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Abstract: Group decision making with intuitionistic fuzzy preference information contains two key
issues: acceptability measurement and priority weight determination. In this paper, we investigate
the above two issues with respect to multiplicative interval-valued intuitionistic fuzzy preference
relation (IVIFPR). Firstly, a consistency index is defined to measure the multiplicative consistency
degree of IVIFPR and an optimization model is established to improve the consistency degree of
IVIFPR to an acceptable one. Next, in terms of priority weight determination, an error-analysis-based
extension method is proposed to obtain priority weight vector from the acceptable IVIFPR. For GDM
problems, decision makers’ weights are derived by the proposed multiplicative consistency index.
Subsequently, the collective IVIFPR is obtained by using an interval-valued intuitionistic fuzzy (IVIF)
weighted averaging operator. Finally, a step-by step algorithm for GDM with IVIFPRs is given,
and an example of enterprise innovation partner selection is analyzed, and comparative analyses
with existing approaches are performed to demonstrate that the proposed algorithm is both effective
and practical in dealing with GDM problems.

Keywords: interval-valued intuitionistic fuzzy preference relations; multiplicative consistency index;
group decision making; acceptability measurement; priority weight determination

1. Introduction

In Group decision making (GDM), various decision makers (DMs or experts) would be employed
to express their preferences via pairwise comparison over decision alternatives. Two classical
preference relations consist of fuzzy preference relations (FPRs) [1,2] and multiplicative preference
relations (MPRs) [3,4], in which the elements are described by exact numerical values. However,
due to the uncertainty and complex information granularity, DMs may have difficulty in providing
pairwise comparison judgments on alternatives with crisp numerical values. To address this issue,
the intuitionistic fuzzy preference relation (IFPR) [5,6], interval-valued fuzzy preference relation
(IVFPR) [7,8] and interval-valued intuitionistic fuzzy (IVIF) preference relation (IVIFPR) [9,10] appear
one after another. Particularly, the elements in an IVIFPR consist of IVIF values (IVIFVs), where both
the membership degree and non-membership degree are intervals. Therefore, IVIFPR can flexibly
seize such uncertainty and vagueness information in decision making. In recent decades, IVIFPR has
been widely used to solve different GDM problems, such as the supplier selection [11], the virtual
enterprise partner selection [12], the transport service provider selection [13], the air traffic protection
aircraft [14] and so on.
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The consistency degree of comparison matrices directly affects the final decision result. For GDM
problems, the consistent IVIFPRs provided by DMs refer to certain transitivity property, which can
ensure that DMs’ judgments contain no contradiction in some sense. Therefore, it is natural that the
consistency of IVIFPRs should be measured and improved in GDM problems. To date, a host of studies
have been devoted to discussing this issue. For instance, Xu and Chen [15] first proposed the concept
of the consistent interval-valued intuitionistic judgment matrix. Subsequently, Xu and Cai [16,17]
introduced some definitions on multiplicative and additive consistency in incomplete IVIFPR and
determined the missing elements in an IVIFPR while only knowing its off-diagonal elements. Inspired
by the multiplicative transitivity of an IVIFPR, Liao et al. [18] proposed a multiplicative consistency
concept to an IVIFPR, which was applied to adjust or repair an inconsistent IVIFPR through using
some iterative algorithms. These achievements directly investigated the multiplicative transitivity
property of an IVIFPR. In contrast, Wan et al. [12] indirectly examined the multiplicative consistency
of an IVIFPR by inducing two special IFRP matrices from an IVIFPRs. Subsequently, with the same
idea, Wan et al. [9,10] defined the additive consistency of an IVIFPR by generating two special IVFPRs
and extracting two consistent IFPR from an IVIFPR, respectively. Chu et al. [11] put forward a
new definition on the additive consistency of an IVIFPR by dividing an IVIFPR into four preference
relations. Meng et al. [19] built 0–1 mixed programming models to judge the multiplicative consistency
of IVIFPRs, and developed a multiplicative consistency and consensus based algorithm to GDM with
IVIFPRs. Mukhametzyanov et al. [20] used statistical approach and presented a sensitivity analysis
model to discuss the result for consistency evaluation of decision making.

Since the priority weights can be utilized to rank alternatives, it is an important issue to determine
the priority weights for GDM problems based on preference relations [21]. Due to the complex
operations on IVIFVs, research paper on determining priority weights from IVIFPRs are very scarce.
For example, Xu and Chen [15] developed an approach to GDM with IVIFPR by the ordered weighted
and hybrid aggregation operators. Xu and Yager [22] proposed a similarity measure between IFPRs
and extended it to IVIFPRs. Wu and Chiclana [23] introduced a new attitudinal expected score
function for interval-valued intuitionistic fuzzy numbers. Yue [24] presented a geometric approach for
ranking IVIFVs. Wan et al. [9] and Chu et al. [11] constructed optimization models to derive priority
weights by using the associated matrices of IVFPR or IFPR form an IVIFPR. Zhou et al. [25] developed
a logarithm least optimal model to derive interval priority weights of IFPR and then proposed a
two-stage resolution process for GDM with IVIFPRs.

The achievements, as mentioned, have significantly advanced the research on GDM with IVIFPRs.
Nevertheless, there still exist some drawbacks, as stated below:

(1) While checking the consistency degree of a given IVIFPR, existing research [17,18] has proposed
the definitions of a consistent IVIFPR, which can be used to judge whether an IVIFPR is consistent
or not. However, none of them can measure the consistency degree of an inconsistent IVIFPR.
Other literature (References [10,12,19]) has also defined the consistency of an IVIFPR through
extracting associated preference matrices from original IVIFPR, which cannot fully attach the
initial preference information and needs to be constructed by the numerous computational efforts.
Therefore, it is necessary to find a convenient solution to check the consistency degrees of IVIFPRs.

(2) When a given IVIFPR is unacceptably consistent, only Liao et al. [18] and Wan et al. [12] proposed
some iterative algorithms to improve its consistency degree. Nevertheless, it may be to repeat
these algorithms several times to repair this unacceptably consistent IVIFPR until the acceptable
consistency is achieved. This is time consuming and requires heavy workload. Furthermore, it is
unknown how much of the repaired IVIFPR reserves preference information for the initial IVIFPR.

(3) As for the determination of priority weights of alternatives for IVIFPRs, the existing
studies [15,22,24] have directly adopted the formulas to rank the alternatives. However, such
formulas are only applicable to consistent IVIFPRs and would be ineffective for inconsistent
IVIFPRs. Other methods (References [9,11,25]) have established some optimizing or linear models
to determine the priority weights, noting that these optimizing or linear models only minimize
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the deviation between the associated matrices form original IVIFPR and the converted consistent
one to the most extent. However, for an extremely unacceptable consistent IVIFPR, the priority
weights obtained by such models are unreasonable and cannot be accepted in decision making.

To fill the literature review gap, this paper concentrates on developing a novel algorithm for
IVIFPRs in GDM problems based on acceptability measurement and priority weight determination.
Firstly, following the work of Liao et al. [18], the multiplicative consistency index of an IVIFPR is
defined considering DM’s risk attitude. Then an optimization model is built to improve the consistency
degree of an unacceptable multiplicative consistent IVIFPR and obtain an acceptable multiplicative
consistent one. With regard to the determination of priority weights of an IVIFPR, inspired by Xu [26],
an error-analysis-based extension method is proposed. In GDM problems, DMs’ weights are generated
by the defined multiplicative consistency index. Subsequently, the collective IVIFPR is obtained
through using an IVIF weighted averaging operator. Finally, a step-by-step algorithm for GDM
with IVIFPRs is developed. An example of enterprise innovation partner selection is analyzed to
demonstrate its practicability and effectiveness. Some significant features of this paper are outlined
as follows:

(1) Liao et al. [18] defined the multiplicative consistency of IVIFPR to adjust or repair the inconsistent
IVIFPRs. The consistent degree of an inconsistent IVIFPR cannot be measured by [18]. To measure
the consistency degree of an IVIFPR, according to the multiplicative consistency definition in
Reference [18], this paper proposes a new concept of multiplicative consistency index of an IVIFPR
by considering various decision-making principles (i.e., the majority and minority principles).
A notable feature is that multiplicative consistency index of an IVIFPR can be directly obtained
from original IVIFPR without any transformation via Wan et al. [12]. Therefore, the definition of
multiplicative consistency index of an IVIFPR is easy to operate.

(2) An optimization model is directly established to repair and improve the consistency of IVIFPR.
Compared with iterative algorithms proposed in References [12,18], the proposed model can not
only rapidly obtain an acceptable consistent IVIFPR from the initial IVIFPR, but also enables
the obtained IVIFPR to retain as much as possible the preference information hidden in the
initial IVIFPR.

(3) An error-analysis-based extension method is developed to derive IVIF priority weights from
the acceptable consistent IVIFPR. Compared with some optimization models proposed in
References [9,11,12], the extension method can simplify computation and save time. Moreover,
in GDM problems, DMs’ weights are generated by using the proposed multiplicative consistency
index of an IVIFPR, which is objective and reasonable to some extent.

The remainder of this paper is organized as follows. In Section 2, some basic related concepts on
preference relations are reviewed. In Section 3, the multiplicative consistency index of IVIFPR is defined,
and then an optimization model is built to obtain acceptable consistency of an IVIFPR. In Section 4,
an error-analysis-based method is extended to determine IVIF priority weights. In Section 5, GDM
problems with IVIFPRs are considered, then DMs’ weights are derived, and an algorithm for GDM
with IVIFPRs is developed. In Section 6, a practical example of enterprise innovation partner selection
is presented to demonstrate the efficiency and applicability of the proposed algorithm. Section 7
concludes the study.

