of points in the plane. We introduce several improvements to the implementations
of the studied algorithms: PLANE-SWEEP, TORCH, QUICKHULL, and THROW-AWAY. With a new set
of space-efficient implementations, the experimental results—in the integer-arithmetic setting—are
different from those of earlier studies. From this, we conclude that utmost care is needed when doing
experiments and when trying to draw solid conclusions upon them.

Keywords: computational geometry; algorithm; convex hull; rectilinear convex hull; algorithm
engineering; implementation; testing; experimentation; robustness; performance

1. Introduction

In physics, the term observer effect is used to refer to the fact that simply observing a phenomenon
necessarily changes that phenomenon. A similar effect arises in computer science when comparing
different algorithms—one has to implement them and make measurements on the performance of the
developed implementations. In an ideal situation, one would eliminate the bias caused by quality
of implementation and limit the uncertainty caused by inaccurate measurements ([1], Chapter 14).
In practice, this is difficult. This work is part of our research program “quality of implementation”
where we look closely at the programs used in some recent algorithm-engineering studies. In particular,
we want to remind our colleagues of the fact that, due to the programming details, some experiments
do not tell the whole story and that the quality of implementation does matter.

More specifically, we investigate the efficiency of algorithms that solve the convex-hull problem
in the two-dimensional Euclidean space. As our starting point, we used a recent article by
Gomes [2] where a variation of the PLANE-SWEEP algorithm by Andrew [3] was presented, analysed,
and experimentally compared to several other well-known algorithms. The algorithm was named
TORCH (total-order convex-hull). The source code used in the experiments was released in an electronic
appendix [4].

As in any experimental work, the experiments must be verifiable and reproducible. In the abstract
of the paper [2], Gomes claimed that TORCH is (1) “much faster” than its competitors (2) “without
penalties in memory space”. We set a simple goal for this study: Try to reproduce these results.
Unfortunately, we must directly report that we failed in this mission for several reasons:
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1. The algorithm—as it was presented in [2]—was incorrect.
2. The implementation given in [4] was not reliable—calculations could overflow and degenerate

inputs were not handled correctly.
3. The implementation required too much memory to be used when the size of the problem reached

that of the main memory of the computer.
4. The source code of the competing implementations was not made publicly available so we had to

implement them ourselves.
5. Not enough details were provided on the experiments so that we could reproduce them.

We built this paper around the same algorithms as Gomes [2]: ROTATIONAL-SWEEP (Graham’s
scan) [5], GIFT-WRAPPING (Jarvis’ march) [6], Chan’s output-sensitive algorithm [7], PLANE-SWEEP

(Andrew’s monotone-chain algorithm) [3], TORCH [2], and QUICKHULL [8–10]. Moreover, we examined
some heuristics (POLES-FIRST [11] and THROW-AWAY [12]) that are often used as a preprocessing step
to speed up the standard algorithms.

As advised in ([13], Section 2.3), we divided this study into two parts: (1) In a less formal pilot
study, our goal was to eliminate unpromising avenues of research. (2) In a more carefully designed
workhorse study, we compared the performance of the most serious competitors. In the remaining
part of the paper, we describe how we implemented and tested the convex-hull algorithms that rose
above the others: PLANE-SWEEP, TORCH, QUICKHULL, and THROW-AWAY. We also discuss why the
other alternatives mentioned above are not competitive. In particular, we go a bit deeper into some
implementation details revealed by a careful code analysis. Finally, we present the results of our
workhorse experiments and a totally new set of conclusions.

The contributions of this work can be summarized as follows.

• We describe a simple way of making the implementations of convex-hull algorithms robust.
• We identify an error in the original version of TORCH and propose a corrected, in-place version.
• We prove that, when the coordinates of the n input points are integers drawn from a bounded

universe of size U, QUICKHULL runs in O(n lg U) worst-case time. We also explain how its
worst-case performance can be reduced to O(n lg n)—we call this variant INTROHULL.

• We implement six convex-hull algorithms—PLANE-SWEEP, TORCH, QUICKHULL, POLES-FIRST,
THROW-AWAY, and INTROHULL—and show that these implementations are space-efficient and
time-efficient, both in theory and practice.

• We introduce a test framework that can be used to make the programs computing convex
hulls self-testing.

• We compare the performance of four space-efficient convex-hull algorithms—PLANE-SWEEP,
TORCH, QUICKHULL, and THROW-AWAY—in the integer-arithmetic setting.

2. Preliminaries

We begin with some basics that are important for the whole study: (1) We define the terms used
formally, (2) we describe the environment where all pilot and workhorse experiments were carried out,
and (3) we discuss the robustness issue that is relevant for many geometric algorithms.

2.1. Definitions

Recall that in the two-dimensional convex-hull problem we are given a multiset S of points,
where each point p is specified by its Cartesian coordinates (p.x, p.y), and the task is to compute the
convex hull H(S) of S which is the boundary of the smallest convex set enclosing all the points of S.
More precisely, the goal is to find the smallest set—in cardinality—of vertices describing the convex
hull, i.e., the output is a convex polygon P covering all the points of S. In particular, the set of vertices
in P is a subset of the points in S. A normal requirement is that in the output the vertices are reported
in the order in which they appear when traversing around the convex hull. Throughout the paper,
we use n to denote the number of points in the input S and h the number of vertices in the output P.
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A point q of a convex set X is said to be an extreme point if no two other points p and r exist in
X such that q lies on the line segment pr. So, the vertices of P describing the convex hull H(S) are
precisely the extreme points of the smallest convex set enclosing the points of S.

Let S be a multiset of points. Of these points, a point p dominates another point q in the north-east
direction if p.x > q.x and p.y > q.y. Since the requirement is to be strictly larger in both x and y,
then for a pair of points as (1, 1) and (1, 2), we have that neither of them dominate the other in the
north-east direction. A point p is dominant in the north-east direction if it is not dominated in this
particular direction by any other point in S. That is, the first quadrant centred at p has no other point
in it. Analogous definitions can be made for the south-east, south-west, and north-west directions.
A point is said to be maximal among the points in S if it is dominant in one of the four directions.
Clearly, every extreme point is maximal (for a proof, see [14]), but the opposite is not necessarily true.

An algorithm operates in place if the input is given in a sequence of size n and, in addition to this,
it uses O(1) words of memory. An in-place convex-hull algorithm (see, for example, [15]) partitions the
input into two parts: (1) The first part contains all the extreme points in clockwise or counterclockwise
order of their appearance on P and (2) the second part contains all the remaining points that are inside
or on the periphery of P. Further, an algorithm operates in situ if it uses O(lg n) words of extra memory.
For example, QUICKSORT [16] is an in-situ algorithm if it is implemented recursively such that the
smaller subproblem is always solved first.

2.2. Test Environment

The experiments to be discussed were run on two computers: one running Linux and the other
running Windows. Both computers could be characterized as standard laptops that one can buy from
any well-stocked computer store. A summary of the test environments is given in Table 1. Although
both computers had four cores, the experiments were run on a single core.

Table 1. Hardware and software in use: (a) Linux computer, (b) Windows computer.

(a)

Processor. Intel® Core™ i7-6600U CPU @ 2.6 GHz (turbo-boost up to 3.6 GHz)—4 cores
Word size. 64 bits
First-level data cache. 8-way set-associative, 64 sets, 4× 32 KB
First-level instruction cache. 8-way set-associative, 64 sets, 4× 32 KB
Second-level cache. 4-way set-associative, 1 024 sets, 256 KB
Third-level cache. 16-way set-associative, 4 096 sets, 4.096 MB
Main memory. 8.038 GB
Operating system. Ubuntu 17.10
Kernel. Linux 4.13.0-16-generic
Compiler. g++ 7.2.0
Compiler options. −O3 −std=c++17 −x c++ −Wall −Wextra −fconcepts

(b)

Processor. Intel® Core™ i7-4700MQ CPU @ 2.40 GHz—4 cores and 8 logic processors
Word size. 64 bits
First-level data cache. 8-way set-associative, 4× 32 KB
First-level instruction cache. 8-way set-associative, 4× 32 KB
Second-level cache. 4-way set-associative, 4× 256 KB
Third-level cache. 12-way set-associative, 6 MB
Main memory. DDR3, 8 GB, DRAM frequency 800 MHz
Operating system. Microsoft Windows 10 Home 10.0.15063
Compiler. Microsoft Visual Studio 2017
Compiler options. /Ox /Ob2 /Oi /Ot /std:c++17
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As the input for the programs, we used three types of data:

Square data set. The coordinates of the points were random integers uniformly distributed over the
interval J−231 . . 231 M (i.e., random ints). The expected size of the output is O(lg n) [14].

Disc data set. As above, the coordinates of the points were random ints, but only the points inside the
circle centred at the origin (0, 0) with the radius 231 − 1 were accepted to the input collection.
In this case, the expected size of the output is O(n1/3).

Bell data set. The points were drawn according to a two-dimensional normal distribution by rounding
each coordinate to the nearest integer value (of type int). The mean value of the distribution was
0 and the standard deviation r/(2 + loge(n)) where r = 231 − 1. For this data set, the expected
size of the output is O(

√
lg n ).

