
algorithms

Article

Towards the Verbal Decision Analysis Paradigm
for Implementable Prioritization
of Software Requirements

Paulo Alberto Melo Barbosa 1,2,* , Plácido Rogério Pinheiro 1

and Francisca Raquel de Vasconcelos Silveira 2

1 Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil;
placido@unifor.br

2 IT Department, Federal Institute of Ceará, Tianguá 62320-000, Brazil; raquel_silveira@ifce.edu.br
* Correspondence: pauloalbertomelobarbosa@gmail.com; Tel.: +55-88-99653-9467

Received: 18 September 2018; Accepted: 30 October 2018; Published: 3 November 2018
����������
�������

Abstract: The activity of prioritizing software requirements should be done as efficiently as
possible. Selecting the most stable requirements for the most important customers of a development
company can be a positive factor considering that available resources do not always encompass
the implementation of all requirements. There are many quantitative methods for prioritization of
software releases in the field of search-based software engineering (SBSE). However, we show that it
is possible to use qualitative verbal decision analysis (VDA) methods to solve this type of problem.
Moreover, we will use the ZAPROS III-i method to prioritize requirements considering the opinion
of the decision-maker, who will participate in this process. Results obtained using VDA structured
methods were found to be quite satisfactory when compared to methods using SBSE. A comparison
of results between quantitative and qualitative methods will be made and discussed later. The results
were reviewed and corroborated with the use of performance metrics.

Keywords: verbal decision analysis; multi-objective optimization; software release planning;
ZAPROS III-i

1. Introduction

Decision-making is one of the required tasks of a software manager. A decision-maker (DM) and
team is expected to recognize and select the best alternatives, taking into account technical and human
factors (e.g., experience and perceptions). The preferences for the alternatives and available criteria
should lead the decision to an expected and satisfactory goal. One branch of software engineering
is linked to the manufacture of tools and methods that facilitate decision-making of the software
manager. The area that produces automatic, semi-automatic, interactive, and others methods is
known as search-based software engineering (SBSE), in which search-based optimization is applied to
software engineering. This approach to software engineering has proved to be successful and generic,
and has been a sub-field of software engineering for ten years [1]. SBSE seeks to reformulate software
engineering problems as ‘search problems’ [1,2]. Notably, this is not to be confused with textual or
hypertextual searching. Instead, search-based software engineering defines a search problem as one in
which optimal or near-optimal solutions are sought in a search space of candidate solutions, guided by
a fitness function that distinguishes between better and worse solutions [3].

The techniques found in search-based software engineering can solve many optimization problems
related to the area of software engineering, as well as help in support of the decision-maker. Algorithms
known as metaheuristics can be used to find satisfactory solutions in a set of data. Metaheuristics can

Algorithms 2018, 11, 176; doi:10.3390/a11110176 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-7330-1088
https://orcid.org/0000-0002-1718-1712
http://www.mdpi.com/1999-4893/11/11/176?type=check_update&version=1
http://dx.doi.org/10.3390/a11110176
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 176 2 of 20

easily incorporate new constraints and explore regions of a set in an attempt to achieve local optimality.
Although these cannot guarantee global optimality, they can identify numerous local options.

On the other hand, problems of software engineering often involve conflicting constraints,
involving ambiguous and imprecise information within a broad set of choices or decisions. Solving
these problems is a complex task if there is no obvious optimal solution [4]. If we consider a set of
requirements for composing multiple constraints, the sequences of input requirements for this problem
may be too numerous. Further, the solutions’ compositions must comply with constraints such as
customer satisfaction, time, and cost, among others [5].

The releases model, derived from incremental software development, allows customers to receive
portions of the software in advance [6]. A problem faced by companies developing and maintaining
large and complex software systems developed for large and diverse customers is to determine what
requirements will be implemented in the next software release [7]. The more complex the software,
the longer the time required to arrive at a satisfactory result concerning the planning of releases [8].

