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Abstract: In order to eliminate the influence of the joint torsional vibration on the system operation
accuracy, the parameter identification and the elastic torsional vibration control of a flexible-joint
robot are studied. Firstly, the flexible-joint robot system is equivalent to a rotor dynamic system, in
which the mass block and the torsion spring are used to simulate the system inertia link and elasticity
link, for establishing the system dynamic model, and the experimental prototype is constructed.
Then, based on the mechanism method, the global electromechanical-coupling dynamic model of
the flexible-joint robot system is constructed to clear and define the mapping relationship between
the driving voltage of the DC motor and the rotational speed of joint I and joint II. Furthermore,
in view of the contradiction between the system response speed and the system overshoot in
the vibration suppression effect of the conventional PID controller, a fuzzy PID controller, whose
parameters are determined by the different requirements in the vibration control process, is designed
to adjust the driving voltage of the DC motor for attenuating the system torsional vibration. Finally,
simulation and control experiments are carried out and the results show that the designed fuzzy PID
controller can effectively suppress the elastic torsional vibration of the flexible-joint robot system
with synchronization optimization of control accuracy and dynamic quality.
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1. Introduction

Industrial robots can replace human beings in industrial production to achieve more efficient
and safer operation; the research and development of the industrial robot system have attracted wide
attention from scholars in various countries [1–3]. Recently, the harmonic reducer and planetary gear
are often adopted as the transmission components of the robot system, which can effectively improve
the compactness, reduction ratio and transmission efficiency of the robot joint [4,5]. However, with
the increase of manipulator speed and operating load, the elastic deformation of the transmission
mechanism, such as the reducer and the transmission shaft, will directly affect the positioning accuracy
of the robot actuators and make the robot joints have the characteristics of flexible joints, which is
manifested in the vibration of the robot manipulator when it moves. Thus, under the development
trend of heavy-load and high-precision, the induced mechanism and vibration control of the flexible
joints for the industrial robots should be deeply studied [6–8].

The joint robots are the main components of industrial robots because of their flexibility and
controllability. For traditional rigid-joint robots, the existing studies mainly focus on the system
structural design and motion control [9,10]. Considering that the traditional hydraulic robot joint
is large, a water-hydraulic rotating angle self-servo robot joint actuator is designed in [11], and the
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influences of the input angle amplitude, external loads and water pressure on the system dynamic
characteristics are analyzed to optimize this joint actuator. Aiming at the unknown obstacles, Capisani
and Ferrara proposed a hybrid control scheme for generating the trajectories of the robot manipulator
and the results showed that the proposed methods can effectively improve the motion accuracy of the
COMAUSMART3-S2 anthropomorphic rigid manipulator [12]. On the basis of the robot kinematic
and dynamic models, an offline planning is performed to generate a large dataset of trajectories for
solving the multi-objective trajectory planning of the Parallel Kinematic Machines [13]. However,
most of the above research are based on the assumption that the joints are pure rigid. With the
flexibility of the harmonic reducer and other transmission components considered, the actuator motion
of the joint robot may be deviated or appear large amplitude vibration under external and parametric
excitation. Thus, in order to ensure the control accuracy and motion stability of the joint robots, the joint
flexibility introduced by the harmonic reducer and the system connecting shaft should be considered
comprehensively, and the corresponding restraining measures should be designed to control the joint
torsional vibration.