All our programs used the same point class template that took the type of the coordinates as its
template parameter. The implementation of this class was straightforward: It had two public data
members x and y, it had a default constructor and a parameterized constructor, and it supported the
operations {==,=6==,<,>} for any pair of points.

None of the considered algorithms use random-access capabilities to a large extent. Therefore,
we did not expect to see any significant cache effects in our experiments. Based on the memory
configuration of the test computers, we wanted to check what happened when the problem instances
became bigger than the capacity of different memory levels. In particular, it seemed not to be necessary
to plot detailed curves of the running times.

The points were stored in an array. We report the test results for five values of n: 210, 215, 220, 225,
and 230. Observe that for the largest test case, there could be at most one array of 230 points in the
internal memory of the Linux computer, while the Windows computer could not handle that.

Be aware that the reported measurement results are scaled: For every performance indicator,
if X is the observed number, we report X/n. That is, a constant means linear performance. To avoid
problems with inadequate clock precision and pseudo-random number generation, a test for n = 2i

was repeated d227/2ie times; each repetition was done with a new input array. The input arrays were
pre-generated and statistically independent.

2.3. Robustness

In Gomes’ experiments [2], the coordinates of the points were floating-point numbers. It is
well-known that the use of the floating-point arithmetic in the implementation of the basic geometric
primitives may lead to disasters (for some classroom examples—one being the computation of
the convex hulls in the plane, we refer to [17]). Therefore, it was somewhat surprising that the
robustness issue was not discussed at all. Given the floating-point setting, the programs used in
Gomes’ study [2], as well in some other experimental studies (see, for instance, [18,19]), are only able
to compute an uncontrolled approximation of the convex hull. The output polygon may not even be
convex, it may miss some of the convex-hull vertices, and it may contain some interior points—in
an uncontrolled away.

The orientation test is a basic primitive that is used in many geometric algorithms. It takes three
points p, q, and r, and tells whether there is a left turn, right turn, or neither of these at q when moving
from p to r via q. This primitive can be seen as a special cross-product computation, and it is a known
improvement used to avoid trigonometric functions and division.

Recall that an overflow means that the result of an arithmetic operation is too large or too small to
be correctly represented in the target variable ([20], Section 2-13). In our experiments we rely on the
exact-arithmetic paradigm. The coordinates of the points are assumed to be integers of fixed width,
and intermediate calculations are carried out with integers of higher precision so that all overflows
are avoided. When computing convex hulls in the plane, it is easy to predict the maximum precision
needed in the intermediate calculations. A construction of a signed value from an unsigned one may
increase the length of the representation by one bit, every addition or subtraction may increase the
needed precision by one bit, and every multiplication at most doubles the needed precision.
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For points p = (p.x, p.y), q = (q.x, q.y), and r = (r.x, r.y), we treat their cross product as a single
number (q.x− p.x)(r.y− p.y)− (r.x− p.x)(q.y− p.y). If the cross product is positive, there is a left turn
at q when moving from p to r via q. If the cross product is negative, there is a right turn. Additionally,
if it is 0, the points are collinear. The cross product measures the (signed) area of the parallelogram
spanned by the oriented line segments −→pq and −→pr . So the cross product can also be used to determine
which point r is farthest from the line segment pq (above or below).

Let us consider how the left-turn orientation predicate can be coded in C++. The code for the
right-turn, no-turn, and signed-area calculations is similar. Using the off-the-shelf tools available at the
CPH MPL [21] and the CPH STL [22], the C++ code for computing the left-turn predicate is shown
in Figure 1. If the width of the original coordinates is w bits, with (2w + 4)-bit intermediate precision
we can be sure that no overflows happen—and the computed answer is correct. There are many
other—more advanced—methods to make this computation robust (for a survey, we refer to [23]).
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1 template<typename P>
2 bool left_turn(P const& p , P const& q , P const& r) {
3 using N = std : :size_t ;
4 using T = typename P : :coordinate ;
5 constexpr N w = cphmpl : :width<T> ;
6 using Z = cphstl : :Z<2 * w + 4> ;
7 Z px = Z(p .x) ;
8 Z py = Z(p .y) ;
9 Z lhs = (Z(q .x) − px ) * (Z(r .y) − py ) ;

10 Z rhs = (Z(r .x) − px ) * (Z(q .y) − py ) ;
11 return lhs > rhs ;
12 }

Figure 1. The left-turn predicate written in C++. The compile-time function cphmpl::width<T> returns
the width of the coordinates of type T in bits. The class template cphstl::Z<b> provides fixed-width
integers; the width of the numbers is b bits and, for numbers of this type, the same operations are
supported as for built-in integers.

One left-turn test involves two multiplications, four subtractions, six constructor calls, and one
comparison. When the numbers are wider than any of the built-in integers, we have to operate on
double-word (cphstl::Z<68>) or triple-word integers (cphstl::Z<132>). This makes the arithmetic
operations even more costly. Hence, the goal to reduce the number of times the geometric primitives
are to be executed is well motivated.

3. Pilot Experiments

A normal advice given in most textbooks on algorithm engineering is that “it is essential to
identify an appropriate baseline” for the experiments (the quotation is from ([1], Chapter 14)). The main
outcome of our pilot experiments—to be discussed next—was that we can exclude ROTATIONAL-SWEEP,
GIFT-WRAPPING, and Chan’s output-sensitive algorithm from further consideration. None of them
were competitive. Hence, we can follow the good practice “not to overload the experimental results
with unnecessary curves” [24].

3.1. Rotational Sweep

The ROTATIONAL-SWEEP algorithm due to Graham [5] is historically important; it was the first
algorithm that could compute the convex hull of n points in O(n lg n) worst-case time. This algorithm
works as follows: (1) Find a point o that is on the convex hull (e.g., a point that is lexicographically
the smallest). (2) Sort all the points around o lexicographically by polar angle and distance from o.
(3) Scan the formed star-shaped polygon in clockwise order by repeatedly considering triples (p, q, r)
of consecutive points on this dynamically-changing polygon and eliminate q if there is not a right turn
at q when moving from p to r via q.

Figure 1. The left-turn predicate written in C++. The compile-time function cphmpl::width<T> returns
the width of the coordinates of type T in bits. The class template cphstl::Z<b> provides fixed-width
integers; the width of the numbers is b bits and, for numbers of this type, the same operations are
supported as for built-in integers.

One left-turn test involves two multiplications, four subtractions, six constructor calls, and one
comparison. When the numbers are wider than any of the built-in integers, we have to operate on
double-word (cphstl::Z<68>) or triple-word integers (cphstl::Z<132>). This makes the arithmetic
operations even more costly. Hence, the goal to reduce the number of times the geometric primitives
are to be executed is well motivated.

3. Pilot Experiments

A normal advice given in most textbooks on algorithm engineering is that “it is essential to
identify an appropriate baseline” for the experiments (the quotation is from ([1], Chapter 14)). The main
outcome of our pilot experiments—to be discussed next—was that we can exclude ROTATIONAL-SWEEP,
GIFT-WRAPPING, and Chan’s output-sensitive algorithm from further consideration. None of them
were competitive. Hence, we can follow the good practice “not to overload the experimental results
with unnecessary curves” [24].

3.1. Rotational Sweep

The ROTATIONAL-SWEEP algorithm due to Graham [5] is historically important; it was the first
algorithm that could compute the convex hull of n points in O(n lg n) worst-case time. This algorithm
works as follows: (1) Find a point o that is on the convex hull (e.g., a point that is lexicographically
the smallest). (2) Sort all the points around o lexicographically by polar angle and distance from o.
(3) Scan the formed star-shaped polygon in clockwise order by repeatedly considering triples (p, q, r)
of consecutive points on this dynamically-changing polygon and eliminate q if there is not a right turn
at q when moving from p to r via q.
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Gomes [2] did not release his implementation of ROTATIONAL-SWEEP, but he referred to the
implementation described in [25] which closely follows the description given in the textbook by
Cormen et al. ([26], Section 33.3). This code had some issues that we would handle differently:

• The routine did not operate in place, but the output was produced on a separate stack.
• The routine had the same robustness issues as Gomes’ program: The arithmetic operations in the

orientation test and the distance calculation could overflow.
• The C library QSORT was used in sorting; this program is known to be slower and less reliable

than the C++ standard-library INTROSORT [27]. Gomes used INTROSORT in his own program.

Andrew [3] emphasized that, compared to his own algorithm, ROTATIONAL-SWEEP calls the
orientation predicate Θ(n lg n) times. To understand the effect of angular sorting, we performed
a benchmark where we sorted a sequence of n points using INTROSORT [27]. We considered three types
of comparators; these were given as lambda functions for std ::sort. Here P is the type of the points
and o the point around which the angular sorting is done; both are specified in the surrounding code.

x-sorting.

[ ](P const& p , P const& q) → bool {
return p .x < q .x ;

}

Lexicographic sorting.

[ ](P const& p , P const& q) → bool {
return (p .x < q .x) or (p .x == q .x and p .y < q .y) ;

}

Angular sorting.