2. Preliminaries

In this section, some associated definitions on preference relations are reviewed, and the error
propagation formula is also discussed.
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2.1. Some Associated Definitions on Preference Relations

Definition 1. [27] An IVFPR R on the alternative set X = {x1, x2, . . . , xn} is presented by an interval-valued
fuzzy judgment matrix R =

(
rij
)

n×n ⊂ X × X with rij =
[
rij, rij

]
, where the preference degree to which

alternative xi over xj is between rij and rij. Moreover, rij and rij fulfill the following conditions:

0 ≤ rij ≤ rij ≤ 1, rij + rji = 1, rii = rii = 0.5 for all i, j = 1, 2, . . . , n.

Definition 2. [28] Let X = {x1, x2, . . . , xn} be a non-empty alternative set. An IVIF set Ã
in X is denoted by Ã =

{
X, µÃ(x), vÃ(x)

∣∣x ∈ X
}

, where µÃ(x) =
[
µ

Ã
(x), µÃ(x)] ⊆ [0, 1

]
,

and vÃ(x) =
[
vÃ(x), vÃ(x)] ⊆ [0, 1

]
. µÃ(x) and vÃ(x) are interval values, indicating that the membership

degree and non-membership degree of element X to IVIFV Ã, respectively, meeting µÃ(x) + vÃ(x) ≤ 1 for any

x ∈ X. Therefore, the IVIFV Ã can be expressed as Ã =
{(

X, [µ
Ã
(x), µÃ(x)], [vÃ(x), vÃ(x)

]
)
∣∣∣x ∈ X

}
.

Similarly, π̃Ã(x) =
[
π Ã(x), π Ã(x)

]
is named the interval hesitancy preference degree for any x ∈ X,

where π Ã(x) = 1− µÃ(x)− vÃ(x) and π Ã(x) = 1− µ
Ã
(x)− vÃ(x).

The pair θ =
([

µ, µ], [v, v
])

is call an interval-valued intuitionistic fuzzy value (IVIFV) [29], where[
µ, µ] ⊆ [0, 1

]
and [v, v] ⊆ [0, 1]. Xu and Chen [15] proposed the concepts of the score function and accuracy

function, which is one of the feasible methods to rank IVIFV.

Definition 3. [15] For an IVIFV θ =
([

µ, µ], [v, v
])

, the score function S(θ) is

S(θ) =
1
2

(
µ− v + µ− v

)
(1)

and accuracy function H(θ) is

H(θ) =
1
2

(
µ + µ + v + v

)
(2)

For any two IVIFVs θ1 =
([

µ
1
, µ1], [v1, v1

])
and θ2 =

([
µ

2
, µ2], [v2, v2

])
If S(θ1) > S(θ2), then θ1 > θ2.
If S(θ1) = S(θ2), then
If H(θ1) > H(θ2), then θ1 > θ2.
If H(θ1) < H(θ2), then θ1 < θ2.
If H(θ1) = H(θ2), then θ1 = θ2.

Definition 4. [15] Let X = {x1, x2, . . . , xn} be a non-empty alternative set. An IVIFPR R̃ on
the set X is denoted by R̃ = (r̃ij)n×n ⊂ Z × Z with r̃ij =

([
µ

ij
, µij], [vij, vij

])
, where

[
µ

ij
, µij

]
and

[
vij, vij

]
are the preference degree and no-preference degree to which alternative xi over xj,

and π̃ij =
[
1− µij(x)− vij(x), 1− µ

ij
(x)− vij(x)

]
is represented as interval hesitancy preference degree

to which alternative xi over xj. Moreover,
[
µ

ij
, µij

]
and

[
vij, vij

]
fulfill the conditions as follow:

[
µ

ij
, µij

]
⊆ [0, 1],

[
vij, vij

]
⊆ [0, 1],

[
µ

ii
, µii

]
= [vii, vii] = [0.5, 0.5], 0 ≤ µij + vij ≤ 1[

µ
ij

, µij

]
=
[
vji, vji

]
,
[
vij, vij

]
=
[
µ

ji
, µji

]
for all i, j = 1, 2, . . . , n.
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Remark 1. Owing to the increasingly sophisticated decision-making environment and the vagueness of the
human mind, it is hard to provide certain preferences on the pairwise comparison of alternatives regarding
([0, 1], [0, 1]) or ([1, 1], [1, 1]). Meanwhile, decision makers are usually experts in the decision-making issues in
which they participate and the complete stubbornness rarely occurs. Therefore, the preference value ([0, 0], [0, 0])
seldom appears. Hence, we only discuss the IVIFPR R̃ = (r̃ij)n×n with r̃ij =

([
µ

ij
, µij], [vij, vij

])
satisfying

0 < µ
ij

, µij, vij, vij < 1 for all i, j = 1, 2, . . . , n.

Definition 5. [18] An IVIFPR R̃ = (r̃ij)n×n with r̃ij =
(
µ̃ij, ṽij

)
where µ̃ij =

[
µ

ij
, µij

]
, ṽij =

[
vij, vij

]
, R̃ is

multiplicative consistent if

µ
ij
=


0,

(
µ

ik
, µ

kj

)
∈ {(0, 1), (1, 0)}

µ
ik

µ
kj

µ
ik

µ
kj
+
(

1−µ
ik

)(
1−µ

kj

) , otherwise
, for all i, j, k = 1, 2, . . . , n, i < k < j (3)

µij =


0,

(
µik, µkj

)
∈ {(0, 1), (1, 0)}

µikµkj

µikµkj+(1−µik)
(

1−µkj

) , otherwise
, for all i, j, k = 1, 2, . . . , n, i < k < j (4)

vij =

 0,
(

vik, vkj

)
∈ {(0, 1), (1, 0)}

vikvkj

vikvkj+(1−vik)(1−vkj)
, otherwise

, for all i, j, k = 1, 2, . . . , n, i < k < j (5)

µij =

 0,
(

vik, vkj

)
∈ {(0, 1), (1, 0)}

vikvkj

vikvkj+(1−vik)(1−vkj)
, otherwise

, for all i, j, k = 1, 2, . . . , n, i < k < j (6)

Equations (3)–(6) can be rewritten as follows:

µ
ij

(
1− µ

ik

)(
1− µ

kj

)
=
(

1− µ
ij

)
µ

ik
µ

kj

µij(1− µik)
(

1− µkj

)
=
(

1− µij

)
µikµkj

vij(1− vik)
(

1− vkj

)
=
(

1− vij

)
vikvkj

vij(1− vik)
(

1− vkj

)
=
(
1− vij

)
vikvkj

, for all i, j, k = 1, 2, . . . , n, i < k < j (7)

2.2. Error Propagation Formula

Let Y = {y1, y2, . . . , yn} be a set of random variables and Z = f (y1, y2, . . . , yn), yi ∈ Y be a
random function. Assume that ξ2

yi
is the random error of the variable yi, then the random error of z is

ξ2
z =

n

∑
i=1

(
∂ f
∂yi

)2
ξ2

yi
+ 2 ∑

1≤i≤j≤n

∂ f
∂yi

∂ f
∂yj

$ijξyi ξyij , (8)

where $ij is a correlation coefficient of the variable yi.
Specifically, the random error ξ2

z is mutual independent when $ij = 0, for all i, j = 1, 2, . . . , n,
then Equation (8) reduces to the following form [26,30]:

ξ2
z =

n

∑
i=1

(
∂ f
∂yi

)2
ξ2

yi
. (9)
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Using the error ranges ∆yi(i = 1, 2, . . . , n) to replace the standard random errors
ξyi (i = 1, 2, . . . , n), Equation (9) can be rewritten as the following famous error propagation formula

(∆z)2 =
n

∑
i=1

(
∂ f
∂yi

)2

( ∆yi)
2 (10)

3. Acceptability Measurement of an IVIFPR

This section aims to measure the acceptability degree of an IVIFPR. At first, the multiplicative
consistency index of an IVIFPR is proposed through considering DMs’ risk attitudes. Then, for an
unacceptable multiplicative consistent IVIFPR, an optimization model is established to obtain the
acceptable multiplicative consistent one.

3.1. Multiplicative Consistency Index of an IVIFPR

In practice, decision makers cannot offer IVIFPRs with absolutely multiplicative consistent. As per
Definition 5, Liao et al. [18] proposed the multiplicative transitivity conditions for an IVIFPR, which
can be utilized to judge whether an IVIFPR is multiplicative consistent or not. In order to evaluate
the consistency degree of an IVIFPR, the multiplicative consistency index of an IVIFPR is defined in
the following.