Fortunately, for the multi-body dynamics systems such as joint robots, their dynamic models can
be equivalent to the rotor dynamic system, whose dynamics and control problems have been the hot
issues in recent years [14,15], and many researches have been done on the mechanism and control
of the torsional vibration for the rotor dynamic system. Considering the joint torsional elasticities
with hysteresis, Ruderman designed two approaches for compensating the joint torsion of the flexible
joint robots [16]. Aiming at the rattle noise of an automotive transmission, based on an empirical
model approach, the geometric parameters of the gearbox are optimized to minimize the rattling noise
in [17]. In order to improving the adaptability of the dynamic absorbers on the rotating systems with
variable speeds, an electrorheological dynamic torsional absorber, which can exhibit various torsional
damping and stiffness characteristics when an electric field was applied, was designed for reducing
the torsional rotor vibrations [18]. Kim and Croft designed a practical method, with only position
and velocity feedback, for suppressing the torsional vibration of the industrial robots with elastic
joints and the results showed that the proposed method obtained a better performance than other
well-known model-based controllers [19]. However, the above research focuses on the analysis of the
system torsional vibration characteristics and the suppression of the system torsional vibration from
the mechanical aspect, and considering the parameters uncertainties of the flexible-joint robot system,
the existing control system is generally more complex [20]. Hayat et al. proposed a robust-adaptive
controller that satisfied a predefined performance with few tuning parameters required. Although this
controller is robust under bounded disturbance, its structure is rather complicated with two feedback
loops included [21]. Aiming at a model of the 3D bar structure with uncertain parameters, Mystkowski
and Koszewnik presented a robust µ-controller, with extra piezo-actuator installed, for ensuring
the good performance of system robustness and vibration suppression [22]. With the development
of power electronics technology and motor control theory, the torsional vibration caused by the
flexibility of the robot joints can be regarded as motion disturbance. Moreover, the active control of the
system torsional vibration from the electrical perspective is more practical than from the mechanical
perspective. On the other hand, for the rigid-flexible coupling dynamic system such as the flexible-joint
robots, there is a contradiction between the dynamic quality and the stability precision in the control
effect when the parameters of the feedback controller are determined, which is a common problem of
the feedback controllers.

Therefore, in order to effectively eliminate the influence of model parameters uncertainties on
the vibration control effect and to solve the contradiction between the dynamic quality and stability
accuracy of the existing torsion feedback controller for the flexible-joint robot, the flexible joint of the
robot is equivalent to an elastic torsion spring for establishing the system electromechanical-coupling
dynamics model in this paper. Then the unknown parameters of the flexible-joint robot system
are identified based on the actual measurement results of the system inputs and outputs. Finally,
according to the suppression requirements of the joint torsional vibration, an adaptive fuzzy inference
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machine is designed to adjust the parameters of the PID controller for effectively attenuating the
elastic torsional vibration of the flexible-joint robot. The structure of this paper is organized as follows.
The electromechanical-coupling dynamics modelling of the flexible-joint robot system is given in
Section 2. Section 3 presents the system parameter identification. The main contribution of this paper is
introduced in Section 4, including the design of the control strategy. Section 5 discusses the simulation
and experiment results. Finally, conclusions are drawn in Section 6.

2. Electromechanical-Coupling Dynamics Modelling

The flexible-joint robot system mainly includes the DC motor, the harmonic reducer, the
connecting shaft, the working joints and other connecting pieces. These transmission components can
be classified into two types: one is of large mass and small elasticity, such as DC motor, harmonic
reducer and working joints, and the other is of large elasticity and small mass, such as connecting shaft.
Therefore, in order to better analyze the dynamic characteristics of the flexible-joint robot system under
the influence of joint flexibility, the system is equivalent to a ‘mass elastic system’, which is composed
of several inertial and elastic components, from the perspective of global electromechanical-coupling
analysis. Then, the physical model of the flexible-joint robot system is constructed as Figure 1.
The inertia link and elasticity link of the flexible-joint robot are equivalent to the mass block and the
torsion spring, respectively. During the dynamics modeling and analysis, the notations of the system
are listed in Table A1 of Appendix A.
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According to the structure of the flexible-joint robot, it is obvious that the DC motor, the harmonic
reducer and the motor shaft are rigidly connected. Then, the equivalent moment of inertia to the motor
shaft can be shown as follows:

J =
J1

i2m
+ J0 + Jr (1)

where, im is the reduction ratio of the harmonic reducer. J1, J0 and Jr are the moment of inertia
of joint I, the moment of inertia of the DC motor shaft and the moment of inertia of the harmonic
reducer, respectively.

According to the motor drive principle [23,24], the DC motor can be equivalent to a series circuit
of resistance and inductance. Based on the Kirchhoff voltage law, the voltages on both ends of the
armature of the DC motor are equal, which can be represented as follows:

ea = Rid + L
did
dt

+ ed (2)

where, ea is the applied armature voltage, R, L, ia and ed denote the armature resistance, the
armature inductance, the armature current and the reverse electromotive force (EMF) of the DC
motor, respectively.