[&] (P const& p , P const& q) → bool {
int turn = orientation(o , p , q) ;
if (turn == 0) {

return (L∞ distance(o , p) < L∞ distance(o , q) ) ;
}
return (turn == +1) ;

}

In the above, the functions orientation and L∞distance—which do what their names
indicate—were implemented using multi-precision integers in the same way as the function left_turn

in Figure 1.
The results of this micro-benchmark are shown in Table 2. Based on these results, we can safely

ignore any convex-hull algorithm that requires full angular sorting.
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Table 2. Performance of INTROSORT for different comparators [nanoseconds per point] for the square
data set: (a) Linux computer, (b) Windows computer.

(a)

n x-Sorting Lexicographic Sorting Angular Sorting

210 36.65 38.06 162.5
215 54.03 56.31 244.7
220 71.48 75.16 329.9
225 89.37 94.89 412.7
230 162.7 178.2 572.6

(b)

n x-Sorting Lexicographic Sorting Angular Sorting

210 40.49 43.40 595.1
215 62.62 67.17 922.5
220 85.18 90.70 1247
225 109.1 115.5 1579

3.2. Gift Wrapping

The GIFT-WRAPPING algorithm [6] can be visualized by wrapping paper around the points,
i.e., determining the boundary edges one by one. This means that the input is scanned h times and,
for each considered point, it is necessary to perform the orientation test. Thus, the worst-case running
time is O(nh) and the constant factor in the leading term is quite high. Our exploratory experiments
showed that this algorithm is slow, unless h is a small constant. Also, in [28] it was reported that the
GIFT-WRAPPING algorithm is a poor performer.

3.3. Output-Sensitive Algorithms

Gomes implemented Chan’s output-sensitive algorithm [7] which is known to run in O(n lg h)
time in the worst case. There are several other algorithms having the same running time [29–32].
In the exploratory experiments conducted at our laboratory, Chan’s algorithm was not competitive
in practice and the attempts to make it into such failed. These findings are fully aligned with those
reported by Gomes. In this respect, the situation has not changed since 1985 [19].

4. Implementations

In this section, we describe how we implemented the convex-hull algorithms used in our
workhorse experiments. Note that we have coded the algorithms by closely following the high-level
descriptions given here. Therefore, an interested reader may want to read the source code alongside
with the following text.

4.1. Plane Sweep

A sequence of points is monotone if the points are sorted according to their x-coordinates—in
non-decreasing or non-increasing order. Let p, q, and r be three consecutive vertices on a monotone
polygonal chain. Recall that a vertex q of such a chain is concave if there is a left turn or no turn (in the
code the condition is not right_turn(p, q, r)) when moving from p to r via q. That is, the angle ∠pqr on
the right-hand side with respect to the traversal order is greater than or equal to π.

The PLANE-SWEEP algorithm, proposed by Andrew [3], computes the convex hull for a sequence
of points as follows:

(A) Sort the input points in non-decreasing order according to their x-coordinates.
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(B) Determine the leftmost point (west pole) and the rightmost point (east pole). If there are several
pole candidates with the same x-coordinate, let the bottommost of them be the west pole; and on
the other end, let the topmost one be the east pole.

(C) Partition the sorted sequence into two parts, the first containing those points that are above or
on the line segment determined by the west pole and the east pole, and the second containing
the points below that line segment.

(D) Scan the two monotone chains separately by eliminating all concave points that are not on the
convex hull. For an early description of this backtracking procedure relying on cross-product
computations, see [33].

(E) Concatenate the computed convex chains to form the final answer.

It is worth mentioning that the backtracking procedure used in Step (D) does not work for all
polygons as claimed in [33] (for a bug report, see [9]). What is important for our purposes is that it
works for monotone polygonal chains provided that the poles are handled as discussed by Andrew [3]:
All other points that have the same x-coordinate as the west pole (east pole) are eliminated, except the
topmost (bottommost) one provided that it is not a duplicate of the pole. Furthermore, Andrew [3]
pointed out that in Step (C) it is only necessary to perform the orientation test for points whose
y-coordinate is between the y-coordinates of the west and east poles. Usually, this will reduce the
number of orientation tests performed by a significant fraction.

There is a catch hidden in the original description of the algorithm [3]. In Step (C), the partitioning
procedure must retain the sorted order of the points, i.e., it must be stable. In Andrew’s description,
it is not specified how this step is to be implemented. It is possible to do stable partitioning in place in
linear time (see [34]), but all linear-time algorithms developed for this purpose are considered to be
galactic. That means they are known to have a wonderful asymptotic behaviour, but they are never
used to actually compute anything [35]. Therefore, it is understandable that Gomes’ implementation
of TORCH [4] used extra arrays of indices to carry out multi-way grouping stably.

It is known that the PLANE-SWEEP algorithm can be implemented in place. Unfortunately,
the description given in [15] does not lead to an efficient implementation; the goal of that article
was to show that an in-place implementation is possible.

The problem with stable partitioning can be avoided by performing the computations in
a different order: find the west and east poles before sorting. This way, when creating the two
candidate collections, we can use unstable in-place partitioning employed in QUICKSORT—for example,
the variant proposed by Lomuto ([26], Section 7.1)—and sort the candidate collections separately
after partitioning.

Let p and r be two points that are known to be on the convex hull. In our implementation
of PLANE-SWEEP the key subroutine is chain: It takes an oriented line segment −→pr and a candidate
collection C of points, which all lie on the left of −→pr , and computes the convex chain, i.e., part of the
convex hull, from p to r via the points in C. The extreme points are specified by two iterators and the
candidate collection is assumed to follow immediately after p in the input sequence. The past-the-end
position of the candidate collection is yet another parameter. To make the function generic, so that
it can compute both the upper hull and the lower hull, it has a comparator as its last parameter.
This comparator specifies the sorting order of the points. As is customary in the C++ standard
library, a less-than comparison function orders the points in non-decreasing order and a greater-than
comparison function orders them in non-increasing order.

To accomplish its task, chain works as follows: (a) If C is empty, return the position of the successor
of p as the answer, i.e., the computed chain consists of p. (b) Sort the candidates in the given order
according to their x-coordinates. As a result, the points with equal x-coordinates can be arranged in
any order. (c) If in C there are points with the same x-coordinate as p, eliminate all the other except the
one having the largest y-coordinate—with respect to the given ordering—before any further processing.
(d) Use the standard backtracking procedure [33] to eliminate all concave points from the remaining
candidates. The stack is maintained in place at the beginning of the zone occupied initially by p and C
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coming just after p. This elimination process is semi-stable, meaning that it retains the sorted order of
the points in the left part of partitioning; it may change the order of the eliminated points. (e) Return
the position of the first eliminated point as the answer (or the past-the-end position of C if all points
are convex).

Thus, our in-place implementation of PLANE-SWEEP processes any non-empty sequence of points
as follows (for an illustration, see Figure 2):

west pole east pole
(1)

upper-hull candidates lower-hull candidates

(2)

x-sorted
eliminated

(3b | 3c)

upper hull eliminated
(3d)

x-sorted
eliminated

(4b | 4c)

eliminated

lower hull

(4d)

answer
(5)

Figure 2. In-place PLANE-SWEEP algorithm illustrated.

(1) Find the west and east poles by scanning the input sequence once. Place the poles at their
respective ends of the input sequence. If the poles are the same point, stop and return the position
of the successor of the west pole.

(2) Partition the input sequence into two parts: (a) the upper-hull candidates, i.e., the points that
are above or on the line segment determined by the west pole and the east pole; and (b) the
lower-hull candidates, i.e., the points below that line segment.

(3) Apply the function chain with the poles, the upper-hull candidates, and comparison function less
than. This gives us the upper hull from the west pole to the east pole, excluding the east pole.
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(4) Swap the east pole to the beginning of the lower-hull candidates, and apply the function chain

with the two poles—this time giving the east pole first, the lower-hull candidates, and the
comparison function greater than. After this we also have the lower hull, but it is not in its
final place.

(5) Move the computed lower hull just after the computed upper hull (if it is not there already).
This is a standard in-place block-swap computation. Finally, return the position of the first
eliminated point (or the past-the-end position if all points are in the convex hull).

If HEAPSORT [36] was used in the implementation of chain, the whole algorithm would operate
in place and run in O(n lg n) worst-case time. However, the C++ standard-library INTROSORT [27],
which is a combination of QUICKSORT, INSERTIONSORT, and HEAPSORT, is known to be more efficient in
practice. Still, it guarantees the O(n lg n) worst-case running time and, because of careful programming,
it operates in situ since the recursion stack is never allowed to become deeper than 2 lg n.

4.2. Torch

The following definitions are from [37]: (1) A rectilinear line segment is a line segment oriented
parallel to either the x-axis or the y-axis. (2) A point set is rectilinear convex if for any two of its points
which determine a rectilinear line segment, the line segment lies entirely in the given set. (3) Given
a multiset S of points, its (connected) rectilinear convex hull is the smallest connected rectilinear convex
set enclosing all the points of S. Roughly speaking, a rectilinear convex hull connects all the maximal
points with four rectilinear curves.