It is essential that requirements are selected and prioritized to take effect in the most efficient way
possible. Requirements changes are often the primary factor in increasing time and cost in software
development projects. Therefore, selecting and prioritizing requirements while taking into account
their degree of stability can increase the effectiveness of the entire software development process.
Volatile requirements are considered a factor that can cause significant difficulties during software
development, because these requirements may change throughout the project implementation. In this
way, changes in features are expected, which can cause problems for the software development
company [9].

As seen by the extensive coverage in the literature, software requirements planning problems are
readily solved by SBSE. Deciding which requirements will be implemented first is a decision problem
for the software manager, which can be solved using quantitative methods, such as metaheuristics.
However, the task of prioritizing also has a subjective bias related to the decision-maker’s experience.
In this scenario, verbal decision analysis (VDA) may appear as an alternate option to work around
these issues. It must be emphasized that verbal decision analysis is a subjective method widely used to
solve the qualitative problems inherent to personal preference.

In addition, addressing next release issues can be a relatively complex task for the decision-maker,
as finding a satisfactory solution may involve consideration of several factors, such as technical
precedence, available resources and risk. Predictably, this effort requires time and skill from the
decision-maker, especially if the problem contains many requirements and constraints. Software
release planning requires social values that are transversal to the task at hand, such as an intuitive
ability and good communication from those involved in planning. Thus, the experience of the
decision-maker is an extremely important factor in this task and taking it into account reveals another
bias in the process of assembling software releases. Subjective aspects may include preferences of the
decision-maker to allocate to certain teams, to focus on requirements that can be implemented more
quickly, or for particular aspects inherent in his field of experience.

The problems of the planning of releases are mostly multi-objective, and therefore, the solution is
almost always composed of a family of solutions located at the Pareto front that must be considered
equivalent [10]. The evaluated multi-objective approach consists of treating human preferences as
an object to be maximized, in addition to maximizing overall client satisfaction and minimizing the
project risk [11]. Multi-objective optimization addresses optimization problems that have multiple
objective functions to be simultaneously maximized or minimized. The VDA method is structured on
the assurance that most decision-making problems can be qualitatively described, and supports the
decision-making process by the verbal representation of problems. Although the decision-maker’s
ability to choose is dependent on the occasion and stakeholder interests, methods of decision-making
support are universal [12]. The literature includes several methods based on VDA that help the
decision-maker to choose, given multiple criteria, a set of alternatives that might best meet their
personal preferences [12].

Algorithms 2018, 11, 176 3 of 20

Therefore, in the context of planning and ordering software releases, the objective of this work
is to compare the results obtained by metaheuristics (with SBSE quantitative methodology) with the
results obtained by methods of verbal decision analysis (with qualitative methodologies). We also
propose a new methodology to solve requirement prioritization problems in software releases using
VDA methods.

Barbosa [13,14] presented a version of this research that achieved good results. A solution
generated by VDA aligned with those generated by metaheuristics and was very close to
solutions generated by SBSE when compared to the Pareto front. This work improved previous
research, updating the Non-dominated Sorting Genetic Algorithm II (NSGA-II), Strength Pareto
Evolutionary Algorithm 2 (SPEA-2) and MultiObjective Cellular genetic algorithm (MOCell)
metaheuristics, considering that more experienced decision-makers would solve this type of problem.
These improvements will be discussed further later. A generational distance (GD) metric was also
devised [15] to make it easier to understand and compare generated results. The objectives of this
change were to achieve suitable accuracy and to improve validation of overall results. Such objectives
are necessary to improve this technique, using VDA as a means to solve problems common to
metaheuristics. New instances were also generated and evaluated by this research.

The methodology adopted in this work provides the decision-maker of a software development
project with an alternative approach to a software release planning problem, indicating the best order of
implementation of software requirements, taking into account technical aspects (e.g., implementation
cost and technical precedence between requirements) and human aspects (e.g., technical knowledge
and experience).