According to Definition 5, an IVIFPR is multiplicative consistent if it satisfies Equation (7). By
taking the logarithm form of Equation (7), one has the following formula:



lnµ
ij
+ ln

(
1− µ

ik

)
+ ln

(
1− µ

kj

)
= ln

(
1− µ

ij

)
+ lnµ

ik
+ lnµ

kj

lnµij + ln(1− µik) + ln
(

1− µkj

)
= ln

(
1− µij

)
+ lnµik + lnµkj

lnvij + ln(1− vik) + ln
(

1− vkj

)
= ln

(
1− vij

)
+ lnvik + lnvkj

lnvij + ln(1− vik) + ln
(

1− vkj

)
− ln

(
1− vij

)
− lnvik − lnvkj

, for all i, j, k = 1, 2, . . . , n, i < k < j (11)

Then, the consistency degree of an IVIFPR R̃ = (r̃ij)n×n can be measured by deviations between
both sides of conditions in Equation (11). Motived by References [7,31], according to Minkowski
distance, the total deviation of an IVIFPR R̃ = (r̃ij)n×n is obtained as follows:

D
(

R̃
)
= ∑n

i=1 ∑n
k=i+1 ∑n

j=k+1



∣∣∣(lnµ
ij
+ ln

(
1− µ

ik

)
+ ln

(
1− µ

kj

)
− ln

(
1− µ

ij

)
− lnµ

ik
− lnµ

kj

)∣∣∣p
+
∣∣∣lnµij + ln(1− µik) + ln

(
1− µkj

)
− ln

(
1− µij

)
− lnµik − lnµkj

∣∣∣p
+
∣∣∣lnvij + ln(1− vik) + ln

(
1− vkj

)
− ln

(
1− vij

)
− lnvik − lnvkj

∣∣∣p
+
∣∣∣lnvij + ln(1− vik) + ln

(
1− vkj

)
− ln

(
1− vij

)
− lnvik − lnvkj

∣∣∣p



1
p

for all i, j, k = 1, 2, . . . , n, i < k < j

(12)

For convenience, let

τijk,µ = lnµ
ij
+ ln

(
1− µ

ik

)
+ ln

(
1− µ

kj

)
− ln

(
1− µ

ij

)
− lnµ

ik
− lnµ

kj

τijk,µ = lnµij + ln(1− µik) + ln
(

1− µkj

)
− ln

(
1− µij

)
− lnµik − lnµkj

τijk,v = lnvij + ln(1− vik) + ln
(

1− vkj

)
− ln

(
1− vij

)
− lnvik − lnvkj

τijk,v = lnvij + ln(1− vik) + ln
(

1− vkj

)
− ln

(
1− vij

)
− lnvik − lnvkj
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Theorem 1. Given an IVIFPR R̃ = (r̃ij)n×n with r̃ij =
(
µ̃ij, ṽij

)
where µ̃ij =

[
µ

ij
, µij

]
, ṽij =

[
vij, vij

]
,

it concludes that
τijk,µ = τ jik,µ = τ jki,µ = τkji,µ = τkij,µ = τikj,µ,

τijk,µ = τ jik,µ = τ jki,µ = τkji,µ = τkij,µ = τikj,µ,

τijk,v = τ jik,v = τ jki,v = τkji,v = τkij,v = τikj,v,

τijk,v = τ jik,v = τ jki,v = τkji,v = τkij,v = τikj,v.

From Theorem 1, it can be seen that the deviations related to subscripts i, j and k are not influenced
by the orderings of their subscripts. Therefore, Equation (12) is transformed into the formula as follows:

D
(

R̃
)
= ∑n

i=1 ∑n
k=i+1 ∑n

j=k+1

{∣∣∣τikj,µ

∣∣∣p + ∣∣∣τikj,µ

∣∣∣p + ∣∣∣τikj,v

∣∣∣p + ∣∣∣τikj,v

∣∣∣p}1/p

for all i, j, k = 1, 2, . . . , n, i < k < j
(13)

where the deviation D
(

R̃
)

depends on the parameter p(p ≥ 0). Accordingly, as p(1 ≤ p < ∞)

increases, more importance is granted to the largest deviation. If p = 1, Equation (13) degenerates into
Hamming distance. If p = +∞, Equation (13) degenerates into Chebyshev distance. Therefore,
integrating two special cases (p = 1 and p = +∞), we have the following definition of the
multiplicative consistency index for an IVIFPR.

Definition 6. For an IVIFPR R̃ = (r̃ij)n×n, when p = 1, the multiplicative consistency degree of an IVIFPR
can be measured by Hamming distance, which is defined as

HD
(

R̃
)
=

1
4c3

n

n

∑
i=1

n

∑
k=i+1

n

∑
j=k+1

[∣∣∣τikj,µ

∣∣∣+ ∣∣∣τikj,µ

∣∣∣+ ∣∣∣τikj,v

∣∣∣+ ∣∣∣τikj,v

∣∣∣] (14)

Definition 7. For an IVIFPR R̃ = (r̃ij)n×n, when p = +∞, the multiplicative consistency degree of an
IVIFPR can be measured by Chebyshev distance, which is defined as

CD
(

R̃
)
= max1<i<k<j

{∣∣∣∣∣ τ
ikj,µ

∣∣∣∣∣, ∣∣∣τikj,µ

∣∣∣, ∣∣∣τikj,v

∣∣∣, ∣∣∣τikj,v

∣∣∣} (15)

Considering the majority principle, the Hamming distance employed in Equation (14) is to check the
multiplicative consistency degree of an IVIFPR R̃. In contrast, considering the minority principle, the Chebyshev
distance adopted in Equation (15) is to verify the multiplicative consistency degree of an IVIFPR R̃.

Definition 8. Combining the HD
(

R̃
)

with CD
(

R̃
)

the multiplicative consistency index (MCI) of an IVIFPR

R̃ is defined as
MCI

(
R̃
)
= ϕHD

(
R̃
)
+ (1−ϕ)CD

(
R̃
)

(16)

where parameter ϕ (0 ≤ ϕ ≤ 1) denotes DMs’ risk attitude. If ϕ = 1, only HD
(

R̃
)

is considered, indicating

that DM is optimistic; If ϕ = 0, only CD
(

R̃
)

is considered, showing that DM is pessimistic; If ϕ = 0.5,
decision maker pays no attention to the risk, denoting that DM is risk neutral. As parameter ϕ increases, DM is
more optimistic. The parameter ϕ acts a tradeoff part between HD

(
R̃
)

and CD
(

R̃
)

. Therefore, the MCI of an
IVIFPR in Definition 8 is more flexible and appropriate for all kinds of DMs with various risk attitudes.
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The MCI shows the reliability degree of the original preference information given by DMs, that is to say, as
the value of MCI

(
R̃
)

decreases, the original information in IVIFPR R̃ is more reliable and consistent. When

MCI
(

R̃
)
= 0, then IVIFPR R̃ is absolutely multiplicative consistent.

Definition 9. Assume that MCI0(0 ≤ MCI0 ≤ 1) is a predefined consistent threshold. When
MCI

(
R̃
)
≤ MCI0, the IVIFPR R̃ is an acceptable multiplicative consistent. Otherwise, IVIFPR R̃ is an

unacceptable multiplicative consistent.
In some specified circumstance, the consistency threshold MCI0 is predefined by the practical

decision-making problems. However, it is hard for a DM to provide an absolutely or acceptably consistent
IVIFPR. If the multiplicative consistency degree of an original IVIFPR is inferior, one cannot guarantee that the
original IVIFPR is rationality. Therefore, it is necessary to obtain an acceptable multiplicative consistent IVIFPR
with satisfying MCI

(
R̃
)
≤ MCI0. In this situation, an optimization model is established to solve this problem.

3.2. An Optimization Model to Obtain the Acceptable Multiplicative Consistent IVIFPR

This subsection constructs an optimization model to find an acceptable multiplicative consistent
IVIFPR from the unacceptable multiplicative consistent IVIFPR. In other words, the constructed model
can improve the multiplicative consistency degree of the original IVIFPR.

Suppose that an unacceptable multiplicative consistent IVIFPR R̃ = (r̃ij)n×n with r̃ij =
(
µ̃ij, ṽij

)
where µ̃ij =

[
µ

ij
, µij

]
, ṽij =

[
vij, vij

]
for all i, j = 1, 2, . . . , n. A primary task is to obtain an acceptable

multiplicative consistent R̂ = (r̂ij)n×n with r̂ij =
(
µ̂ij, v̂ij

)
where µ̂ij =

[
µ̂

ij
, µ̂ij

]
, v̂ij =

[
v̂ij, v̂ij

]
,

which is close to the initial IVIFPR R̃ to the most extent. We can minimize the deviation between the
initial IVIFPR R̃ and the acceptable multiplicative consistent R̂ Hence, an optimization model is built
as follows:

min
n

∑
i=1

n

∑
j=i+1

(∣∣∣µij
− µ̂

ij

∣∣∣+ ∣∣∣µij − µ̂ij

∣∣∣+ ∣∣∣vij − v̂ij

∣∣∣+ ∣∣vij − v̂ij
∣∣)

s.t.



ϕ
4c3

n
∑n

i=1 ∑n
k=i+1 ∑n

j=k+1



∣∣∣lnµ̂
ij
+ ln

(
1− µ̂

ik

)
+ ln

(
1− µ̂

kj

)
− ln

(
1− µ̂

ij

)
− lnµ̂

ik
− lnµ̂

kj

∣∣∣
+
∣∣∣lnµ̂ij + ln

(
1− µ̂ik

)
+ ln

(
1− µ̂kj

)
− ln

(
1− µ̂ij

)
− lnµ̂ik − lnµ̂kj

∣∣∣
+
∣∣∣lnv̂ij + ln(1− v̂ik) + ln

(
1− v̂kj

)
− ln

(
1− v̂ij

)
− lnv̂ik − lnv̂kj

∣∣∣
+
∣∣∣lnv̂ij + ln

(
1− v̂ik

)
+ ln

(
1− v̂kj

)
− ln

(
1− v̂ij

)
− lnv̂ik − lnv̂kj

∣∣∣



+(1−ϕ) max
1<i<k<j



∣∣∣lnµ̂
ij
+ ln

(
1− µ̂

ik

)
+ ln

(
1− µ̂

kj

)
− ln

(
1− µ̂

ij

)
− lnµ̂

ik
− lnµ̂

kj

∣∣∣,∣∣∣lnµ̂ij + ln
(
1− µ̂ik

)
+ ln

(
1− µ̂kj

)
− ln

(
1− µ̂ij

)
− lnµ̂ik − lnµ̂kj

∣∣∣,∣∣∣lnv̂ij + ln(1− v̂ik) + ln
(

1− v̂kj

)
− ln

(
1− v̂ij

)
− lnv̂ik − lnv̂kj

∣∣∣,∣∣∣lnv̂ij + ln
(
1− v̂ik

)
+ ln

(
1− v̂kj

)
− ln

(
1− v̂ij

)
− lnv̂ik − lnv̂kj

∣∣∣


≤ MCI0

0 < µ̂ij + v̂ij ≤ 1, 0 < µ̂
ij

, µ̂ij, v̂ij, v̂ij < 1(i, j = 1, 2, . . . n, i < j)

(17)

In Model (17), the first constraint guarantees that the obtained R̂ is an acceptable multiplicative
consistent, and the other constraints ensure that the obtained R̂ is an IVIFPR.