The relationship between the reverse electromotive force of the DC motor and its angular velocity is:

ed = Keω0 = Keimω1 (3)

where, Ke is the back EMF constant of the DC motor, ω0 and ω1 represent the angular speed of the DC
motor and joint I, respectively.
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Substituting Equation (3) into Equation (2) yields:

did
dt

=
ea

L
− R

L
id −

Keim

L
ω1 (4)

Based on the dynamic analysis of the motor shaft, one can obtain:

Ted − T1 = J
.

ω0 (5)

where, Ted is the drive torque of the DC motor, T1 indicates the load torque on the motor shaft.
The driving torque of the DC motor is directly proportional to its armature current [25], which

can be expressed as follows:
Ted = Kmid (6)

where Km is the motor torque constant.
And the load torque on the motor shaft can be calculated as follows:

T1 =
1
im

[ f1 + K(θ1 − θ2) + C1ω1] (7)

where, f 1 is the static friction moment of joint I, K and C1 are the torsional stiffness and the viscous
friction coefficient of the joint connecting shaft, θ1 and θ2 are the rotation angles of joint I and joint
II, respectively.

Substituting Equations (3) and (7) into Equation (5) yields:

.
ω1 =

Km

Jim
id −

f1

i2m J
− K

i2m J
θ1 +

K
i2m J

θ2 −
C1ω1

Jim
(8)

Based on the dynamic analysis of the joint connecting shaft and joint II, one can obtain:

J2
.

ω2 = K(θ1 − θ2)− (C2ω2 + f2) (9)

where, J2, ω2, f 2 and C2 are the moment of inertia, the angular velocity, the static friction moment and
the viscous friction coefficient of joint II.

Taking the state variables as x = [ θ1 ω1 θ2 ω2 id ]
T

and combining Equations (4), (8)
and (9), the electromechanical-coupling dynamics model of the flexible-joint robot system can be
transformed into the state space equation whose form is:{ .

x=Ax+Bu
y=Cx+Du

(10)

where, A =


0 1 0 0 0
− K

Ji2m
− C1

im J
K

Ji2m
0 Km

im J

0 0 0 1 0
K
J2

0 − K
J2
−C2

J2
0

0 − imKe
L 0 0 − R

L

, B =


0 0 0
− 1

Ji2m
0 0

0 0 0
0 − 1

J2
0

0 0 1
L

,

C =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, D =


0
0
0
0
0

 and u =


0
f1

0
f2

ea

.
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3. System Parameter Identification

In order to effectively suppress the torsional vibration caused by the flexible joint, the system
parameters of the flexible-joint robot must be determined firstly to provide the priori parameters for
the controller design. It is obvious that the rotational inertias of the DC motor and the transmission
joints can be obtained by CAD simulation software. The back EMF constant and the torque constant
of the DC motor can be obtained by the motor instructions, while the torsional stiffness (K) and the
damping coefficient (C1) of the joint connecting shaft, the static friction resistance moment (f 1) of joint
I, the static friction resistance moment (f 2) and the viscous friction coefficient (C2) of joint II need to be
identified by experiment.

Therefore, a flexible-joint robot experimental system is set up, which is shown in Figure 2.
Two mass blocks are used to simulate joint I and joint II of the flexible-joint robot systems. The torsion
spring is used to simulate the elasticity of the joint connecting shaft. The DC motor (MAXON
144029+226806, MAXON MOTOR, Obwalden, Switzerland) drives joint I through the reducer, and
then drives joint II through the joint connecting shaft. The system control part is built on the basis of
the PLC (B&R X20CP1484, B&R, Shanghai, China). The rotation angles of the DC motor and joint II
are detected separately by encoder I (HKT 3004-C03G-1000B-5E, HEDSS, Wuxi, China) and encoder II
(HKT 3004-C03G-1000B-5E, HEDSS, Wuxi, China).
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Before system parameters identification, it is necessary to estimate these parameters in order to
narrow the scope of the computer calculation, then the identification results can be more accurate.

According to the strength of materials, under the action of the torque M, the torsion angle of the
torsion spring can be shown as follows:

φ =
64MD2n

Ed4 (11)

where, n is the effective number of turns for the joint connecting shaft, E is the elastic modulus of the
torsion spring, d is the diameter of the spring wire and D2 is the spring middle diameter.