2. Verbal Decision Analysis

Verbal decision analysis (VDA) proposes systematic analysis and support of decisions based on
verbal factors and a qualitative analysis of attributes, as opposed to the quantitative methods that
are generally used. Therefore, no numerical conversions are performed. VDA comprises a set of
several methods for classifying and ordering alternatives, which consider multiple criteria in solving
problems [16]. Figure 1 shows the VDA methods for classification and ordering.

Algorithms 2018, 11, x FOR PEER REVIEW 3 of 21

VDA that help the decision-maker to choose, given multiple criteria, a set of alternatives that might

best meet their personal preferences [12].

Therefore, in the context of planning and ordering software releases, the objective of this work

is to compare the results obtained by metaheuristics (with SBSE quantitative methodology) with the

results obtained by methods of verbal decision analysis (with qualitative methodologies). We also

propose a new methodology to solve requirement prioritization problems in software releases using

VDA methods.

Barbosa [13,14] presented a version of this research that achieved good results. A solution

generated by VDA aligned with those generated by metaheuristics and was very close to solutions

generated by SBSE when compared to the Pareto front. This work improved previous research,

updating the Non-dominated Sorting Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary

Algorithm 2 (SPEA-2) and MultiObjective Cellular genetic algorithm (MOCell) metaheuristics,

considering that more experienced decision-makers would solve this type of problem. These

improvements will be discussed further later. A generational distance (GD) metric was also devised

[15] to make it easier to understand and compare generated results. The objectives of this change

were to achieve suitable accuracy and to improve validation of overall results. Such objectives are

necessary to improve this technique, using VDA as a means to solve problems common to

metaheuristics. New instances were also generated and evaluated by this research.

The methodology adopted in this work provides the decision-maker of a software development

project with an alternative approach to a software release planning problem, indicating the best

order of implementation of software requirements, taking into account technical aspects (e.g.,

implementation cost and technical precedence between requirements) and human aspects (e.g.,

technical knowledge and experience).

2. Verbal Decision Analysis

Verbal decision analysis (VDA) proposes systematic analysis and support of decisions based on

verbal factors and a qualitative analysis of attributes, as opposed to the quantitative methods that

are generally used. Therefore, no numerical conversions are performed. VDA comprises a set of

several methods for classifying and ordering alternatives, which consider multiple criteria in solving

problems [16]. Figure 1 shows the VDA methods for classification and ordering.

Figure 1. Verbal decision analysis (VDA) methods for classification and ordering [17]. Figure 1. Verbal decision analysis (VDA) methods for classification and ordering [17].

Furthermore, verbal decision analysis has excellent applicability to problems that present a
considerable number of alternatives and a relatively small set of criteria and their values. The methods

Algorithms 2018, 11, 176 4 of 20

that make up the VDA framework have many features and benefits [18], among which we highlight
the following:

(i) Its purpose is to describe the problems, and VDA methods use language that is natural for
the decision-maker;

(ii) Methods use the verbal information to induce preferences, which allows them to implement
psychologically valid measures from the decision-maker’s viewpoint;

(iii) Methods include steps to process inconsistent entries in decision-maker preferences, such as
consistency checks and criteria independence;

(iv) Methods use transparent procedures from the decision-maker’s viewpoint;
(v) They allow us to review the preferences that were given and the means of generating the result,

providing explanations about the results generated.

The application of these methods and, in particular, the ZAPROS method, to a given problem
presents a significant amount of solution possibilities. However, this is due to the numerous
combinations of criteria values to generate situations to be analyzed, which, at the end of the process,
refer to the decision rule. This high number of combinations can complicate the stages of preference
elicitation and comparison of alternatives such that it would be impossible to perform them manually.

Estimation of the number of unparalleled alternatives (and consequently of the decision power of
the method) can be made by calculating the general number of alternative pairs Q = 0.5nN(nN − 1

)
(where N is the number of criteria and n is the number of criteria values) and the subset that will be
related by Pareto dominance (D). From the difference between Q and D, we have the set of alternatives
that depends directly on the scale of preferences obtained by the answers of the decision-maker; this is
the set that is more likely to contain opposite pairs of alternatives. Then, we have the decision power
index of a method by means of the calculation P = 1− S

B , where B is the difference between Q and
D, and S is the number of alternatives that cannot be compared based on the preference scale of the
decision-maker, or which represent incomparable alternatives [19].