To solve Model (17), some parameters are introduced as

s−ij =
(

µ
ij
− µ̂

ij

)
∨ 0, t−ij =

(
µ̂

ij
− µ

ij

)
∨ 0, s+ij =

(
µij − µ̂ij

)
∨ 0, t+ij =

(
µij − µ̂ij

)
∨ 0,

p−ij =
(

vij − v̂ij

)
∨ 0, q−ij =

(
v̂ij − vij

)
∨ 0, p+ij =

(
vij − v̂ij

)
∨ 0, q+ij =

(
vij − v̂ij

)
∨ 0,

α−ikj = f
ikj,µ
∨ 0, α+ikj = − f

ikj,µ
∨ 0, β−ikj = f ikj,µ ∨ 0, β+

ikj = f ikj,µ ∨ 0,

γ−ikj = f
ikj,v
∨ 0, γ+

ikj = − f
ikj,v
∨ 0, δ−ikj = f ikj,v ∨ 0, δ+ikj = f ikj,v ∨ 0,

ε = max
1<i<k<j

{
α−ikj + α+ikj + β−ikj + β+

ikj + γ−ikj + γ+
ikj + δ−ikj + δ+ikj

}
.
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where
f

ikj,µ
= lnµ̂

ij
+ ln

(
1− µ̂

ik

)
+ ln

(
1− µ̂

kj

)
− ln

(
1− µ̂

ij

)
− lnµ̂

ik
− lnµ̂

kj
,

f ikj,µ = lnµ̂ij + ln
(
1− µ̂ik

)
+ ln

(
1− µ̂kj

)
− ln

(
1− µ̂ij

)
− lnµ̂ik − lnµ̂kj,

f
ikj,v

= lnv̂ij + ln(1− v̂ik) + ln
(

1− v̂kj

)
− ln

(
1− v̂ij

)
− lnv̂ik − lnv̂kj,

f ikj,v = lnv̂ij + ln
(
1− v̂ik

)
+ ln

(
1− v̂kj

)
− ln

(
1− v̂ij

)
− lnv̂ik − lnv̂kj,

for all i, j, k = 1, 2, . . . , n, i < k < j.

Then Model (17) is converted into:

min
n

∑
i=1

n

∑
j=i+1

(
s−ij + t−ij + s+ij + t+ij + p−ij + q−ij + p+ij + q+ij

)

s.t.



ϕ
4c3

n
∑n

i=1 ∑n
k=i+1 ∑n

j=k+1

(
α−ikj + α+ikj + β−ikj + β+

ikj
+γ−ikj + γ+

ikj + δ−ikj + δ+ikj

)
+ (1−ϕ)ε ≤ MCI0

ε ≥ α−ikj + α+ikj, ε ≥ β−ikj + β+
ikj, ε ≥ γ−ikj + γ+

ikj, ε ≥ δ−ikj + δ+ikj(i, j, k = 1, 2, . . . , n, i < k < j).
s−ij − t−ij = µ

ij
− µ̂

ij
, s+ij − t+ij = µij − µ̂ij(i, j = 1, 2, . . . , n, i < j)

p−ij − q−ij = vij − v̂ij, p+ij − q+ij = vij − v̂ij(i, j = 1, 2, . . . , n, i < j)

α−ikj − α+ikj = lnµ̂
ij
+ ln

(
1− µ̂

ik

)
+ ln

(
1− µ̂

kj

)
− ln

(
1− µ̂

ij

)
− lnµ̂

ik
− lnµ̂

kj
(i, j, k = 1, 2, . . . , n, i < k < j)

β−ikj − β+
ikj = lnµ̂ij + ln

(
1− µ̂ik

)
+ ln

(
1− µ̂kj

)
− ln

(
1− µ̂ij

)
− lnµ̂ik − lnµ̂kj

(i, j, k = 1, 2, . . . , n, i < k < j)
γ−ikj − γ+

ikj = lnv̂ij + ln(1− v̂ik) + ln
(

1− v̂kj

)
− ln

(
1− v̂ij

)
− lnv̂ik − lnv̂kj

(i, j, k = 1, 2, . . . , n, i < k < j)
δ−ikj − δ+ikj = lnv̂ij + ln

(
1− v̂ik

)
+ ln

(
1− v̂kj

)
− ln

(
1− v̂ij

)
− lnv̂ik − lnv̂kj

(i, j, k = 1, 2, . . . , n, i < k < j)
0 < µ̂ij + v̂ij ≤ 1, µ̂

ij
≤ µ̂ij, v̂ij ≤ v̂ij, 0 < µ̂

ij
, µ̂ij, v̂ij, v̂ij < 1(i, j = 1, 2, . . . n, i < j)

(18)

Solving Model (18), we can obtain the optimal solutions µ̂
ij

, µ̂ij, v̂ij and v̂ij for all i, j = 1, 2, . . . n

and i < j. As per Definition 2, the acceptable multiplicative consistent IVIFPR R̂ = (r̂ij)n×n obtained

from the initial IVIFPR R̃ can be generated as

r̂ = (µ̂ij, v̂ij) =


([

µ̂
ij

, µ̂ij

]
,
[
v̂ij, v̂ij

])
, if i < j

([0.5, 0.5], [0.5, 0.5]), if i = j(
v̂ji, µ̂ji

)
if i > j

(19)

In what follows, a numerical example is applied to interpret the procedure of acceptability
measurement of an IVIFPR.

Example 1. Assume that a DM provides his/her preference information over a collection of alternatives
xi(i = 1, 2, 3) with the following IVIFPR Q̃:

Q̃ =

 ([0.5, 0.5], [0.5, 0.5]) ([0.4, 0.6], [0.2, 0.3]) ([0.1, 0.2], [0.5, 0.6])
([0.2, 0.3], [0.4, 0.6]) ([0.5, 0.5], [0.5, 0.5]) ([0.3, 0.4], [0.2, 0.5])
([0.5, 0.6], [0.1, 0.2]) ([0.2, 0.5], [0.3, 0.4]) ([0.5, 0.5], [0.5, 0.5])



Step 1. Set MCI0 = 0.1 and ϕ = 0.5.
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Step 2. Using Equations (14) and (15), obtain HD
(

Q̃
)

= 1.5890 and CD
(

Q̃
)

= 2.7726. Then,

by Equation (16), calculate the multiplicative consistency index MCI
(

Q̃
)

= 2.1801. Since

MCI
(

Q̃
)
> MCI0, the IVIFPR Q̃ is unacceptable multiplicative consistency index and go to

next step.
Step 3. Using Model (18), an optimization model is constructed as follows:

min

(
s−12 + t−12 + s+12 + t+12 + p−12 + q−12 + p+12 + q+12 + s−13 + t−13 + s+13 + t+13+

p−13 + q−13 + p+13 + q+13 + s−23 + t−23 + s+23 + t+23 + p−23 + q−23 + p+23 + q+23

)

s.t.



ϕ
4
(
α−123 + α+123 + β−123 + β+

123 + γ−123 + γ+
123 + δ−123 + δ+123

)
++(1−ϕ)ε ≤ MCI0

ε ≥ α−123 + α+123, ε ≥ β−123 + β+
123, ε ≥ γ−123 + γ+

123, ε ≥ δ−123 + δ+123
s−12 − t−12 = 0.4− µ̂

12
, s+12 − t+12 = 0.6− µ̂12, p−12 − q−12 = 0.2− v̂12

p+12 − q+12 = 0.3− v̂12, s−13 − t−13 = 0.1− µ̂
13

, s+13 − t+13 = 0.2− µ̂13
p−13 − q−13 = 0.5− v̂13, p+13 − q+13 = 0.6− v̂13, s−23 − t−23 = 0.3− µ̂

23
p+23 − q+23 = 0.5− v̂23, s+23 − t+23 = 0.4− µ̂23, p−23 − q−23 = 0.2− v̂23

α−123 − α+123 = lnµ̂
13
+ ln

(
1− µ̂

12

)
+ ln

(
1− µ̂

23

)
− ln

(
1− µ̂

13

)
− lnµ̂

12
− lnµ̂

23
β−123 − β+

123 = lnµ̂13 + ln
(
1− µ̂12

)
+ ln

(
1− µ̂23

)
− ln

(
1− µ̂13

)
− lnµ̂12 − lnµ̂23

γ−123 − γ+
123 = lnv̂13 + ln(1− v̂12) + ln(1− v̂23)− ln(1− v̂13)− lnv̂12 − lnv̂23

δ−123 − δ+123 = lnv̂13 + ln
(
1− v̂12

)
+ ln

(
1− v̂23

)
− ln

(
1− v̂13

)
− lnv̂12 − lnv̂23

0 < µ̂12 + v̂12 ≤ 1, 0 < µ̂
12
≤ µ̂12 < 1, 0 < v̂12 ≤ v̂12 < 1

0 < µ̂13 + v̂13 ≤ 1, 0 < µ̂
13
≤ µ̂13 < 1, 0 < v̂13 ≤ v̂13 < 1

0 < µ̂23 + v̂23 ≤ 1, 0 < µ̂
23
≤ µ̂23 < 1, 0 < v̂23 ≤ v̂23 < 1

Then, solving the above model, the optimal solutions µ̂
ij

, µ̂ij, v̂ij and v̂ij for all i, j = 1, 2, . . . n

and i < j are obtained. The acceptable multiplicative consistent IVIFPR Q̂ is generated through
Equation (19):

Q̂ =

 ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.4000, 0.6000], [0.2000, 0.4000]) ([0.2030, 0.3644], [0.0588, 0.4277])
([0.2000, 0.4000], [0.4000, 0.6000]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.3000, 0.3000], [0.2000, 0.5000])
([0.0588, 0.4277], [0.2030, 0.3644]) ([0.2000, 0.5000], [0.3000, 0.3000]) ([0.5000, 0.5000], [0.5000, 0.5000])


4. Priority Weights Determination of Alternatives for an IVIFPR

This section is inspired by Xu [26] who proposed an error-analysis-based method to determine
the interval-valued priority weights, then an extension method to determine priority weights of
alternatives for an IVIFPR is proposed.