Therefore, the torsional stiffness of the torsion spring can be defined as follows:

K =
Ed4

64D2n
(12)

According to Equation (12) and the physical parameters of the torsion spring used in the experimental
device, the torsional stiffness of the torsion spring can be obtained as K = 0.002285 N ·m/rad.
The damping coefficient of the joint connecting shaft (C1) and the viscous friction coefficient of joint II (C2)
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can be approximately taken as the air viscous friction coefficient which is 4.2 × 10−6. The static friction
torques of joint I and joint II can be approximated to 0.

Then, a black box model of the flexible-joint robot system for parameter identification is
established in MATLAB/Simulink, which is shown in Figure 3. The input of the parameter
identification model is the driving voltage of the DC motor, and the outputs of the parameter
identification model are the angular velocity data of joint I and joint II. Then, by applying a constant
voltage (22V) to the DC motor, the angular velocity data of joint I and joint II are measured by the
encoders in 10 s. During the measurement, the order of smooth filtering is 4 and the sampling period
is 5 ms.
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The recursive least squares method is used to identify the system unknown parameters.
The system outputs after parameter identification are defined as:

z(k) = hT(k)κ + Φ(k) (13)

where z(k) are the system outputs after parameter identification, h(k) are the experiment sample sets
of the system input and outputs, Φ(k) are the deviations between the identification outputs and the
simulation outputs and κ are the parameters sequence to be identified.

The criterion function is defined as:

J(κ) =
∞
∑

k = 1
[Φ(k)]2

=
∞
∑

k = 1

[
z(k)− hT(k)κ

]2 (14)

Based on the above identification principle, the tracking errors of the angular velocity of
joint I and joint II are taken as the optimization target. Then, by the control and estimation tools
manager in MATLAB/Simulink, the parameter identification results are: K = 0.00183 N·m/rad,
C1 = 0.00010 N/(rad/s), C2 = 5.65 × 10−6 N/(rad/s), f 1 = 0.16813 N·m and f 2 = 0.00142 N·m.
The tracking curves and error curves are shown as Figures 4 and 5.

Figure 4a,b describe the tracking effect and identification error of the simulation model on the
angular velocity of joint I, respectively. It is seen that the tracking curve fits well with the experimental
data. The fitting effect of the rotational speed of joint I is only large at the initial stage, and the
identification error approaches to zero gradually over time. Figure 5a,b describe the tracking effect and
identification error of the simulation model on the rotational speed of joint II, respectively. It is shown
that although the simulation curve has a certain error in the tracking amplitude, the absolute error is
within 5 rad/s, which can meet the control requirement. Moreover, it is obvious from Figure 5a that
the overall tracking trend for the rotational speed of joint II is consistent and the simulation model can
effectively identify the main frequency components of the rotational speed of joint II, which is of great
significance to the torsion control of the flexible-joint robot system.
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On the other hand, by comparing Figure 4a with Figure 5b, it is found that when the joint flexibility
is not considered, the rotational speed of joint II oscillates obviously, and it takes a long time to be
consistent with the rotational speed of joint I. Therefore, in order to ensure the execution accuracy
and efficiency of the joint robot, it is necessary to analyze and suppress the torsional vibration of the
transmission system caused by joint flexibility.

4. Control Algorithm Design for Joint Torsional Vibration

Fuzzy-PID control method has the advantages of the flexible and adaptable of the fuzzy controller
and the high precision of the PID controller [26,27]. It can effectively solve the contradiction between
dynamic quality and control precision of the conventional PID controller and realize the effective
control for the elastic vibration of the flexible-joint robot system. The fuzzy PID controller of the
flexible-joint robot system takes the speed error (e) and the error change rate of joint II (

.
e) as the inputs,

and the increment of the PID control parameters as the outputs. Then the control parameters of the
fuzzy PID controller can be expressed as follows:

Kp = K′p + ∆Kp (15)
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Ki = K′i + ∆Ki (16)

Kd = K′d + ∆Kd (17)

where, K′p, K′i and K′d are the initial setting values of the control parameters which are determined
by the trial and error method through simulation, ∆Kp, ∆Ki and ∆Kd are the increment of the
corresponding control parameters which are determined by the designed adaptive fuzzy inference
machine, respectively.