3. The ZAPROS III-i Method

The project manager has among his activities the role of making decisions. To come up with
a solution, he has a set of alternatives to choose from. Each alternative has its own characteristics
and, in some cases, these may be common to other alternatives. The use of methodologies that
support the decision-maker can minimize possible negative impacts caused by wrong decisions due
to poor choice of alternatives [20]. VDA aims to provide such support by presenting alternatives
to the decision-maker in friendly language and in the most human way as possible. There are
many methods within VDA that operate in such a manner. Among these is the ZAPROS III
method [20], which provides a more consistent process of eliciting preferences compared with previous
methods [20]. It structures preferences of values as the distances between the evaluations of two
criteria, denominated quality variations (QV). In addition, it uses the formal index of quality (FIQ)
to order established alternatives and minimize the number of pairs of alternatives to be compared to
obtain a solution [21]. Some alternatives may be unmatched, and this leads to unsatisfactory results in
decision-making models. Thus, the ZAPROS III-i method was devised, amending ZAPROS III slightly
in the process of comparing alternatives to improve the decision method [21]. The use of the ZAPROS
III-i methodology as a means to solve problems of ordering software requirements shows promise,
since this method considers, in addition to the factors described in the previous section, the opinion of
the project manager.

ZAPROS III-i consists of a VDA method that aims at sorting alternatives in scenarios involving a
reduced set of criteria and values and a large number of alternatives. The method relies on obtaining
preferences around values that represent the distances between two criteria judgments. A preference
scale can be structured, allowing the comparison of alternatives [17].

Algorithms 2018, 11, 176 5 of 20

As explained in [17], the ZAPROS III-i method is structured in three stages: problem formulation,
elicitation of preferences, and comparison of alternatives. In the first step, criteria and their values
relevant to the decision-making process are obtained. In the second step, the preference scale based on
the preference of the decision-maker is generated. This process occurs in two stages: (i) elicitation of
preferences for quality variation of the same criterion, and (ii) preference elicitation between pairs of
criteria. In the last step, a comparison is made between the alternatives based on the preferences of the
decision-maker. For details on the procedure, see [17].

The method follows the same formal statement of the problem proposed in [19,20]:
Given:
1. K = 1, 2, ..., N, representing a set of N criteria;
2. nq represents the number of possible values on the scale of q-th criterion, (q ∈ K);

for ill-structured problems, as in this case, usually nq ≤ 4;
3. Xq = {xiq} represents a set of values for the q-th criterion, and this set is the scale of this criterion;

|Xq| = nq (q ∈ K), where the values of the scale are ranked from best to worst, and this order does not
depend on the values of other scales;

4. Y = X1 × X2 × . . . × Xn represents a set of vectors yi (every possible alternative: hypothetical
alternatives + real alternatives) in such a way that yi = (yi1; yi2; . . . ; yiQ), and yi ∈ Y, yiq ∈ Xq and
Q = |Y|, such that |Y| = ∏Q

q=1 nq

5. A = {ai} ∈ Y, i = 1, 2, ..., t such that the set of t vectors represents the description of the
real alternatives.

Required are the ranks of multi-criteria alternatives based on the decision-maker preferences.
The flowchart with steps to apply the ZAPROS III-i method to rank a set of alternatives was

presented in [17] and is shown in Figure 2. In the first stage, problem formulation, the relevant criteria
and their values are obtained through the decision-making process. In the second stage, elicitation of
preferences, the preference scale is generated based on the decision-maker’s preference. As mentioned,
this stage occurs in two steps: (i) elicitation of preferences for quality variation of the same criterion,
and (ii) elicitation of preferences between pairs of criteria. In the last stage, comparison of alternatives,
the alternatives are compared based on the decision-maker’s preferences.Algorithms 2018, 11, x FOR PEER REVIEW 6 of 21

Figure 2. Procedure to apply ZAPROS III-i Method [17].