4.1. Extraction of Two Special IVFPRs from an IVIFPR

Due to the computational complexity of IVIFV, it is hard to determine the priority weights of
alternatives for an IVIFPR directly. Bustince [32] proposed that an IVIFV can be converted into
interval value by using some proper operators. Moreover, Wan et al. [9] extracted two special IVFPRs
from original IVIFPR. Following their works, priority weights of alternatives for an IVIFPR can be
determined by using two special extractive IVFPRs.

For an IVIFPR R̃ = (r̃ij)n×n with r̃ij =
([

µ
ij

, µij], [vij, vij

])
, [µ

ij
, µij] denotes the lowest preferred

degree of alternatives and
[
1− vij, 1− vij

]
represents the highest preferred degree of alternatives.

Consequently, suppose that an IVFPR R = (rij)n×n with rij =
[
rij, rij

]
n×n

can be extracted from

IVIFPR R̃, the elements in IVFPR R = (rij)n×n satisfies the following:
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µ
ij
≤ rij ≤ 1− vij, µij ≤ rij ≤ 1− vij, rij + rji = 1 and rii = rii = 0.5 for all i, j = 1, 2, . . . , n.

To simplify calculation, in what follows, two special extractive IVFPRs are participated in
determining priority weights of alternatives for an IVIFPR.

Let
[
µ

ij
, µij

]
≤
[
rij, rij

]
≤
[
1− vij, 1− vij

]
, two special IVFPRs Rµ = (rµ

ij)n×n
and Rv = (rv

ij)n×n
are extracted from the IVIFPR R̃ = (r̃ij)n×n, respectively, where

rµ
ij =


[
µ

ij
, µij

]
, if i < j

[0.5, 0.5], if i = j[
1− µji, 1− µ

ji

]
. if i > j

and rv
ij =


[
1− vij, 1− vij

]
, if i < j

[0.5, 0.5], if i = j[
vji, vji

]
. if i > j

(20)

As per Definition 1, it is easy to prove that both Rµ and Rv are IVFPRs. As the upper triangular
elements in two special extractive IVFPRs concerned, since rµ

ij =
[
µ

ij
, µij

]
is the minimum of

rij =
[
rij, rij

]
for i < j, the IVFPR Rµ = (rµ

ij)n×n
can be viewed as the lowest preferred matrix of

IVIFPR R̃. Similarly, since rv
ij =

[
1− vij, 1− vij

]
is the maximum of rij =

[
rij, rij

]
for i < j, the IVFPR

Rv = (rv
ij)n×n

can be viewed as the highest preferred matrix of IVIFPR R̃.

As a result, the IVFPRs Rµ = (rµ
ij)n×n

and Rv = (rv
ij)n×n

, as two special extractive IVFPRs from

the IVIFPR R̃, should involve in determining the priority weights of alternatives for an IVIFPR.

4.2. An Error-Analysis-Based Extension Method for Determining the IVIF Priority Weights

Inspired by Xu [26], this subsection proposes an error-analysis-based extension method to
determine the IVIF priority weights from two special extractive IVFPRs.

Assume that IVFPR Rµ = (rµ
ij)n×n

with rµ
ij =

[
µ

ij
, µij

]
for all i < j is extracted from IVIFPR R̃,

which is the lowest preferred matrix. Let

mij =
1
2

(
µ

ij
+ µij

)
, for all i, j = 1, 2, . . . , n, i < j (21)

We have mij ≥ 0 and

mij + mji =
1
2

(
µ

ij
+ µij

)
+

1
2

(
1− µij + 1− µ

ij

)
= 1, for all i, j = 1, 2, . . . , n, i < j (22)

mii =
1
2
(0.5 + 0.5) = 0.5, for all i, j = 1, 2, . . . , n (23)

Then, we obtain an expected fuzzy preference relation Mij =
(
mij
)

n×n.
Additionally, let

hij =
1
2

(
µij − µ

ij

)
, for all i, j = 1, 2, . . . , n, i < j (24)

Then we get an error matrix H =
(
hij
)

n×n, which has the following properties:

hij ∈ [0, 1], hij = hji, hii = 0, for all i, j = 1, 2, . . . , n (25)
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For any fuzzy preference relation B = (bij)n×n with bij ≥ 0,bij + bji = 1, bii = 0.5,i, j = 1, 2, . . . , n.

To derive the priority vector w = (w1, w2, . . . , wn)
T of B, a simple formula proposed in Xu [33]

as following:

wi =
1

n(n− 1)

(
∑ n

j=1bij +
n
2
− 1
)

, for i = 1, 2, . . . , n (26)

where wi ≥ 0, i = 1, 2, . . . , n and ∑n
i=1 wi = 1.

Then, the priority vector wµ =
(

wµ
1 , wµ

2 , . . . , wµ
n

)T
of the expected fuzzy preference relation

M =
(
mij
)

n×n can be obtained using Equations (26) and (21), where

wµ
i = 1

n(n−1)

(
∑ n

j=1mij +
n
2 − 1

)
= 1

n(n−1)

(
1
2 ∑ n

j=1

(
µ

ij
+ µij

)
+ n

2 − 1
)

, for i = 1, 2, . . . , n (27)

Using Equations (10) and (25), the error priority vector ∆wµ =
(

∆wµ
1 , ∆wµ

2 , . . . , ∆wµ
n

)T
can be

obtained as (
∆wµ

i

)2
=
(

1
n(n−1)

)2
∑ n

j=1
(
∆hij

)2
=
(

1
n(n−1)

)2
∑ n

j=1

(
1
2

(
µij − µ

ij

))2
, for i = 1, 2, . . . , n (28)

Solving Equation (28), we have

∆wµ
i =

1
2n(n− 1)

√
∑ n

j=1

(
µij − µ

ij

)2
, for i = 1, 2, . . . , n (29)

Thus, the priority vector wµ =
(

wµ
1 , wµ

2 , . . . , wµ
n

)T
with wµ

i =
[
wµ

i − ∆wµ
i , wµ

i + ∆wµ
i

]
for the

IVFPR Rµ = (rµ
ij)n×n

can be determined, which denotes the importance degree of alternative xi.

Similarly, using Equations (27) and (29), the priority vector wv =
(
wv

1, wv
2, . . . , wv

n
)T with

wv
i =

[
wv

i − ∆wv
i , wv

i + ∆wv
i
]

for the IVFPR Rv = (rv
ij)n×n

can also be obtained, which also reflects
the importance degree of alternative xi.

wv
i =

1
n(n− 1)

(
1
2 ∑ n

j=1

(
2− vij − vij

)
+

n
2
− 1
)

, for i = 1, 2, . . . , n (30)

∆wv
i =

1
2n(n− 1)

√
∑ n

j=1

(
vij − vij

)2
, for i = 1, 2, . . . , n (31)

Due to the interval-valued priority vector wµ and wv refer to the initial IVIFPR. An IVIFPR
should give an IVIFPR weight estimate [9]. Hence, assume that w = (w1, w2, . . . , wn)

T with
wi =

([
wµ−

i , wµ+
i

]
,
[
wv−

i , wv+
i
])

for i = 1, 2, . . . , n is an IVIF priority weight vector,
[
wµ−

i , wµ+
i

]
and

[
wv−

i , wv+
i
]

can be interpreted as degree ranges of the membership and the non-membership for
an IVIFPR, respectively. Similar to Wan et al. [9], the interval-valued priority vector wµ and wv can be
fused to build the normalized one as follows:

w =
(([

wµ−
1 , wµ+

1

]
,
[
wv−

1 , wv+
1
])

,
([

wµ−
2 , wµ+

2

]
,
[
wv−

2 , wv+
2
])

, . . . ,
([

wµ−
n , wµ+

n

]
,
[
wv−

n , wv+
n
]))T

with
wµ−

i =
1
λ

min
{

wµ
i , wv

i

}
, wµ+

i =
1
λ

max
{

wµ
i , wv

i

}
,

wv−
i =

1
λ

(
1−max

{
wµ

i , wv
i

})
, wv+

i =
1
λ

(
1−min

{
wµ

i , wv
i

})
, (32)
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where λ = max
{

maxi=1,2,...,n

{
max

{
wµ

i , wv
i

}
−min

{
wµ

i , wv
i

}
+ 1
}

, 1
}

, which can guarantee that the

IVIF priority weight wi(i = 1, 2, . . . , n) satisfies wµ+
i + wv+

i ≤ 1. Consequently, the IVIF priority

weights wi =
([

wµ−
i , wµ+

i

]
,
[
wv−

i , wv+
i
])

(i = 1, 2, . . . , n) are obtained from Equation (32).
In the following, a numerical example is applied to illustrate how to obtain weight vector in terms

of interval-valued intuitionistic fuzzy values.

Example 2. Continuing on from Example 1, an acceptable multiplicative consistent IVIFPR Q̂ can be
obtained in Example 1, and then the priority weights with regard to IVIFV can be determined by the proposed
error-analysis-based extension method.