The fuzzy PID controller structure of the flexible-joint robot system is shown in Figure 6, where
ω2r represents the desired speed of joint II.
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The variation ranges of the deviation, the deviation change rate, the increment of the
proportional coefficient, the increment of the integral coefficient and the increment of the
differential coefficient are defined as the basic domain of the fuzzy set, which can be represented
as follows:

e,
.
e, ∆Kp, ∆Ki, ∆Kd = (−3,−2,−1, 0, 1, 2, 3) (18)

The corresponding fuzzy subset is {NB, NM, NS, 0, PS, PM, PB} and the elements in the subset
represent negative big, negative middle, negative small, zero, positive small, positive middle and
positive big. Considering that the shape of the triangle membership function is only related to the
slope of its straight line and the calculation is simple, the membership functions of each linguistic
variable are chosen as the triangle with negative middle, negative small, zero, positive small and
positive middle. In addition, with the transitivity of the negative big and the positive big considered,
the membership functions of the fuzzy subsets of the negative big and the positive big in each fuzzy
state are selected as Gauss type, which is shown in Figure 7.

On the basis of the membership functions of the speed deviation of joint II, the change rate
of the speed deviation of joint II, the increment of the proportional coefficient, the increment
of the integral coefficient and the increment of the differential coefficient, the fuzzy rules of the
fuzzy PID controller for the flexible-joint robot are determined by experience and perceptual
reasoning. Then, in different control stages, the proportional coefficient, the integral coefficient
and the differential coefficient of the fuzzy PID controller can be adjusted adaptively. According
to the control requirements of the elastic vibration for the flexible-joint robot, the fuzzy rules are
determined as follows: (1) In the initial stage, because the speed deviation of joint II is large, the
larger proportional coefficient is used to improve the system response speed, the integral coefficient
is taken as 0 to prevent the integral saturation, and the appropriate differential coefficient is used to
reduce the overshoot; (2) In the medium-term of regulation, the appropriate proportional coefficient,
integral coefficient and differential coefficient are adopted to ensure a certain response speed and to
avoid overshoot; and (3) In the later period of regulation, the proportional coefficient is increased
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to reduce the static error, the integral coefficient is increased to improve the stability, and the
differential coefficient is reduced to prevent the oscillation.Algorithms 2018, 11, x FOR PEER REVIEW  9 of 15 
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According to the above analysis, the fuzzy rules of the fuzzy PID controller for the flexible-joint
robot can be worked out, which are presented in Table 1.

Table 1. Fuzzy inference rules of ∆Kp, ∆Ki and ∆Kd.

.
e e ∆Kp,

∆Ki, ∆Kd

NB NM NS 0 PS PM PB

NB PB,NB,PS PB,NB,NS PM,NM,NB PM,NM,NB PS,NS,NB 0,0,NM 0,0,PS
NM PB,NB,PS PB,NB,NS PM,NM,NB PS,NS,NM PS,NS,NM 0,0,NS NS,0,0
NS PM,NB,0 PM,NM,NS PM,NS,NM PS,NS,NM 0,0,NS NS,PS,NS NS,PS,0
0 PM,NM,0 PM,NM,NS PS,NS,NS 0,0,NS NS,PS,NS NM,PM,NS NM,PM,0

PS PS,NM,0 PS,NS,0 0,0,0 NS,PS,0 NS,PS,0 NM,PM,0 NM,PB,0
PM PS,0,PB 0,0,NS NS,PS,PS NM,PS,PS NM,PM,PS NM,PB,PS NB,PB,PB
PB 0,0,PB 0,0,PM NM,PS,PM NM,PM,PM NM,PM,PS NB,PB,PS NB,PB,PB

Combined Table 1 with the membership functions of the fuzzy states, the total fuzzy relation of
the increment for the proportional coefficient can be obtained as

R∆Kp =
49
∪

l = 1
Rl (19)

where, Rl = e
.
e→ Kp =

∫
e×e×Kp

µ(e)Λµ(e)Λµ(∆Kp)
(e,e,∆Kp)

l = 1, 2, 3, · · · 49 and µ(α) is the

membership function value of the corresponding linguistic variable (α).
Similarly, the total fuzzy relations for the increment of the integral coefficient and the increment

of differential coefficient can be determined as follows:

R∆Ki =
49
∪

m = 1
Rm (20)

R∆Kd =
49
∪

n = 1
Rn (21)
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where, Rm = e
.
e→ Ki =