In the elicitation of preferences stage, decision-maker responses allow ranking of all quality

variations (QV) from the scales of two criteria. This ranking is called the joint scale of quality

variation (JSQV) for two criteria. All criteria are submitted to the same process. Finally, the scale of

preferences for quality variations (JSQV) for all criteria is constructed [17].

As an example of the flow diagram shown in Figure 2, we briefly show that the task of eliciting

the preferences of the decision-maker consists of comparing all the quality variations (QV) obtained

on a two-criteria scale by means of questions to him. After obtaining all the QV’s, a joint result is

obtained and the JSQV is obtained, e.g., c1 < a1 < b1 < a2 < b2 < c2 < a3 < b3 < c3. Since each criterion

has a set of alternatives (Y1 = {A1, B2, C2} and Y2 = {A2, B1, C2}), we can compare these alternatives

with respect to JSQV and obtain a FIQ for each of these alternatives, e.g., Y1 = 3 and Y2 = 9. In this

example, Y1 is more preferable than Y2. A more consistent explanation can be found in [17].

As can be seen, VDA has many techniques. ZAPROS III-i was adopted in this work because it

has a method that was developed for VDA and generates a ranking of very good alternatives.

To facilitate the decision-making process and to carry it out consistently, a tool called ARANAÚ

was developed [22]. The tool was first developed to support the ZAPROS III method. In this work,

we use an updated version of the ZAPROS III-i method. The ARANAÚ tool serves as a means of

data entry and facilitates the methodology of this work because it has the ZAPROS III-i method

incorporated into it.

4. Prioritize Software Requirements

Bagnall [7] deals with the determination of the requirements that must be executed for the next

release of the software. The author predicts that customers have different levels of importance to the

company and points out the requirements that have prerequisites and that must be performed in a

previous or parallel release to that being implemented. The algorithms applied in this strategy can

be used to obtain quick solutions to small problems.

Greer [23] states that defining the release in which the requirement is delivered is a decision

that depends on several variables that have a complex relationship. They deal with different

stakeholder perspectives, release plans, and constraints.

We consider here that stakeholders involve different levels (administrator, CEO, etc.) of clients

of the client company. These stakeholders have different levels of importance when viewed from the

Figure 2. Procedure to apply ZAPROS III-i Method [17].

In the elicitation of preferences stage, decision-maker responses allow ranking of all quality
variations (QV) from the scales of two criteria. This ranking is called the joint scale of quality variation

Algorithms 2018, 11, 176 6 of 20

(JSQV) for two criteria. All criteria are submitted to the same process. Finally, the scale of preferences
for quality variations (JSQV) for all criteria is constructed [17].

As an example of the flow diagram shown in Figure 2, we briefly show that the task of eliciting
the preferences of the decision-maker consists of comparing all the quality variations (QV) obtained on
a two-criteria scale by means of questions to him. After obtaining all the QV’s, a joint result is obtained
and the JSQV is obtained, e.g., c1 < a1 < b1 < a2 < b2 < c2 < a3 < b3 < c3. Since each criterion has a
set of alternatives (Y1 = {A1, B2, C2} and Y2 = {A2, B1, C2}), we can compare these alternatives with
respect to JSQV and obtain a FIQ for each of these alternatives, e.g., Y1 = 3 and Y2 = 9. In this example,
Y1 is more preferable than Y2. A more consistent explanation can be found in [17].

As can be seen, VDA has many techniques. ZAPROS III-i was adopted in this work because it has
a method that was developed for VDA and generates a ranking of very good alternatives.

To facilitate the decision-making process and to carry it out consistently, a tool called ARANAÚ
was developed [22]. The tool was first developed to support the ZAPROS III method. In this work,
we use an updated version of the ZAPROS III-i method. The ARANAÚ tool serves as a means of
data entry and facilitates the methodology of this work because it has the ZAPROS III-i method
incorporated into it.