Step 1. Using Equation (20), two special IVFPRs Qµ and Qv can be extracted from the acceptable
multiplicative consistent IVIFPR Q̂, which are shown in the following:

Qµ =

 [0.5000, 0.5000] [0.4000, 0.6000] [0.2030, 0.3644]
[0.4000, 0.6000] [0.5000, 0.5000] [0.3000, 0.3000]
[0.6356, 0.7970] [0.7000, 0.7000] [0.5000, 0.5000]



Qv =

 [0.5000, 0.5000] [0.6000, 0.8000] [0.5723, 0.9412]
[0.2000, 0.4000] [0.5000, 0.5000] [0.5000, 0.8000]
[0.0588, 0.4277] [0.2000, 0.5000] [0.5000, 0.5000]


Step 2. Using Equations (27) and (29), the priority vector wµ = (w1, w2, w3)

T with

wµ
i =

[
wµ

i − ∆wµ
i , wµ

i + ∆wµ
i

]
(i = 1, 2, 3) for the IVFPR Qµ can be determined as follows:

wµ = ([0.2759, 0.3187], [0.2833, 0.3167], [0.3893, 0.4162])T

Similarly, using Equations (30) and (31), the priority vector wv = (w1, w2, w3)
T with

wv
i =

[
wv

i − ∆wv
i , wv

i + ∆wv
i
]
(i = 1, 2, 3) for the IVFPR Qv can be determined as follows:

wv = ([0.3745, 0.4444], [0.2950, 0.3550], [0.2259, 0.3052])T

Thus, using Equation (32), the priority vector in terms of IVIFVs can be obtained as follows:

w1 = ([0.2545, 0.3454], [0.5125, 0.6284]),

w2 = ([0.2614, 0.2721], [0.5949, 0.6303]),

w3 = ([0.2084, 0.3591], [0.5385, 0.6409]).

5. An Algorithm for GDM with IVIFPRs

In practice decision-making problems, a single DM/expert cannot always make a perfect decision
because of the limitation of his/her knowledge or complexity circumstances. Therefore, some problems
need various DMs/experts to make decisions in certain situations, which are named group decision
making (GDM) problems. In this section, GDM problems with IVIFPRs are concerned, DMs’ weights
are derived, and an algorithm for GDM with IVIFPRs is developed.

5.1. Description of GDM Problems with IVIFPRs

Let A = {A1, A2, . . . , An} be a set of non-inferior alternatives and D = (d1, d2, . . . , dm)

be a group of DMs/experts with their weigh vector is η = (η1, η2, . . . , ηm)
T . Suppose that

DM dt provides his/her judgment over all alternatives with IVIFPR R̃t = (r̃t
ij)n×n

where
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r̃t
ij =

([
µt

ij
, µt

ij

]
,
[
vt

ij, vt
ij

])
(i, j = 1, 2, . . . , n; t = 1, 2, . . . , m). Denote the priority weight vector of

alternatives by w = (w1, w2, . . . , wn)
T , where wi =

([
wµ−

i , wµ+
i

]
,
[
wv−

i , wv+
i
])

is IVIFV and needs to
be determined for ranking the alternatives.

In the real-life GDM process, DMs from various regions may have differed in knowledge structure,
working experience, expression, and personal preferences. They might, therefore have various opinions
for the same GDM problem. That is to say, there usually exist the inconsistencies between DMs’
opinions. In this context, it is necessary to find a reasonable solution to obtain a collective IVIFPR
from all individual IVIFPRs. Bearing the above idea in mind, by using IVIF weight averaging operator
proposed in Xu and Yager [22], the collective IVIFPR R̃c =

(
r̃c

ij

)
n×n

with r̃c
ij =

([
µc

ij
, µc

ij

]
,
[
vc

ij, vc
ij

])
is

obtained, where

µc
ij
=

m

∑
t=1

ηtµ
t
ij

, µc
ij =

m

∑
t=1

ηtµ
t
ij, vc

ij =
m

∑
t=1

ηtvt
ij, vc

ij =
m

∑
t=1

ηtvt
ij, for all i, j = 1, 2, . . . , n, (33)

where ηt(t = 1, 2, . . . , m) is the weight of DM dt (t = 1, 2, . . . , m).
Before obtaining the collective IVIFPR R̃c =

(
r̃c

ij

)
n×n

with r̃c
ij =

([
µc

ij
, µc

ij

]
,
[
vc

ij, vc
ij

])
,

DMs’ weight vector η = (η1, η2, . . . , ηm)
T plays an important role. Next, in Section 5.2 we describe the

method to derive the DMs’ weights.

5.2. The Method for Deriving DMs’ Weights

For each DM dt(t = 1, 2, . . . , m), the consistency degree of his/her judgment can characterize
the qualitative information. As mentioned in Section 3.1, the MCI defined in Equation (16) can
be employed to measure the multiplicative consistency degree of an individual IVIFPR, which is
denoted by MCI

(
R̃t
)
(t = 1, 2, . . . , m). Obviously, the smaller the value of MCI

(
R̃t
)
(t = 1, 2, . . . , m),

the more multiplicative consistency degree of an IVIFPR. From this point of view, the weight vector of
DMs/experts η = (η1, η2, . . . , ηm)

T can be derived. That is to say, if an individual DM/expert dt has a
lower value of MCI

(
R̃t
)

, then he/she should be given to larger weight. Therefore, using the harmonic
average operator, DMs’ weights can be described in the following mathematical formula:

if MCI
(

R̃t
)
6= 0(t = 1, 2, . . . , m), then ηt =

1
MCI(R̃t)

∑m
t=1

1
MCI(R̃t)

(34)

However, if MCI
(

R̃t
)
= 0(t = 1, 2, . . . , q), the DM/expert dt should be given to the largest weight,

whose IVIFPR is absolutely multiplicative consistency. Similar to Chu et al. [11], DMs’ weights with
respect to the consistency degree MCI

(
R̃t
)
= 0(t = 1, 2, . . . , q) are the summation of the remaining

weights of DMs. That is,

if MCI
(

R̃1
)
= MCI

(
R̃2
)
= . . . = MCI

(
R̃q
)

︸ ︷︷ ︸
q values

= 0, then

η1 = η2 = . . . = ηq =
1

q + 1
and ηt =

1
MCI(R̃t)

(q + 1)∑m
t∈{1,2,...,m}r{1,2,...,q}

1
MCI(R̃t)

(35)

5.3. An Algorithm for GDM with IVIFPRs

Summarizing the analysis described above, a novel algorithm for GDM with IVIFPRs is proposed.
The concrete steps are summarized below and in the flowchart depicted in Figure 1.
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Step 1. Predefined consistency threshold MCI0 and set the value of parameter ϕ.

Step 2. Calculate the multiplicative consistency index MCI
(

R̃t
)

for an individual IVIFPR

R̃t(t = 1, 2, . . . , m) using Equation (16).
Step 3. Derive DMs’ weights ηt(t = 1, 2, . . . , m) using Equation (35).

Step 4. Using formula MCI
(

R̃t
)
≤ MCI0, pick out the unacceptable multiplicative consistency of

IVIFPR R̃t(t = 1, 2, . . . , m). If all IVIFPRs R̃t(t = 1, 2, . . . , m) are acceptable multiplicative
consistent, then go to Step 6; otherwise, go to Step 5.

Step 5. Derive the acceptable multiplicative consistent IVIFPR R̂ = (r̂ij)n×n from unacceptable
multiplicative consistent IVIFPR by Equations (18) and (19).

Step 6. Integrate the individual IVIFPR R̂t(t = 1, 2, . . . , m) into a collective IVIFPR R̃c through
Equation (33).

Step 7. Using Equations (27) and (29), determine interval-valued priority weight

wµ
i =

[
wµ

i − ∆wµ
i , wµ

i + ∆wµ
i

]
(i = 1, 2, . . . , n).

Step 8. Using Equations (30) and (31), determine interval-valued priority weight
wv

i =
[
wv

i − ∆wv
i , wv

i + ∆wv
i
]
(i = 1, 2, . . . , n).

Step 9. Generate the IVIF priority weights wi =
([

wµ−
i , wµ+

i

]
,
[
wv−

i , wv+
i
])

through Equation (32).

Step 10.Using Equations (1) and (2), rank alternatives by calculating the score and the accurate values
of IVIF priority weights wi(i = 1, 2, . . . , n).
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6. A Practical Example for GDM with IVIFPRs

In this section, a practical example of enterprise innovation partner selection is provided to
demonstrate the application of the proposed algorithm. The implementation of comparative analyses
is to illustrate the merit of the proposed model over other methods.

6.1. A Practical Example of Enterprise Innovation Partner Selection

Owing to the limitations of resources, high risk of innovation expenditure and long
commercialization cycles, an enterprise is unable to carry out innovation activities independently. In
this scenario, innovation activities are generated among partners, who can share resources, technologies
and critical competitiveness, by which a win-win situation among partners can be achieved. Therefore,
selecting innovation partners has become a realistic choice for many firms.