At the abstract level, TORCH [2] operates in two stages: (1) Find the points on the rectilinear
convex hull. (2) Refine this approximation by discarding all concave points from it. The correctness of
this approach follows directly from the fact that the rectilinear convexity is a looser condition than the
normal convexity. Ottmann et al. [37] showed how to compute the rectilinear convex hull in O(n lg n)
time and O(n) space. If PLANE-SWEEP is used to do the refinement, the overall running time of this
procedure is O(n lg n). A similar approach was proposed by Bentley et al. [14] (see also [38,39])—they
computed all maximal points; they were not interested in the rectilinear curvature. They proved
that, under the assumption that the points are chosen from a probability distribution in which each
coordinate of a point is chosen independently of all other coordinates, the number of maximal points
is O(lg n). Using this fact, one can develop algorithms for computing maxima and convex hulls
(for a historical review, see [39]), for which the expected running time is O(n) and the worst-case
running time O(n lg n).

Gomes [2] combined the rectilinear-convex-hull algorithm by Ottmann et al. [37] and the
PLANE-SWEEP algorithm [3] as follows: (1) By integrating the two algorithms better, redundant
sorting computations can be avoided. (2) By replacing lexicographic sorting with x-sorting, a superset
can be computed faster even though now it may include some extra maximal points that lie on the
periphery of the rectilinear convex hull—i.e., the computation of the rectilinear convex hull is not
fully accurate, but for our purpose these extra maximal points are by no means harmful. We call the
points selected by Gomes’ heuristic algorithm boundary points. In TORCH, Steps (C) and (D) of the
PLANE-SWEEP algorithm are replaced with the following three steps (for an illustration, see Figure 3):
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south pole

west pole

north pole

east pole

Q1

Q2

Q3

Q4

Figure 3. TORCH algorithm illustrated; the staircase in Q1 is displayed in red and all hollow points are
discarded during the staircase formation.

(B’) Find the topmost point (north pole) and the bottommost point (south pole) by one additional scan
and resolve the ties in a similar fashion as in Step (B).

(C’) Group the input points into four (overlapping) candidate collections such that, for i ∈ {1, 2, 3, 4},
the i’th collection contains the points that are not dominated by the adjacent poles in the
respective direction (north-west, north-east, south-east, or south-west), i.e., these points are in
the quadrant Qi of Figure 3. Note that the quadrant includes the borders.

(D’) In each of the candidate collections, compute the boundary points before discarding the concave
points that are not in the output polygon.

Let us look at Step (D’) a little more thoroughly by considering what is done in Q1: (1) The points
in Q1 are sorted according to their x-coordinates. (2) The sorted sequence is scanned from the west
pole to the north pole and a point is selected as a boundary point if its y-coordinate is larger than or
equal to the maximum y-coordinate seen so far. That is, the selected points form a monotonic sequence
both with respect to their x-coordinates and y-coordinates; we call such a sequence a staircase. Since the
points on the computed staircase are all maximal and only maximal points on a rectilinear line segment
determined by two other points may be discarded, the staircase must contain all vertices of the convex
hull that are in Q1. (3) As the final step, the standard backtracking procedure is applied for the points
in the staircase to get the part of the convex hull that is inside Q1.

One should observe that the classification, whether a point is a boundary point or not, depends
on the original order of the points. For example, consider a multiset of three points (1, 1), (1, 2), (1, 1)
given in this order. All these points are dominant in the north-west direction, but the scan only selects
the first two as the boundary points. If the order of the last two points had been the opposite, then all
three would be classified as boundary points. Since it is unspecified, how a sorting algorithm will
order points whose x-coordinates are equal, in our worst-case constructions we assume that such
points are ordered so that all maximal points will be classified as boundary points.

The processing in the other quadrants is symmetric. In Q2 the points are scanned from the east
pole to the north pole and the staircase goes upwards as in Q1. In Q3 the processing is from the east
pole to the south pole and we keep track of the current minimum with respect to the y-coordinates—so
the staircase goes downwards. Finally, in Q4 the points are scanned from the west pole to the south
pole and the staircase goes downwards as in Q3.
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In Step (C’), to do the grouping, it is only necessary to compare the coordinates, the orientation
test is not needed. Also, in Step (D’), only coordinate comparisons are done, no arithmetic operations.
In the original description [2], the staircases were concatenated to form an approximation of the convex
hull before the final elimination scan. However, doing so may cause the algorithm to malfunction—we
will get back to the correctness of this approach in Section 5.3.

The asymptotic running time of this algorithm is determined by the sorting steps, which require
a total of Θ(n lg n) time in the worst case and in the average case for the best comparison-based sorting
method. If the number of maximal points is small as the theory suggests [14], the cost incurred by the
evaluation of the orientation tests will be insignificant. Compared to other alternatives, this algorithm
is important for two reasons:

(1) Only the x-coordinates are compared when sorting the points.
(2) The number of the orientation tests performed is proportional to the number of maximal

points, the coefficient being at most two times the average number of directions the points
are dominant in.

As to the use of memory, in the implementation of TORCH [4], Gomes used

• four arrays of indices—implemented as std ::vector—to keep track of the points in each of the
four candidate collections,

• an array of points—implemented as std ::vector—to store the boundary points in the
approximation, and

• a stack—implemented as std ::deque—to store the output.

Fact 1. In the worst-case scenario, Gomes’ implementation may require space for about 8n indices and 8n points
for multiset data (or about 4n indices and 4n points for set data) for temporary arrays, or h + 512 points and

1
256 h pointers for the output stack.

Proof. To verify this deficiency for multisets, consider a special input having four poles (−1, 0), (0, 1),
(1, 0), (0,−1) and n − 4 points at the origin. Since the duplicates are on the border, they should
be placed in each of the four candidate collections. Hence, each of the index arrays will be of size
n− 4. Since the origin is not dominated by any of the poles, none of the duplicates will be eliminated.
Therefore, all the duplicates should be included in the approximation of the convex hull, which may
contain about 4n points. For sets, in a bad input all input points lie on a line. In this case, all points
should be placed in the candidate collections for two of the four quadrants. Again, none of the points
on the line are dominated by the poles. Therefore, the approximation may contain 2n points.

For C++ standard-library vectors, the total amount of space allocated can be two times larger
than what is actually needed (see, for example, the benchmarks reported in [40]). In the C++ standard
library, by default a stack is implemented as a deque which is realized by maintaining a vector of
pointers to memory segments (of, say, 512 points). From this discussion, the stated bounds follow.

It should be emphasized that this heuristic algorithm only reduces the number of orientation tests
performed in the average case. There is no asymptotic improvement in the overall running time—in
the worst case or in the average case—because the pruning is done after the sorting. The PLANE-SWEEP

algorithm may perform the orientation test up to about 3n times. For the special input described
above, TORCH may perform the orientation test at least 4n−O(1) times, so in the worst case there
is no improvement in this respect either. As we utilize an implementation improvement, where not
all maximal points are computed, but only those that form a staircase in each of the four quadrants,
some of the maximal points may be eliminated already during this staircase formation. Experimentally,
the highest number of orientation tests observed to be performed by TORCH was 3.33n.

Due to the correctness issues and excessive use of memory, we decided to implement our own
version of TORCH. Our corrected version requires O(1) or O(lg n) words of additional memory,
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depending on whether HEAPSORT [36] or INTROSORT [27] is used in sorting. After finding the poles,
the algorithm processes the points in four phases:

(1a) Partition the input sequence such that the points in the north-west quadrant (Q1 in Figure 3)
determined by the west and north poles are moved to the beginning and the remaining points to
the end (normal two-way partitioning).

(1b) Sort the points in Q1 according to their x-coordinates in non-decreasing order.
(1c) Find the boundary points in Q1 and move the eliminated points at the end of the zone occupied

by the points of Q1. Here the staircase goes upwards.
(1d) Scan the boundary points in Q1 to determine the convex chain from the west pole to the north

pole. Again, the eliminated points are put at the end of the corresponding zone.
(2a) Consider all the remaining points (also those eliminated earlier) and partition the zone occupied

by them into two so that the points in Q2 become just after the west-north chain ending with the
north pole.

(2b) Sort the points in Q2 according to their x-coordinates in non-increasing order.
(2c) Find the boundary points in Q2 as in Step (1c). Also here the staircase goes upwards.
(2d) Reverse the boundary points in place so that their x-order becomes non-decreasing.
(2e) Continue the scan that removes the concave points from the boundary points to get the convex

chain from the north pole to the east pole.
(3) Compute the south-east chain of the convex hull for the points in Q3 as in Step (2), except that

now the staircase goes downwards and the reversal of the boundary points is not necessary.
(4) Compute the south-west chain of the convex hull for the points in Q4 as in Step (2), except that

now the sorting order is non-decreasing and the staircase goes downwards.

It is important to observe that any point in the middle of Figure 3 is dominated by one of the poles
in each of the four directions. Hence, these points are never moved to a candidate collection. However,
if a point lies in two (or more) quadrants, it will take part in several sorting computations. (In Figure 3,
move the east pole up and see what happens.) To recover from this, it might be advantageous to use
an adaptive sorting algorithm.