∫
e×e×Ki

µ(e)Λµ(e)Λµ(∆Ki)
(e,e,∆Ki)

m = 1, 2, 3, · · · 49 ,

Rn = e
.
e→ Kd =

∫
e×e×Kd

µ(e)Λµ(e)Λµ(∆Kd)
(e,e,∆Kd)

n = 1, 2, 3, · · · 49 .
The fuzzy output sets obtained from Equations (19)–(21) needs to be clarified to get the precise

control variables, and the center average de-fuzzifier is used in this paper. Taking the increment of the
proportional coefficient as an example and defining yl and ωl as the center and height of the l-th fuzzy
output set, the precise output control quantity for the increment of the proportional coefficient can be
obtained as follows:

y∗ =
∑49

l = 1 ylωl

∑49
l = 1 ωl

(22)

The control quantities obtained by Equation (22) are only the exact values of the corresponding
output variables in the fuzzy universe and it is necessary to convert them to the corresponding actual
exact values, which can be used as executable precise quantities for controlling the DC motor. Finally,
the output control parameters are Kp = K’p + ∆Kp, Ki = K’i + ∆Ki and Kd = K’d + ∆Kd, and according to
the mechanism of the PID controller, the control voltage is obtained to drive the DC motor, and finally
the fast synchronization of joint II speed and joint I speed can be realized.

5. Simulation and Experimental Verification

In this section, the designed fuzzy PID controller for the torsional vibration of the flexible-joint
robot is validated by simulation and experiment. The simulation model of the flexible-joint robot
system is constructed based on MATLAB R2015b/Simulink. In order to further verify the harmony
between stability precision and rapidity of the designed fuzzy PID controller in torsional vibration
suppression effect of the flexible-joint robot system, the conventional PID controller, whose parameters
are determined by the trial and error method through simulation, is used for comparison and analysis.
Setting the target speed of joint II as 2000◦/s, the control effects of the two controllers are shown in
Figure 8.Algorithms 2018, 11, x FOR PEER REVIEW  11 of 15 
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It is seen from Figure 8b that when the joint flexibility of the joint robot transmission system is not
considered, the rotational speed of joint II fluctuates obviously, and it takes a long time to synchronize
with the rotational speed of joint I. The rotational speed of joint II can track the target speed without
overshoot by the designed fuzzy PID controller, and the torsional vibration of the flexible-joint robot
system is effectively suppressed. However, under the same stability time, the conventional PID
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controller will lead to a larger overshoot of the rotational speed of joint II, which is not allowed in
the actual system. This is because that the parameters of the conventional PID controller are fixed
in the control process, and it is difficult to achieve synchronous optimization for the overshoot, the
response time and the static error. In addition, the fuzzy PID controller can realize the self-adjustment
of the control parameters. In order to satisfy the response speed requirement of the control system in
the initial stage, a larger proportional gain is adopted, and when the target speed is approached, the
integral gain is increased to reduce the static error. On the other hand, Figure 8a shows the control
voltages of the conventional PID controller and the designed fuzzy PID controller for the DC motor.
It is found that the control voltage, obtained by the designed fuzzy PID controller, comes to stability
faster, which indicates that its adjustment time is shorter. Then, the conclusion that the fuzzy PID
controller has a better control effect than the conventional PID controller on the torsional vibration of
the flexible-joint robot system is further proved. Finally, the dynamic quality and stability accuracy for
the torsional vibration control of the flexible-joint robot are optimized synchronously.

Furthermore, a step disturbance is added to the control system in 2 s for comparing the
anti-interference performance of the designed controller and the results are shown in Figure 9a. It is
known that the two controllers can effectively eliminate the interference and achieve stability. But the
conventional PID controller fluctuates greatly and needs about 1.8 s to eliminate the step disturbance,
while the fuzzy PID controller can suppress the step disturbance very well. The performances of the
fuzzy PID controller are that the disturbance is small and the adjustment time is about 0.6 s.
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On the other hand, the white Gaussian noise, of which the height of the power spectral density
is 0.4, is added to the control system in 2 s for further comparing the anti-interference performance
of the designed controller and the results are shown in Figure 9b. It is found that the designed
fuzzy PID controller have better anti-jamming capability for the white Gaussian noise than that of
the conventional PID controller. The adjustment time for suppressing the white Gaussian noise of
the designed fuzzy PID controller is about 0.6 s while the adjustment time of the conventional PID
controller is about 1.5 s. In summary, the anti-interference performance of the fuzzy PID controller is
better than that of the conventional PID controller, and it is more suitable for the torsional vibration
control of the flexible-joint robot system.