There exists a company wants to select and evaluate an appropriate innovation partner. Four
alternatives {x1, x2, x3, x4} intend to bid on it. To choose the best partner, the company employs
three peer review DMs/experts {d1, d2, d3} with the different professional knowledge to constitute an
evaluation committee. Three DMs/experts construct one pairwise comparison judgment matrix with
IVIFPRs by comparing any two partners, DMs furnish their IVIFPRs as

R̃1 =


([0.50, 0.50], [0.50, 0.50]) ([0.15, 0.30], [0.65, 0.70]) ([0.30, 0.35], [0.40, 0.45]) ([0.50, 0.60], [0.10, 0.15])
([0.65, 0.70], [0.15, 0.30]) ([0.50, 0.50], [0.50, 0.50]) ([0.70, 0.80], [0.05, 0.10]) ([0.60, 0.75], [0.10, 0.20])
([0.40, 0.45], [0.30, 0.35]) ([0.05, 0.10], [0.70, 0.80]) ([0.50, 0.50], [0.50, 0.50]) ([0.55, 0.70], [0.10, 0.20])
([0.10, 0.15], [0.50, 0.60]) ([0.10, 0.20], [0.60, 0.75]) ([0.10, 0.20], [0.55, 0.70]) ([0.50, 0.50], [0.50, 0.50])



R̃2 =


([0.50, 0.50], [0.50, 0.50]) ([0.25, 0.40], [0.40, 0.50]) ([0.20, 0.35], [0.60, 065]) ([0.20, 0.35], [0.30, 0.50])
([0.40, 0.50], [0.25, 0.40]) ([0.50, 0.50], [0.50, 0.50]) ([0.50, 0.55], [0.30, 0.40]) ([0.55, 0.70], [0.10, 0.20])
([0.60, 0.65], [0.20, 0.35]) ([0.30, 0.40], [0.50, 0.55]) ([0.50, 0.50], [0.50, 0.50]) ([0.40, 0.65], [0.10, 0.20])
([0.30, 0.50], [0.20, 0.35]) ([0.10, 0.20], [0.55, 0.70]) ([0.10, 0.20], [0.40, 0.65]) ([0.50, 0.50], [0.50, 0.50])



R̃3 =


([0.50, 0.50], [0.50, 0.50]) ([0.15, 0.30], [0.40, 0.50]) ([0.10, 0.30], [0.45, 0.65]) ([0.60, 0.85], [0.10, 0.10])
([0.40, 0.50], [0.15, 0.30]) ([0.50, 0.50], [0.50, 0.50]) ([0.75, 0.80], [0.15, 0.20]) ([0.55, 0.70], [0.10, 0.15])
([0.45, 0.65], [0.10, 0.30]) ([0.15, 0.20], [0.75, 0.80]) ([0.50, 0.50], [0.50, 0.50]) ([0.45, 0.85], [0.10, 0.15])
([0.10, 0.10], [0.60, 0.85]) ([0.10, 0.15], [0.55, 0.70]) ([0.10, 0.15], [0.45, 0.85]) ([0.50, 0.50], [0.50, 0.50])


In what follows, the proposed algorithm in this paper is employed to solve the above problem.

Step 1. Predefine consistency threshold MCI0 = 0.1 and set the value of parameter ϕ = 0.5.

Step 2. Calculate the multiplicative consistency index MCI
(

R̃t
)

for individual IVIFPR

R̃t(t = 1, 2, . . . , m) using Equation (16), the results of the calculation are as follows:

MCI
(

R̃1
)
= 1.9679, MCI

(
R̃2
)
= 1.2745, MCI

(
R̃3
)
= 2.1035.

Step 3. Determine DMs’ weights ηt(t = 1, 2, . . . , m) using Equation (35).

η1 = 0.2874; η2 = 0.4437; η3 = 0.2689.

Step 4. Using formula MCI
(

R̃t
)
≤ MCI0, all the individual IVIFPRs R̃t are unacceptable

multiplicative consistent.
Step 5. Solving Model (18), the optimal solutions µ̂

ij
, µ̂ij, v̂ij and v̂ij for all i, j = 1, 2, . . . n

and i < j are derived from unacceptable multiplicative consistent IVIFPRs R̃t(t = 1, 2, 3).
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Then, using Equation (19), the corresponding acceptable multiplicative consistent IVIFPRs
R̂t = (r̂ij)n×n(t = 1, 2, 3) are generated as

R̂1 =


([0.50, 0.50], [0.50, 0.50]) ([0.16, 0.24], [0.66, 0.70]) ([0.30, 0.39], [0.40, 0.45]) ([0.37, 0.60], [0.10, 0.15])
([0.66, 0.70], [0.16, 0.24]) ([0.50, 0.50], [0.50, 0.50]) ([0.70, 0.70], [0.23, 0.23]) ([0.74, 0.83], [0.06, 0.07])
([0.40, 0.45], [0.30, 0.39]) ([0.23, 0.23], [0.70, 0.70]) ([0.50, 0.50], [0.50, 0.50]) ([0.55, 0.70], [0.14, 0.20])
([0.10, 0.15], [0.37, 0.60]) ([0.06, 0.07], [0.74, 0.83]) ([0.14, 0.20], [0.55, 0.70]) ([0.50, 0.50], [0.50, 0.50])



R̂2 =


([0.50, 0.50], [0.50, 0.50]) ([0.25, 0.30], [0.70, 0.70]) ([0.23, 0.35], [0.60, 0.65]) ([0.20, 0.47], [0.22, 0.39])
([0.70, 0.70], [0.25, 0.30]) ([0.50, 0.50], [0.50, 0.50]) ([0.50, 0.55], [0.37, 0.42]) ([0.45, 0.70], [0.10, 0.20])
([0.60, 0.65], [0.23, 0.35]) ([0.37, 0.42], [0.50, 0.55]) ([0.50, 0.50], [0.50, 0.50]) ([0.43, 0.65], [0.15, 0.24])
([0.22, 0.39], [0.20, 0.47]) ([0.10, 0.20], [0.45, 0.70]) ([0.15, 0.24], [0.43, 0.65]) ([0.50, 0.50], [0.50, 0.50])



R̂3 =


([0.50, 0.50], [0.50, 0.50]) ([0.15, 0.30], [0.50, 0.50]) ([0.21, 0.39], [0.40, 0.40]) ([0.19, 0.80], [0.10, 0.10])
([0.50, 0.50], [0.15, 0.30]) ([0.50, 0.50], [0.50, 0.50]) ([0.63, 0.63], [0.37, 0.37]) ([0.50, 0.89], [0.10, 0.11])
([0.40, 0.40], [0.21, 0.39]) ([0.37, 0.37], [0.63, 0.63]) ([0.50, 0.50], [0.50, 0.50]) ([0.45, 0.85], [0.14, 0.15])
([0.10, 0.10], [0.19, 0.80]) ([0.10, 0.11], [0.50, 0.89]) ([0.14, 0.15], [0.45, 0.85]) ([0.50, 0.50], [0.50, 0.50])


Step 6. Integrating the acceptable multiplicative consistent IVIFPR R̂ = (r̂ij)n×n by DMs’ weights

ηt(t = 1, 2, 3), the collective IVIFPR Rc is generated using Equation (33) as follows:

Rc =


([0.50, 0.50], [0.50, 0.50]) ([0.20, 0.28], [0.63, 0.65]) ([0.24, 0.37], [0.49, 0.53]) ([0.25, 0.60], [0.15, 0.24])
([0.63, 0.65], [0.20, 0.28]) ([0.50, 0.50], [0.50, 0.50]) ([0.59, 0.61], [0.33, 0.35]) ([0.56, 0.79], [0.09, 0.14])
([0.49, 0.53], [0.24, 0.37]) ([0.33, 0.35], [0.59, 0.61]) ([0.50, 0.50], [0.50, 0.50]) ([0.47, 0.72], [0.14, 0.20])
([0.15, 0.24], [0.25, 0.60]) ([0.09, 0.14], [0.56, 0.79]) ([0.14, 0.20], [0.47, 0.72]) ([0.50, 0.50], [0.50, 0.50])


Step 7. Using Equations (27) and (29), IVIFPR priority weight vector

wµ
i =

[
wµ

i − ∆wµ
i , wµ

i + ∆wµ
i

]
(i = 1, 2, 3, 4) are generated as follows:

wµ
1 = [0.1900, 0.2219], wµ

2 = [0.2847, 0.3050],

wµ
3 = [0.2535, 0.2769], wµ

4 = [0.2137, 0.2542].

Step 8. Using Equations (30) and (31), IVIFPR priority weight vector
wv

i =
[
wv

i − ∆wv
i , wv

i + ∆wv
i
]
(i = 1, 2, 3, 4) are generated as follows:

wv
1 = [0.2587, 0.2668], wv

2 = [0.3047, 0.3095],

wv
3 = [0.2616, 0.2676], wv

4 = [0.1606, 0.1705].

Step 9. By Equation (32), the IVIFPR priority weights wi =
([

wµ−
i , wµ+

i

]
,
[
wv−

i , wv+
i
])

(i = 1, 2, 3, 4)
are derived as follows:

w1 = ([0.1821, 0.2479], [0.7028, 0.7459]), w2 = ([0.2729, 0.2921], [0.6619, 0.6662]),

w3 = ([0.2430, 0.2507], [0.6931, 0.7020]), w4 = ([0.1539, 0.2049], [0.7149, 0.7951]).

Step 10. According to Definition 3, the scores function of IVIFV belongs to the interval [−1, 1], and its
associating weight should be a non-negative number. Therefore, the score function defined
in Definition 3 should be modified to facilitate this situation under the conditions of without
changing any of the following basic properties

S
(

δ̃
)
=

µ− v + µ− v + 2

4
(36)
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Through Equation (36), the scores function S(wi) and accuracy degrees of H(wi) of wi(i = 1, 2, 3, 4)
are obtained as S(w1) = 0.2454, S(w2) = 0.3092, S(w3) = 0.2747, S(w4) = 0.2122, H(w1) = 0.9394,
H(w2) = 0.9466, H(w3) = 0.9444, H(w4) = 0.9344,

Thus, descending scores function S(wi)(i = 1, 2, 3, 4) and accuracy degrees H(wi)(i = 1, 2, 3, 4),
the ranking order of alternatives is x2 > x3 > x1 > x4, and x2 is the best partner.