4.3. Quickhull

The QUICKHULL algorithm, which mimics QUICKSORT, has been reinvented several times
(see, e.g., [8–10]). The key subroutine is again the one that chains two extreme points together, but now
it is implemented recursively (for a visualization, see Figure 4). The parameters are an oriented line
segment −→pr determined by two extreme points p and r, and a collection C of points on the left side of
−→pr . If the cardinality of C is small, we can use any brute-force method to compute the convex chain
from p to r, return that chain, and stop. Otherwise, of the points in C, we find an extreme point q in the
direction orthogonal to pr; in the case of ties, we select the leftmost extreme point. Then, we eliminate
all the points inside or on the perimeter of the triangle (p, q, r) from further consideration by moving
them away to the end of the zone occupied by C. Finally, we invoke the recursive subroutine once
for the points of C that are on the left of −→pq, and once for the points of C that are on the left of −→qr .
An important feature of this algorithm is that the interior points are eliminated during sorting—full
sorting may not be necessary. Therefore, we expect this algorithm to be fast.
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p

p′

q
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r′

eliminated

solved
recursively

R1

solved
recursivelyR2

farthest

Figure 4. A visualization of the general recursive step in QUICKHULL.

Gomes used the QHULL program [41] in his experiments. However, he did not give any details
how he used this library routine so, unfortunately, we have not been able to repeat his experiments.
From the QHULL manual [42], one can read that the program is designed to

• solve many geometric problems,
• work in the d-dimensional space for any d ≥ 2,
• be output sensitive,
• reduce space requirements, and
• handle most of the rounding errors caused by floating-point arithmetic.

Based on this description, we got a feeling that this is like using a sledgehammer to crack
a nut. Simply, specialized code designed for finding the two-dimensional convex hull—and only
that—should be faster. After doing the implementation work, the resulting code was less than 200 lines
long. As an extra bonus,

• we had full control over any further tuning and
• we could be sure that the computed output was correct as, also here, we relied on exact

integer arithmetic.

In our implementation of QUICKHULL we followed the guidelines given by Eddy [8] (the
space-efficient alternative): (1) As in PLANE-SWEEP, find the two poles, the west pole p and the
east pole r. Put p first and r last in the sequence. (2) Partition the remaining points between p and r into
upper-hull and lower-hull candidates: C1 contains those points that lie above or on the line segment
pr and C2 those that lie below it. (3) Call the recursive elimination routine described above for the
upper-hull candidates with the parameters −→pr and C1. (4) Move r just after the upper chain computed
and the eliminated points after the lower-hull candidates. (5) Apply the recursive elimination routine
for the lower-hull candidates with the parameters −→rp and C2. (6) Now the point sequence is rearranged
such that (a) p comes first, (b) the computed upper chain follows it, (c) r comes next, (d) then comes
the computed lower chain, and (e) all the eliminated points are at the end. Lastly, return the position
of the first eliminated point (or the past-the-end position if no such point exists) as the final answer.

As a matter of fact, the analogy with QUICKSORT [16] is not entirely correct since it is a randomized
algorithm—a random element is used as the pivot. Albeit, Barber et al. [41] addressed both randomized
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and the non-randomized versions of QUICKHULL. Eddy [8] made the analogy with QUICKERSORT [43],
in which the middle element is used as the pivot and the stack size is kept logarithmic. In our
opinion, this analogy is not quite correct either. It would be more appropriate to see the algorithm as
an incarnation of the MIDDLE-OF-THE-RANGE QUICKSORT where for each subproblem the minimum
and maximum values are determined and their mean is used as the pivot. If the elements being sorted
are integers drawn from a universe of size U, the worst-case running time of this variant is O(n lg U).

Eddy [8] showed that the worst case of QUICKHULL is O(nh). However, Overmars and
van Leeuwen [44] proved that in the average case the algorithm runs in O(n) expected time.
The result holds when the points are chosen uniformly and independently at random from
a bounded convex region. Actually, their proof is stronger, because by exploiting the connection
to MIDDLE-OF-THE-RANGE QUICKSORT, it can be applied to get the following:

Fact 2. When the coordinates of the points are integers drawn from a bounded universe of size U, the worst-case
running time of QUICKHULL is O(n lg U).

Proof. The key observation made by Overmars and van Leeuwen [44] was that, if in the general
recursive step the problem under consideration covers an area of size A (the region of interest must
be inside the parallelogram prr′p′ in Figure 4), then the total area covered by the two subproblems
considered at the next level of recursion is bounded from above by A/2 (some regions inside R1 and
R2 in Figure 4).

When this observation is applied to the bounded-universe case, we know that the area covered by
the topmost recursive call is at most U2. That is, the depth of the recursion must be bounded by 2 lg U.
In the recursion tree, since the subproblems are disjoint, the total work done at each level is at most
O(n). Thus, the running time must be bounded by O(n lg U).

So, in the bounded-universe case, MIDDLE-OF-THE-RANGE QUICKSORT and QUICKHULL cannot
work tremendously badly. As an immediate consequence, if these algorithms are implemented
recursively, the size of the recursion stack will be bounded by O(lg U).

4.4. Other Elimination Heuristics

The QUICKHULL algorithm brings forth the important issue of eliminating interior points—if there
are any—before sorting. When computing the convex hull, one has to consider all directions when
finding the extreme points. A rough approximation of the convex hull is obtained by considering only
a few specific directions. As discussed in several papers (see, for example, [3,11,12]), by eliminating
the points falling inside or on the boundary of such an approximation, the problem size can often be
reduced considerably. After this kind of preprocessing, any of the algorithms mentioned earlier could
be used to process the remaining points.

For a good elimination strategy two things are important: (1) speed and (2) effectiveness.
To achieve high speed, the elimination procedure should be simple. With good elimination effectiveness,
the cost of the main algorithm may become insignificant. So there is a trade-off between the two.

Akl and Toussaint [11] found the extrema in four equispaced directions—those determined by
the coordinate axes. Also, Andrew [3] mentioned this as an option to achieve further saving in the
average-case performance of the PLANE-SWEEP algorithm. This POLES-FIRST algorithm, as we name it,
works as follows: (1) Compute the west, north, east, and south poles. (2) Eliminate the points inside or
on the perimeter of the quadrilateral (or triangle or line segment) having these poles as its vertices.
(3) Apply the PLANE-SWEEP algorithm for the remaining points. The elimination overhead is two
scans—so the elimination procedure is fast. Unfortunately, it is not always efficient. For example,
in the case that the west and south poles coincide, and the north and east poles coincide, only the
points on the line segment determined by the two poles will be eliminated.

Devroye and Toussaint [12] used eight equispaced directions. We name this algorithm
THROW-AWAY; we implemented it as follows: (1) Find the extreme points in eight predetermined
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directions: ±x, ±y, ±(x + y), and ±(x − y). (2) Eliminate all the points inside or on the boundary
of the convex polygon determined by the found points. (3) Apply the PLANE-SWEEP algorithm for
the remaining points. Also here, the elimination overhead is two scans: one max-finding scan to find
the extrema and another partitioning scan to do the elimination. If the PLANE-SWEEP algorithm used
HEAPSORT, the whole algorithm would work in place; with INTROSORT it works in situ instead.

Devroye and Toussaint [12] proved that for the square data set the number of points left after
THROW-AWAY preprocessing will be small. Unfortunately, as also pointed out by them, the result
depends heavily on the shape of the region, from where the points are drawn randomly.

Fact 3. For the disc data set of size n, the expected number of points left after THROW-AWAY preprocessing is
bounded from below by (1− 2

√
2

π )n.

Proof. Let r be the radius of the circle, in which the points lie. The preprocessing step finds (up to) eight
points. Assume that the polygon determined by the found points covers the largest possible area inside
the circle. Trivially, the shape that maximizes the covered area is an equal-sided octagon touching
the circle at each of the vertices. Let us now consider one of the sectors defined by two consecutive
vertices of such an octagon (see Figure 5). The inside angle of this sector is π

4 . Hence, the area of the

sector is π
8 r2. The area of the triangle inside this sector is 1

2 r2 sin(π
4 ). Since sin(π

4 ) =
√

2
2 , the area of the

top of the sector inside the circle that is not covered (the red area in Figure 5) is πr2

8 −
√

2r2

4 . Summing

this over all eight sectors, the fraction of the circle that is not covered is 1− 2
√

2
π . This is about 9.968 %.

From this it follows that the expected number of points left after elimination must be larger than
(1− 2

√
2

π )n, as claimed.

π
4

Figure 5. The region uncovered by THROW-AWAY preprocessing for the disc data set.

An implementation of the THROW-AWAY algorithm was described in [18]. The authors tried to
make the integration between the preprocessing step and the PLANE-SWEEP algorithm smooth to
prevent repetitive work in the latter (recomputation of the poles and orientation tests in partitioning).
However, the linear space needed for this integration was a high price to pay because, after elimination,
the main bulk of the work is done in sorting.

Yet another alternative is to see QUICKHULL as an elimination algorithm. To integrate QUICKHULL

with PLANE-SWEEP, we reimplemented it in an introspective way. When the recursion depth reached
some predetermined threshold, we stopped the recursion and solved the subproblem at hand using
PLANE-SWEEP. For integer k, let k-INTROHULL be the member of the family of QUICKHULL algorithms
for which the threshold is k. For example, 3-INTROHULL is quite similar to THROW-AWAY elimination.
The member (lg n)-INTROHULL is significant, because the amount of work done at the top portion of
the recursion tree will be bounded by O(n lg n) and the amount of the work done when solving the
subproblems at the leaves will also sum up to O(n lg n). For this variant, the worst-case running time
is O(n lg n) as for the PLANE-SWEEP algorithm. Still, the average-case running time is O(n) since the
expected number of points left decreases geometrically with recursion depth. From this it follows that
the expected number of points left at recursion level lg n is O(1).
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By the observation of Overmars and van Leeuwen [44], for k-INTROHULL, the expected number
of points left after the elimination should at most be around 1

2k n for both of our data sets. To verify this
bound in practice, we measured the expected number of points left after elimination for the two data
sets. To understand how k-INTROHULL works compared to the other elimination heuristics, we made
the same experiments for them, too.