Then the fuzzy PID controller is validated on the flexible-joint robot experimental system which
is shown in Figure 2. By setting the target speed of joint II as 2000◦/s, the control effect of the designed
fuzzy PID controller is shown in Figure 10.
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Figure 10. Experimental test effect of the designed fuzzy PID controller on the torsional vibration
control of the flexible-joint robot system.

It is seen from Figure 10 that the torsional vibration of the flexible-joint robot is effectively
suppressed under the action of the designed fuzzy PID controller. After about 0.5 s, the rotational
speed of joint II reaches the desired speed. On the other hand, with Figures 8 and 10 compared, one
can obtain that the torsional vibration suppression times of the designed fuzzy PID controller on
the experimental platform and the simulation platform are almost the same. Owing to the control
parameters of the designed fuzzy PID controller for the experimental platform and the simulation
platform are the same, the validity of the constructed system dynamics model and the parameter
identification is further illustrated. In conclusion, the fuzzy PID controller designed in this paper can
realize the effective control of the torsional vibration of the flexible-joint robot system.

6. Conclusions

With the torsional vibration of the flexible-joint transmission links considered, an adaptive
fuzzy PID controller is designed based on the dynamic modeling and parameter identification of the
flexible-joint robot system. The simulation and experimental results show that:

(i) The established electromechanical-coupling dynamics model of the flexible-joint robot can
effectively characterize the system dynamic characteristics after the unknown parameters of the
model are determined by the parameter identification. The model output speeds of joint I and
joint II can effectively track the outputs of the experimental platform. The identification result of
the rotational speed of joint I is that the identification error quickly attenuated to 0. Moreover,
the main frequency components of the rotational speed of joint II are identified which is of great
significance to the torsion control of the flexible-joint robot system.

(ii) Based on the analysis of the dynamic characteristics of the flexible-joint robot, the control rules
of the designed fuzzy PID controller are determined. With the speed difference between joint
II and joint I feedbacked, the designed fuzzy PID controller can effectively suppress the joint
torsional vibration of the flexible-joint robot with about 0.5 s to the target speed, and achieve the
synchronous optimization of the dynamic quality and the stability accuracy in the control effect
of the system torsional vibration.

(iii) Meanwhile, the designed fuzzy PID controller has good anti-interference. Whether it’s step
noise or white Gaussian noise, the fuzzy PID controller needs only 0.6 s to adjust, while the
conventional PID controller needs about 1.8 s to eliminate the step disturbance and about 1.5 s to
eliminate the white Gaussian noise. The research results in this paper can provide references for
the torsional vibration control of the industrial joint robots.
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Appendix A

Table A1. Table of notation.

Notation Physical Meaning Notation Physical Meaning

J Equivalent moment of inertia to the
motor shaft ω1 Angular speed of joint I

J0 Moment of inertia of the DC motor shaft ω2 Angular speed of joint II

Jr
Moment of inertia of the harmonic
reducer θ1 Rotation angles of joint I

J1 Moment of inertia of joint I θ2 Rotation angles of joint II
J2 Moment of inertia of joint II f 1 Static friction moment of joint I
im Reduction ratio of the harmonic reducer f 2 Static friction moment of joint II

ea Applied armature voltage K Torsional stiffness of the joint
connecting shaft

R Armature resistance of the DC motor C1
Viscous friction coefficient of the
joint connecting shaft

L Armature inductance of the DC motor C2 Viscous friction coefficient of joint II

ia Armature current of the DC motor n Effective number of turns for the
joint connecting shaft

ed
Reverse electromotive force (EMF) of the
DC motor E Elastic modulus of the torsion spring

Ke Back EMF constant of the DC motor d Diameter of the spring wire

Km Motor torque constant D2
Middle diameter of the torsion
spring

Ted Drive torque of the DC motor φ Torsion angle of the torsion spring
T1 Load torque on the motor shaft e Speed error of joint II
ω0 Angular speed of the DC motor

.
e Speed error change rate of joint II

K′p
Initial setting values of the
proportional coefficient ∆Kp

Increment of the
proportional coefficient

K′i
Initial setting values of the
integral coefficient ∆Ki Increment of the integral coefficient

K′d
Initial setting values of the
differential coefficient ∆Kd

Increment of the
differential coefficient
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