Additionally, when ϕ takes different values, we get the associated calculation results and ranking
orders shown Table 1. For different consistency threshold MCI0, the corresponding computation
results are listed in Table 2.

It can see from Tables 1 and 2 that the ranking order results are always x2 > x3 > x1 > x4 and
the best partner is x2. Moreover, the ranking order result derived from the absolutely multiplicative
consistent IVIFPR (i.e., MCI0 = 0 and ϕ = 0.5) is the same as other situations in Table 2. Consequently,
it may be robust and applicable to directly adopt the proposed algorithm in this paper for addressing
practical GDM with IVIFPR.

Table 1. Computation results and ranking orders for different values of parameters ϕ with MCI0 = 0.1

ϕ S(w1) H(w1) S(w2) H(w2) S(w3) H(w3) S(w4) H(w4) Ranking Order

0 0.2449 0.9393 0.3092 0.9461 0.2752 0.9442 0.2122 0.9338 x2 > x3 > x1 > x4
0.1 0.2451 0.9393 0.3091 0.9461 0.2751 0.9443 0.2122 0.9339 x2 > x3 > x1 > x4
0.2 0.2451 0.9395 0.3090 0.9463 0.2750 0.9445 0.2123 0.9341 x2 > x3 > x1 > x4
0.3 0.2451 0.9395 0.3091 0.9464 0.2749 0.9445 0.2123 0.9341 x2 > x3 > x1 > x4
0.4 0.2450 0.9396 0.3093 0.9466 0.2749 0.9446 0.2121 0.9343 x2 > x3 > x1 > x4
0.5 0.2454 0.9394 0.3092 0.9466 0.2747 0.9444 0.2122 0.9344 x2 > x3 > x1 > x4
0.6 0.2454 0.9394 0.3094 0.9466 0.2745 0.9445 0.2121 0.9345 x2 > x3 > x1 > x4
0.7 0.2453 0.9389 0.3090 0.9461 0.2754 0.9440 0.2124 0.9342 x2 > x3 > x1 > x4
0.8 0.2452 0.9389 0.3089 0.9461 0.2755 0.9441 0.2125 0.9341 x2 > x3 > x1 > x4
0.9 0.2472 0.9370 0.3116 0.9456 0.2715 0.9421 0.2108 0.9348 x2 > x3 > x1 > x4
1 0.2460 0.9370 0.3101 0.9463 0.2722 0.9418 0.2110 0.9371 x2 > x3 > x1 > x4

Table 2. Computation results and ranking orders for different values of parameters MCI0 with ϕ = 0.5.

Parameter S(w1) H(w1) S(w2) H(w2) S(w3) H(w3) S(w4) H(w4) Ranking Order

MCI0 = 0.1 0.2454 0.9394 0.3092 0.9466 0.2747 0.9444 0.2122 0.9344 x2 > x3 > x1 > x4
MCI0 = 0 0.2489 0.9348 0.3092 0.9423 0.2732 0.9400 0.2112 0.9310 x2 > x3 > x1 > x4

MCI0 = 0.01 0.2487 0.9350 0.3095 0.9426 0.2730 0.9401 0.2112 0.9312 x2 > x3 > x1 > x4

6.2. Comparative Analyses

In order to reveal the superiority of our proposed method, this subsection concentrates on
comparative analyses with Wan’s method [12] and other existing GDM methods [6,18].

6.2.1. Comparison with Wan’s Method

We adopt Wan’s method [12] to solve the practical example in 6.1. Similar to Wan’s method,
set the consistent threshold value MCI0 = 0.1 and group’s opinions l = 0.5, different DMs’ weight
vectors ηi(i = 1, 2, 3) can be obtained when taking different values of parameter τ, which denotes three
particular principles of minority, majority and compromise principle if τ = 0, 1 and 0.5, respectively.
The calculation results are shown in Table 3. Additionally, when MCI0 = 0.1, the ranking orders of
alternatives for different values of parameters (ϕ in the proposed algorithm and τ in Wan’s method [12])
are depicted in Figure 2.
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Table 3. Computation results for different DMs’ weights ηi(i = 1, 2, 3) by Wan’s method [12].

τ. τ=0 τ=0.5 τ=1

η η = (0.3888, 0.3056, 0.3056)T η = (0.4078, 0.2718, 0.3204)T η = (0.400, 0.2000, 0.4000)T

w1 ([0.1165, 0.2287], [0.6715, 0.6715]) ([0.1151, 0.2309], [0.6729, 0.6729]) ([0.1109, 0.2435], [0.6698, 0.6698])
w2 ([0.3208, 0.4248], [0.4754, 0.5116]) ([0.3262, 0.4324], [0.4689, 0.5034]) ([0.3262, 0.4413], [0.4624, 0.4931])
w3 ([0.0831, 0.1304], [0.6967, 0.8696]) ([0.0797, 0.1262], [0.8738, 0.8738]) ([0.0739, 0.1185], [0.8815, 0.8815])
w4 ([0.0165, 0.0527], [0.7115, 0.8475]) ([0.0156, 0.0501], [0.7725, 0.8537]) ([0.0137, 0.0444], [0.7671, 0.8689])

T(w1) 0.4915 0.4898 0.4957
T(w2) 0.6783 0.6836 0.6910
T(w3) 0.3711 0.3644 0.3543
T(w4) 0.3702 0.3665 0.3655
R.O. x2 > x1 > x3 > x4 x2 > x1 > x4 > x3 x2 > x1 > x4 > x3

Note: 1. when l = 0.5, T(wi)(i = 1, 2, 34) denotes the comprehensive closeness degree defined in Wan’s method [12].
2. “R.O.” is an abbreviation for “ranking order”.
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Table 3 and Figure 2 reveal that the ranking order results are different, but the best alternative is
x2, which is the same as the proposed algorithm. Compared with Wan’s method [12], the proposed
algorithm has the following advantages.

(1) When measuring the consistency degree of an IVIFPR, the proposed algorithm is more
straightforward than Wan’s method [12]. Wan’s method [12] needs resort to two particular
IFPR matrices from original IVIFPR. In contrast, the proposed algorithm directly performs
the measurement work only depending on original IVIFPR, which can avoid losing original
information via Wan’s method [12].

(2) In terms of repairing and improving the unacceptable multiplicative consistent IVIFPR, different
from the iterative algorithms proposed in Wan’s method [12], this paper directly built an
optimization model through considering various decision-making principles, which can quickly
obtain the acceptable consistent IVIFPR and flexibly reflect the principles of decision making.

(3) For determining priority weights of alternatives, Wan’s method [12] constructed a goal
optimization model which needs numerous computations. On the contrary, the proposed
algorithm determines IVIF priority weights by extending error-analysis-based priority method to
IVIFPR environment, which is a time-saving and simple calculation.
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6.2.2. Comparison with Other Existing Methods

Except for the above quantitatively comparative analysis, this subsection implements a
qualitatively comparative analysis by using the existing GDM methods [6,18].

(1) The concerns of these methods are different. Method [6] studied the consistent and consensus
in GDM with IFPR, whereas Method [18] and the proposed algorithm concentrate on the
multiplicative consistency of IVIFPR. The discrepancy is that Method [18] focused on the
multiplicative transitivity of IVIFPR and improving the consistency of an inconsistent IVIFPR,
while the proposed algorithm is devoted to judging and measuring the multiplicative consistency
degree of an IVIFPR and address the GDM with IVIFPRs.

(2) Method [18] investigated an acceptable property of multiplicative consistency of IVIFPR and
introduced some associated concepts of IVIFPR (i.e., the approximate, the perfect and the
acceptable multiplicative consistent IVIFPR), but the multiplicative consistency degree of an
IVIFPR cannot be obtained in Method [18]. Following the work of Method [18], based on two
principles of decision making (the majority and minority principles), this paper proposes a new
definition of consistency index of an IVIFPR, which can measure the multiplicative consistency
degree of an IVIFPR.

(3) Regarding to priority weight determination, Methods [6,18] cannot provide any tools or methods
determine priority weights. However, this paper extends error-analysis-based approach in
IVIFPR to determine priority weights, and it is worth noting that the proposed algorithm can
reduce the complexity of the calculation.

7. Conclusions

With the high complexity and uncertainty in (group) decision-making environments, IVIFPRs
have attracted increasing attention. In this paper, we focus on the acceptability measurement and
determination of IVIF priority weights based on IVIFPRs. The main contributions are outlined
as follows.

(1) A new definition of consistency index is defined to measure whether an IVIFPR is of acceptable
multiplicative consistency. A common feature is that it can complete the measurement work only
employing individual IVIFPRs themselves.

(2) An optimization model is constructed to improve the consistency degree for those IVIFPRs
that not attain the acceptable level. Moreover, the obtained IVIFPRs can retain the preference
information given by the initial IVIFPRs, for the most part.

(3) An error-analysis-based extension method is proposed to determine IVIF priority weights from
the acceptable IVIFPR. It can help the decision maker to obtain the reasonable and identified
decision-making results.

(4) A step-by-step algorithm is developed for solving GDM with IVIFPRs, and a practical example
is presented to demonstrate its effectiveness and practicality. The results in this paper are very
important for the application of IVIFPR in GDM.

However, the proposed algorithm has some drawbacks, i.e., current research framework assumes
that the parameter values of the consistency threshold MCI0 and the DMs’ risk attitude ϕ are
predetermined. Sometime these requirements are too difficult for decision makers. Moreover, we do
not present the proposed algorithm for solving GDM with incomplete IVIFPRs. Therefore, for future
research, under the current framework, we will focus on investigating the parameter values of the
consistency thresholds MCI0 and DMs’ risk attitude ϕ of IVIFPR as well as a consensus approach for
GDM with incomplete IVIFPRs.
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