The numbers in Table 3 are the averages of many repetitions, except those on the last row.
The elimination effectiveness of POLES-FIRST is not impressive—although there are no surprises
in the numbers. The THROW-AWAY algorithm works better; it is designed for the square data set,
but the limit 9.968 % in the elimination effectiveness for the disc data set leaves some shadows for
this algorithm. The numbers for 3-INTROHULL are basically the same as those for THROW-AWAY.
Roughly speaking, in QUICKHULL all the work is done at a few first recursion levels. Compared to
the static THROW-AWAY algorithm, the elimination strategy applied in QUICKHULL is adaptive, and it
can be made finer by increasing k. If good worst-case efficiency is important and one wants to use
QUICKHULL, we can warmly recommend (lg n)-INTROHULL. The overhead compared to the standard
set-up is one if statement in each recursive call to check if the leaf level has been reached. So the
worst-case performance of QUICKHULL can be reduced from O(n lg U) to O(n lg n) if wanted.

Table 3. The average number of points left after the elimination [%] for different strategies for the two
data sets.

n 3-INTROHULL 4-INTROHULL POLES-FIRST THROW-AWAY

Square Disc Square Disc Square Disc Square Disc

210 3.37 12.0 0.06 0.30 51.0 37.9 4.29 12.2
215 0.60 10.2 0.02 0.85 50.9 36.5 0.71 10.2
220 0.10 9.99 0.00 0.66 51.3 36.3 0.12 9.99
225 0.01 9.97 0.00 0.64 50.6 36.3 0.01 9.97
230 0.00 9.97 0.00 0.64 50.4 36.3 0.00 9.97

5. Testing

When writing the programs for this paper, we tried to follow good industrial practices. First,
we made frequent reviews of each other’s code. Second, we built a test suite that could be used to
check the answers computed. Only after the programs passed the tests did we benchmark them.
One more time we experienced that programming is difficult. Even if the test suite had only a dozen,
or so, test cases, it took time before each of the programs passed the tests. Furthermore, the test suite
was useful in regression testing when we tuned our programs.

5.1. Test Framework

To be able to verify the correctness of the output automatically, three functions were implemented:
same_multiset, convex_polygon, and all_inside. The first function same_multiset takes two multisets
of n and m points (both specified by a pair of iterators) as its arguments and checks whether these
multisets are the same. If n 6= m, this task is trivial. Otherwise, we copied the given multisets, sorted
the copies lexicographically, and verified that the sorted sequences were equal. The second function
convex_polygon takes a multiset of h points (specified by a pair of iterators) as its argument and checks
whether the given points form the consecutive vertices of a convex polygon. The third function
all_inside takes a multiset of n points and a convex polygon of h vertices (both specified by a pair
of iterators) as its arguments and checks whether all the points in the multiset are inside or on the
boundary of the convex polygon.

The function same_multiset is easily seen to require O(n lg n) time in the worst case. To implement
the function convex_polygon in O(h) worst-case time, we took inspiration from ([26], Exercise 33.1-5).
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The function all_inside runs in O(n lg h) worst-case time since it performs two binary searches over
the convex polygon of size h for each of the n points.

The test suite has—among others—the following test cases, each implemented as a separate
function. The names of the test cases were selected to indicate what is being tested:

• empty_set,
• one_point,
• two_points,
• three_points_on_a_vertical_line,
• three_points_on_a_horizontal_line,
• ten_equal_points,
• four_poles_with_duplicates,
• random_points_on_a_parabola,
• random_points_in_a_square (10,000 test cases),
• corners_of_the_universe.

As one can see from this list, we expect that the programs are able to handle multiset data,
degenerate cases, and arithmetic overflows.

To use the test suite, every algorithm must be implemented in its own namespace which provides
a function solve to be used to compute convex hulls and a function check to be used to check the
validity of the answer. Normally, a checker takes a copy of the input, solves the problem with a solver,
and uses the tools in our test suite to check that the points in the output are the same as those in the
input, that the computed hull is a convex polygon, and that all the input points are inside or on the
boundary of the computed convex hull. That is, the programs can be made self-testing if wanted—but
the time and space overhead for doing this is quite high due to sorting and extra copies taken.

5.2. Test-First Development

For each of our programs serious debugging has been necessary. At the very beginning, the test
framework was primitive; it checked the answers in quadratic time. Thereafter, a natural workflow was
to repeatedly write a new implementation and test it. The implementation under consideration was
corrected whenever necessary. The test framework was gradually improved when we understood the
corner cases better. As shown in Section 5.3, we succeeded in using the test framework to reveal an error
at the algorithm level. However, its main purpose was to help remove some small embarrassing errors
from the code.

To simplify the implementation task, we used the generic functions of the C++ standard
library whenever possible, e.g., std ::sort, std ::minmax_element, std ::max_element, std ::partitioning,
std ::reverse. The consequence of this choice was that our code relies on iterators, array indexing is
not used.

When looking at our code, sometimes there seem to be unnecessary complications. Often, however,
these complications are there to fix some correctness issue. The basic reason for a complication—which
can just be an irritating if statement—is the expectation that the programs must be able to handle
multiset data, degenerate cases, and arithmetic overflows. To understand such complications better
and to make it easier for others to develop reliable code, we list below some problem areas where
we made programming errors. It is imperative to emphasize that the test framework was the most
important aid to detect these issues.

Small instances. It is trivial to handle the cases n = 0 and n = 1, but already the case n = 2 introduces a
complication: If the two points are duplicates, special handling is necessary. For larger n, it is also
possible that the west pole and the east pole coincide, so this special case must be handled separately.

Referential integrity. Let p and q be two iterators pointing to some elements. A typical way of
swapping these elements is to invoke std ::iter_swap(p, q). An unfortunate consequence of this
swap is that the iterators are not valid after this operation. It may be necessary to execute
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std ::swap(p, q) just after it. The situation becomes worse when there is another iterator r pointing
to the same position as p or q. After the swap, this iterator is not valid any more.

Empty ranges. Often a subroutine expects to get a range specifying a sequence of elements. In most
cases the range is non-empty, but we should also be prepared to handle the empty case.

Duplicates. These can appear in many places, including places where you do not expect them.
For a set of points in general position, it may be enough to execute a single assignment, but in
the case of duplicates we may need a loop to jump over them.

Points on a rectilinear line. When several points are on the same rectilinear line and this happens
when finding a pole, a rule is needed to know which one to choose. To break the tie, we use
lexicographic ordering even though we want to avoid it in sorting. In a typical case, there is
only one pole per direction, so we wanted to avoid the overhead of maintaining two poles per
direction, i.e., the bottommost west pole and the topmost west pole.

Elimination of concave points. After a pole is found, there may be other points on the same rectilinear
line. The standard backtracking procedure [33] is not always able to process collinear points
correctly. Therefore, a separate routine is needed to find the next convex-hull point that is on the
same line and farthest away from the found pole.

Points on a line. When finding the farthest point from a line segment and several points are equally
far, it is necessary to use lexicographic ordering as a tiebreaker. Again, the reason is the standard
backtracking procedure—it may fail if collinear points are not processed in the correct order.

Index arithmetic. When computing the convex hull in pieces, the points may not be in consecutive
positions any more. For example, it may be necessary to perform index arithmetic modulo n to
get access to the west pole when processing the lower hull after the upper hull has already be
computed. Because we operate on iterators, this index arithmetic is not allowed. Therefore, it may
be necessary to add some additional parameters for the functions or it may even be convenient
to have two copies of the same function where the other takes care of some special case.

Often it is not difficult to handle these special cases correctly, but it may be difficult for
a programmer to spot where the fixes are necessary. Luckily, after correcting the code, the performance
is not degenerated. It is only a question to produce the correct output.

5.3. Uncovering Algorithm Vulnerability

When using our test framework to test Gomes’ code [4], we realized that not only the program,
but the underlying algorithm was incorrect. In the following narration, we will verify this claim.

Let us recall the operating principle of Gomes’ version of TORCH [2]. There are four basic steps:
(1) Find the poles by scanning the input sequence twice. (2) Compute the boundary points in each
of the four quadrants. This gives us up to four staircases. (3) Concatenate the staircases to form
an approximation of the convex hull. (4) Remove all concave points from this approximation using the
standard backtracking procedure [33]. Be aware that the algorithm tries to compute the vertices of the
convex hull in counterclockwise order.

The backtracking procedure is known to work for a star-shaped polygon, but one has to be careful
if there are duplicates or if there are several points with the same polar angle when sorted around the
centre of the polygon—as explained in [5]. It also works for a monotone polygonal chain, provided that
the poles are treated separately—as explained in [3]. But the procedure may fail for a self-intersecting
polygon—as reported in [9].