4. Prioritize Software Requirements

Bagnall [7] deals with the determination of the requirements that must be executed for the next
release of the software. The author predicts that customers have different levels of importance to the
company and points out the requirements that have prerequisites and that must be performed in a
previous or parallel release to that being implemented. The algorithms applied in this strategy can be
used to obtain quick solutions to small problems.

Greer [23] states that defining the release in which the requirement is delivered is a decision that
depends on several variables that have a complex relationship. They deal with different stakeholder
perspectives, release plans, and constraints.

We consider here that stakeholders involve different levels (administrator, CEO, etc.) of clients
of the client company. These stakeholders have different levels of importance when viewed from the
software developer’s point of view. A CEO stakeholder will surely have requirements of his particular
interest implemented and delivered faster than any other employee of the client company.

In allocating requirements, it is important to note that we must also consider the resources that
will be needed to implement those requirements.

It is difficult to meet all the requirements identified for a system, mainly due to time and budget
constraints. Requirements are usually developed in stages and prioritization helps to define which
should be implemented first [24].

According to Karlsson [25], the requirements must be allocated in different versions of the software
and, for Berander [26], the “correct” selection of the requirements that will be part of each version is
the primary step towards the success of a project or product. Therefore, it is necessary to distinguish
those that will have the most significant impact on user satisfaction.

In addition to the factors already seen, other aspects, such as volatility, can impact the prioritization
of requirements. Considerable effort is required to select and prioritize volatile requirements.
This type of requirement is generally considered an undesirable problem. Previous studies have
already identified that their characteristics may produce adverse impacts on software development
processes [27]. For example, a study by Curtis [28] indicates that volatile requirements correspond to a
significant portion of the problems faced by software development companies.

Nurmuliani [27] conducted a real study in a software development company to identify the causes
of volatility in requirements and the impact of this on company projects. In descending order, the
author considered that the most significant changes in requirements are due to: (a) inclusion of new
requirements in the system, (b) exclusion of requirements and (c) modification of the characteristics of
the requirements.

Algorithms 2018, 11, 176 7 of 20

Bagnall [7] proposed a challenge called the next release problem, which the author, a pioneer
in this field of research, presents as a search of the characteristics that should be chosen given the
variables, dependencies between requirements and priority of requirements. Figure 3 shows that
the requirements r(n), where r represents the requirement id, are associated with clients (n), where n
represents the customer id.

Algorithms 2018, 11, x FOR PEER REVIEW 7 of 21

software developer’s point of view. A CEO stakeholder will surely have requirements of his

particular interest implemented and delivered faster than any other employee of the client company.

In allocating requirements, it is important to note that we must also consider the resources that

will be needed to implement those requirements.

It is difficult to meet all the requirements identified for a system, mainly due to time and budget

constraints. Requirements are usually developed in stages and prioritization helps to define which

should be implemented first [24].

According to Karlsson [25], the requirements must be allocated in different versions of the

software and, for Berander [26], the “correct” selection of the requirements that will be part of each

version is the primary step towards the success of a project or product. Therefore, it is necessary to

distinguish those that will have the most significant impact on user satisfaction.

In addition to the factors already seen, other aspects, such as volatility, can impact the

prioritization of requirements. Considerable effort is required to select and prioritize volatile

requirements. This type of requirement is generally considered an undesirable problem. Previous

studies have already identified that their characteristics may produce adverse impacts on software

development processes [27]. For example, a study by Curtis [28] indicates that volatile requirements

correspond to a significant portion of the problems faced by software development companies.

Nurmuliani [27] conducted a real study in a software development company to identify the

causes of volatility in requirements and the impact of this on company projects. In descending order,

the author considered that the most significant changes in requirements are due to: (a) inclusion of

new requirements in the system, (b) exclusion of requirements and (c) modification of the

characteristics of the requirements.

Bagnall [7] proposed a challenge called the next release problem, which the author, a pioneer in

this field of research, presents as a search of the characteristics that should be chosen given the

variables, dependencies between requirements and priority of requirements. Figure 3 shows that the

requirements r(n), where r represents the requirement id, are associated with clients (n), where n

represents the customer id.