Fact 4. The backtracking procedure—as it is used by the original version of TORCH to eliminate all concave
vertices from a simple polygon—may fail if some of the vertices overlap.

Proof. As a concrete example, consider an input sequence that contains four points from the parabola
y = x2: (3, 9), (1, 1), (2, 4), (0, 0). All these points are maximal and, since they are monotone in the
y-direction, none of them will be eliminated during the staircase formation. There are two staircases:
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one going up from the origin via the other points to the top and another going down the same way from
the top to the origin. Thus, the approximation contains seven points: (0, 0), (1, 1), (2, 4), (3, 9), (2, 4),
(1, 1), (0, 0). When this polygon is processed using the standard backtracking procedure, the (incorrect)
output has two points: (0, 0) and (1, 1).

The problem is that the orientation predicate cannot distinguish the cases whether the turning
angle, when traversing from a point to another point via a third point, is equal to π or 2π. Hence,
when the test is applied to the points (2, 4), (3, 9), and (2, 4), the middle point will be eliminated—which
is a wrong decision. The problem also occurs when there are several points on a vertical line. If the
points with the same x-coordinate are not sorted according to their y-coordinates, it can happen that
the topmost point will be wrongly eliminated.

Since we process the staircases one by one, they are monotone in the x-direction, and we handle
the poles separately (collinear points are only a problem at the poles), the correctness of our approach
follows directly from the work of Andrew [3].

6. Workhorse Experiments

Now we are ready to investigate the state of algorithms that solve the convex-hull problem in the
plane. We selected the following four competitors for further experiments: PLANE-SWEEP (Section 4.1),
TORCH (Section 4.2), QUICKHULL (Section 4.3), and THROW-AWAY (Section 4.4). As a point of reference,
we also made measurements for the standard-library sort function, referred as INTROSORT [27],
which was used to sort the points according to their x-coordinates. The theoretical performance of
these algorithms is summarized in Table 4. The goal of the experiments was to see if the theory is able
to capture the practical behaviour correctly.

Table 4. A summary of the theoretical performance of the algorithms considered. The average-case
running time is for the square data set. Here n denotes the size of the input, U the size of the coordinate
universe, and W(n) the amount of the work space required by the sorting routine in use. [*] means that
the result was presented in this paper.

Algorithm Worst Case Average Case Work Space

INTROSORT [27] Θ(n lg n) Θ(n lg n) W(n) ≡ O(lg n)
PLANE-SWEEP [3] Θ(n lg n) Θ(n lg n) O(1) + W(n) [15] [*]

TORCH [2] Θ(n lg n) Θ(n lg n) O(1) + W(n) [*]
QUICKHULL [8–10] O(n lg U) [*] Θ(n) [44] O(lg U) [*]
THROW-AWAY [12] Θ(n lg n) Θ(n) O(1) + W(n) [*]

6.1. Experimental Design

To make the programs robust, we considered three alternative approaches when implementing
the geometric primitives:

Multi-precision arithmetic. As described in Section 2.3, we performed intermediate calculations using
the multi-precision integers available at the CPH STL [22]. This solution is generic, works for
any type of integer coordinates, and the program code is beautiful.

Double-precision arithmetic. We specialized the geometric primitives to use double-precision
integers (signed/unsigned long long), kept track of all the possible overflows, and dealt with
them accordingly. This ad-hoc solution relies on the fact that the coordinates are of type int.
Unfortunately, we must admit that the resulting code is inelegant.

Floating-point filter. We converted the coordinates to floating-point numbers and performed the
intermediate calculations using them. Only if the result was not known to be correct due
to accumulation of rounding errors would we use the multi-precision numbers to redo the
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calculations. In the present case, we employed Shewchuk’s filter coded in [45]. A readable
explanation of how the filter works can be found in [46].

Most of our programs can be run in any of the three modes just by specifying which arithmetic to
use in the realization of the geometric primitives.

In our experiments, we fixed the coordinates of the points to be integers of type int, each occupying
32 bits. Hence, the multi-precision solution had to use integers that were wider than any of the
built-in integers. The double-precision solution could operate on built-in integers of 64 bits. In our
micro-benchmarks, the ad-hoc solution that solely relied on built-in types was the fastest of these three
approaches. When the coordinates were of type int, we did not want to slow down the programs
unnecessarily, so we used the ad-hoc solution in the experiments reported here. Since we are not
reliant on any multi-precision integer library, it should be easier for others to replicate the experiments
and reproduce the results.

In earlier studies, the number of orientation tests and that of coordinate comparisons have
been targets for optimization. Since the algorithms reorder the points in place, the number of
coordinate moves is also a relevant performance indicator. Hence, in addition to the amount of CPU
time, we measured the number of orientation tests, coordinate comparisons, and coordinate moves.
The number of orientation tests performed is proportional to n in the worst case for PLANE-SWEEP,
TORCH, and THROW-AWAY; and in the average case for QUICKHULL. The number of coordinate
comparisons and coordinate moves is proportional to n lg n in the worst and average cases for
PLANE-SWEEP and TORCH, and to n in the average case for QUICKHULL and THROW-AWAY.

6.2. Time Performance

In our first set of experiments, we measured the amount of CPU time used by the competitors to
compute the convex hull for the considered data sets. The results are shown in Table 5 (square), Table 6
(disc), and Table 7 (bell). The results are unambiguous: For randomly generated data, both QUICKHULL

and THROW-AWAY are quick! Both of these methods can avoid the sorting bottleneck, which TORCH

does not try to do. We could force QUICKHULL to perform worse than the others when the points were
drawn from an arc of a parabola. However, we could only make it a constant factor slower; we could
not provoke the Θ(nh) behaviour because of the restricted precision of the coordinates.

Table 5. The running time of the competitors [in nanoseconds per point] for the square data set:
(a) Linux computer, (b) Windows computer.

(a)

n INTROSORT PLANE-SWEEP TORCH QUICKHULL THROW-AWAY

210 36.65 55.92 49.62 34.67 27.32
215 54.03 72.18 64.68 30.92 26.02
220 71.48 89.24 82.40 31.06 24.40
225 89.37 107.9 101.1 30.78 25.03
230 162.7 281.3 334.4 245.8 247.4

(b)

n INTROSORT PLANE-SWEEP TORCH QUICKHULL THROW-AWAY

210 40.52 53.27 62.40 51.98 34.50
215 64.37 73.86 84.40 48.67 30.90
220 83.76 94.82 106.5 49.54 30.52
225 106.8 124.6 130.4 48.92 30.58
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Table 6. The running time of the competitors [in nanoseconds per point] for the disc data set: (a) Linux
computer, (b) Windows computer.

(a)

n INTROSORT PLANE-SWEEP TORCH QUICKHULL THROW-AWAY

210 36.31 52.75 55.01 33.04 27.31
215 53.84 69.10 69.94 30.90 26.96
220 71.20 86.21 87.37 31.06 28.33
225 88.94 104.1 105.4 31.59 30.96
230 212.5 281.3 350.9 226.3 242.3

(b)

n INTROSORT PLANE-SWEEP TORCH QUICKHULL THROW-AWAY

210 40.16 58.66 58.62 47.48 32.84
215 62.19 78.96 79.67 44.64 32.41
220 85.24 101.9 102.2 45.31 34.13
225 108.6 126.6 125.7 46.46 36.29

Table 7. The running time of the competitors [in nanoseconds per point] for the bell data set: (a) Linux
computer, (b) Windows computer.

(a)

n INTROSORT PLANE-SWEEP TORCH QUICKHULL THROW-AWAY

210 36.94 53.68 49.96 14.41 20.01
215 54.05 70.67 64.97 12.92 19.12
220 71.11 88.02 81.72 13.22 18.78
225 88.96 105.8 102.5 11.51 18.67
230 224.2 283.0 308.5 152.2 226.3

(b)

n INTROSORT PLANE-SWEEP TORCH QUICKHULL THROW-AWAY

210 40.10 53.51 60.39 22.11 25.95
215 62.68 73.19 82.24 20.32 24.18
220 84.98 95.27 104.6 20.38 23.29
225 114.0 124.9 128.8 20.05 23.55

When looking at the results, it is eye-catching that, in the Linux computer, the numbers are
exceptionally high for the largest problem instance. We observed that, when the size of the input was
close to the maximum capacity of main memory, the memory operations became more expensive.
The changes in the running times looked normal up to n = 229, but after this saturation point the
slowdown was noticeable.

In most cases the execution time per point increases as the input instances get larger, while in
some cases the cost may stagnate or even get smaller. A logarithmic increase indicates a dominating
O(n lg n) cost, as the execution times are divided by n. Sorting naturally follows this growth. As both
TORCH and PLANE-SWEEP sort a fraction of points a few times, the cost of both is in direct relation
to the sorting cost. Both QUICKHULL and THROW-AWAY are not directly bounded by this, since they
perform some elimination before reverting to sorting. Especially, we note that QUICKHULL tends to
become slightly faster (per point) on larger instances. There is a trade-off between the amount of work
used for elimination and that used for sorting the remaining points. For randomly generated data,
h tends to grow much slower than n, so for QUICKHULL and THROW-AWAY the cost incurred by sorting
will gradually vanish.
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In terms of speed, TORCH has three success criteria: (1) It should be faster than PLANE-SWEEP that
it attempts to improve upon; (2) it should perform almost as well as sorting; and (3) it should perform
well when compared to other algorithms of industrial standard, as it would otherwise be out-competed
by those. For problem instances of low and medium sizes on a square (Table 5) and on a disc (Table 6),
TORCH is placed well in between INTROSORT and PLANE-SWEEP. It performs a bit worse in the
Windows environment for the bell data set (Table 7), likely because of the earlier-mentioned problem
with overlapping work.

We notice that TORCH becomes relatively slower for large instances. This may be due to the fact
that it tries to make the linear term of the cost smaller. To achieve this, it may be necessary to process the
same points several times. Thus, for large data collections, its advantage over PLANE-SWEEP decreases.
There is a trade-off between the elimination cost and the obtained gain. The elimination cost grows
with an extra factor of c lg n per point, albeit with a small constant c, while the saving is a constant per
point. As for the third criterion, TORCH struggles hard with THROW-AWAY and QUICKHULL, which are
clearly faster, since they eliminate points before sorting, causing the sorting term to grow slower.

One should also notice that the programs behave differently on different computers. On the Linux
computer, with some exceptions, TORCH performs better than PLANE-SWEEP, but not significantly
better. On the Windows computer, the situation is the opposite between the two. Also, QUICKHULL is
slower in the Windows environment. This indicates that the orientation tests can be evaluated faster
on the Linux computer, which coincide with indications from our micro-benchmarks. The differences
can come from several sources, but we consider it likely that different types of CPUs, compilers,
operating systems, and hardware architectures have contributed to this. These differences serve as
a warning to those who wish to crown a specific algorithm as the champion, since even with reasonable
statistical accuracy, there can be a significant difference in how well a given algorithm performs in
different environments.

6.3. Other Performance Indicators

In our second set of experiments, we considered the behaviour of the competitors for the other
performance indicators. The average-case scenario was considered, i.e., the coordinates were random
ints (square). These experiments were carried out by using a coordinate type that increased a counter
each time a comparison, a move, or an orientation test was executed.

The obtained counts are shown in Table 8 (orientation tests), Table 9 (coordinate comparisons),
and Table 10 (coordinate moves). From these numbers it is clear that, for the square data set,
both QUICKHULL and THROW-AWAY run in linear expected time. As to the orientation tests, TORCH is
a clear winner; since the coordinates are generated independently for the square data set, the expected
number of orientation tests executed is O(lg n), which explains the zeros. As to the number of
coordinate comparisons, TORCH comes last because interior points take part in four partitioning
processes and some of them may also take part in more than one sorting process since the quadrants
can overlap. As to the number of coordinate moves, despite repeated work in partitioning, TORCH

performs better than PLANE-SWEEP since fewer moves are done in partitioning and in scanning, and the
sorting tasks are smaller.

Table 8. The number of orientation tests executed by the competitors [divided by n] for the square
data set.

n PLANE-SWEEP TORCH QUICKHULL THROW-AWAY

210 2.31 0.02 4.95 2.04
215 2.34 0.00 4.86 2.01
220 2.34 0.00 4.82 2.00
225 2.39 0.00 4.70 2.00
230 2.09 0.00 5.37 2.00
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Table 9. The number of coordinate comparisons performed by the competitors [divided by n] for the
square data set.

n INTROSORT PLANE-SWEEP TORCH QUICKHULL THROW-AWAY

210 12.0 14.8 21.3 2.26 15.0
215 18.1 20.9 28.0 2.25 15.0
220 24.2 27.1 35.3 2.25 15.0
225 30.2 33.3 42.3 2.25 15.1
230 36.5 39.0 49.2 2.25 15.2

Table 10. The number of coordinate moves performed by the competitors [divided by n] for the square
data set.

n INTROSORT PLANE-SWEEP TORCH QUICKHULL THROW-AWAY

210 19.1 30.1 21.3 15.2 21.2
215 26.2 37.2 28.0 14.7 20.2
220 33.3 44.3 35.3 14.5 20.1
225 40.5 51.5 42.3 14.5 20.0
230 47.4 57.8 49.2 16.4 20.4

7. Conclusions

We repeat our general conclusion that the quality of implementation really matters in experimental
studies. A solid implementation should be based on a correct algorithm. Additional proper testing is
necessary before running any experiments. As showcased by this paper, failing to do this may lead
to unreliable results and questionable conclusions. The bottom line is that the value of experimental
results and their contribution to science are strictly limited by the quality of implementation.

We would like to summarize our findings as follows.

Robustness. Everyone in computer science knows the problems associated with arithmetic overflows.
In the convex-hull algorithms, one has to analyse a single-line formula to determine the maximum
precision needed when doing the calculations in an orientation test. This is a type function that
maps the type of the input coordinates to the type of some higher-precision numeric type.
This mapping can be carried out at compile time. This solution leads to fast performance since
the compiler can optimize the generated code. Our message is that a heavyweight static-analysis
tool, described in [47], to do automatic code analysis may be an overkill in this particular
application, even thought the aim is the same—perform as much work at compile time as
possible. On the other end, arbitrary-precision arithmetic provided, for example, by GMP [48]
may also be an overkill because the width of the numbers is extended dynamically at run time.

Correctness. Experimental results can be misleading if the programs do not produce a correct answer.
Naturally, testing is not enough to guarantee correctness, but it is a necessary evil to avoid great
humiliation. In the case of convex-hull algorithms, a test framework similar to ours can help
improve code quality.

Space requirements. By using less memory, one can avoid the overhead caused by memory
management and incur less cache misses. There is a big difference if the amount of extra
space used is Θ(n) or O(1) words. We explained how PLANE-SWEEP, TORCH, POLES-FIRST,
and THROW-AWAY can be implemented in place.

Arithmetic complexity. For in-situ variants in the integer-arithmetic setting, our experiments indicate
that the improvement provided by TORCH compared to PLANE-SWEEP is marginal. However,
the situation may change if the arithmetic operations are expensive. Namely, it is expected
that TORCH will execute a fewer number of arithmetic operations than the other investigated
algorithms, which always perform Ω(n) orientation tests.

Reproducibility. In experimental work, a “key principle is that the experiment should be verifiable
and reproducible” ([1], Chapter 14). All the programs and scripts used to run the experiments
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discussed in this paper are publicly available; a frozen release is available as a supplement from
the journal (http://www.mdpi.com/1999-4893/11/12/195/s1) and the latest updated release
from the home page of the CPH STL [49].

The focus in this paper was on correctness and quality—both in the implementations and
experiments. If raw speed is what you need, you may follow some of the following avenues:

Smarter sorting. In a sorting-based approach, when sorting a sequence of points according to their
x-coordinates, if two points are seen to have the same x-coordinate, the point with the smaller
(or larger) y-coordinate could be eliminated. More generally, it is possible to sort n elements
having at most ` different values in O(n lg `) worst-case time. Another possibility is to use
BUCKETSORT when sorting the points [28].

Further tuning. In this study, QUICKHULL was one of the winners. However, a careful analysis shows
that QUICKHULL does redundant orientation tests (as pointed out in [28,50]). By removing some
of the redundant work, QUICKHULL can be made even quicker.

More aggressive elimination. The idea of eliminating interior points during the computation is good!
However, in contemporary computers, sorting is fast. So an elimination procedure should
not be complicated. In a follow-up paper [51], we implemented a BUCKETING algorithm ([52],
Section 4.4), for which the elimination overhead is three scans and the elimination effectiveness
is better than that for the THROW-AWAY algorithm. The work space used by this algorithm is
O(
√

n) words, but because of random access its competitive advantage may fade away when the
problem size becomes large.

Better integration. Many good algorithms are hybrids of several other algorithms. One of the goals is
to reach good worst-case and average-case performance at the same time. Taking inspiration from
INTROSORT [27], we proposed INTROHULL that combines QUICKHULL [8] and PLANE-SWEEP [3].
Gomes’ TORCH [2] combines the rectilinear-convex-hull algorithm by Ottmann et al. [37] and
PLANE-SWEEP. However, because of INTROSORT, the average-case running of this hybrid is
Θ(n lg n). As shown by Bentley et al. [14], a divide-and-conquer algorithm could be used to
compute a superset which will reduce the average case of the combined algorithm to O(n),
keeping the worst case unchanged. Does this pruning-before-sorting approach have any
practical significance?

Parallel processing. In our benchmarks, only one core was in use even though both of our test
computers had four cores. Some previous studies (see, e.g., [53]) have shown that the additional
cores can be used to speed up QUICKSORT, QUICKHULL, and other divide-and-conquer
algorithms. A further study, where speed is at the focus, must consider how technological
changes affect the existing algorithms.

Supplementary Materials: The programs used in the experiments, implemented and benchmarked are
available—in their latest updated versions—via the home page of the CPH STL (http://www.cphstl.dk) in
the form of a pdf file and a tar archive [49]. As a supplement to this text, a single zip file is available online at
http://www.mdpi.com/1999-4893/11/12/195/s1 that contains the source code of the programs, and a document
“Supplement: Relevant source code” explaining how to use the programs and how to redo the experiments.
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