.

Figure 3. Representation of the requirements associated with customers [7].

The problems faced by search-based software engineering (SBSE) are usually solved through

metaheuristics. According to Becceneri [29], metaheuristics are a general algorithmic tool, which can

be applied to different optimization problems, with relatively small modifications, to make them

adaptable to a specific problem. Thus, we can consider metaheuristics as heuristic procedures that

have generic strategies for escaping from good locations. Metaheuristics can easily incorporate new

constraints and explore regions of a set in an attempt to overcome local optimality. Although they

cannot guarantee an optimal point, they can identify several suitable options..

Figure 3. Representation of the requirements associated with customers [7].

The problems faced by search-based software engineering (SBSE) are usually solved through
metaheuristics. According to Becceneri [29], metaheuristics are a general algorithmic tool, which can
be applied to different optimization problems, with relatively small modifications, to make them
adaptable to a specific problem. Thus, we can consider metaheuristics as heuristic procedures that
have generic strategies for escaping from good locations. Metaheuristics can easily incorporate new
constraints and explore regions of a set in an attempt to overcome local optimality. Although they
cannot guarantee an optimal point, they can identify several suitable options.

In the literature, several surveys [30–32] use SBSE methods to solve software release planning
problems. Brasil [33] developed an approach that uses a multi-objective mathematical optimization
formulation for the problem of release planning considering the following factors: (a) customer
satisfaction, (b) prioritization, (c) business value, (d) risks, (e) resources, and (f) technical precedence.
The proposed approach aimed at (a) maximizing customer satisfaction by prioritizing the most
important requirements to the customer, and (b) minimizing project risks by first implementing the
highest risk requirements and having as constraints the time, cost and precedence limits of each
requirement. As a result of this multi-criteria approach, a random strategy employed was surmounted
by metaheuristics. Therefore, metaheuristics have generated better solutions considering the objectives,
which corroborates the use of these approaches.

Our work proposes to prioritize software requirements in the order in which they will be
implemented using a VDA method. In the literature, we can find several problems solved by VDA in
other areas of performance, such as [34–38], but the use of VDA to solve the problem of the next release
does not appear to be common. This leads to the search for satisfactory results in this research that,
based on the characteristics of several methods [18], chooses and uses the ZAPROS III-i method [16].

The results will be compared with those obtained when using the metaheuristics (quantitative
methods) MOCell [39], NSGA-II [40] and SPEA2 [41]. The metaheuristics used here are different from
those used in Barbosa [13,14], because they have subsequently been discussed and have evolved into
their current versions. Updating the most recent versions available for these metaheuristics brings an
improvement in the results obtained by these solutions. The choice of multicriteria resolution methods
among those available owes to the characteristics of the problem in question. To help validate the

Algorithms 2018, 11, 176 8 of 20

resulting information, we can insert a random search algorithm, which does not offer any specific
search methodology.

The methodology adopted in this work is represented in Figure 4. We will emphasize in detail the
methodology used by VDA to solve the proposed problem. Later we will comment on the results of
the solutions obtained by the metaheuristics of SBSE.

Algorithms 2018, 11, x FOR PEER REVIEW 8 of 21

In the literature, several surveys [30–32] use SBSE methods to solve software release planning

problems. Brasil [33] developed an approach that uses a multi-objective mathematical optimization

formulation for the problem of release planning considering the following factors: (a) customer

satisfaction, (b) prioritization, (c) business value, (d) risks, (e) resources, and (f) technical precedence.

The proposed approach aimed at (a) maximizing customer satisfaction by prioritizing the most

important requirements to the customer, and (b) minimizing project risks by first implementing the

highest risk requirements and having as constraints the time, cost and precedence limits of each

requirement. As a result of this multi-criteria approach, a random strategy employed was

surmounted by metaheuristics. Therefore, metaheuristics have generated better solutions

considering the objectives, which corroborates the use of these approaches.

Our work proposes to prioritize software requirements in the order in which they will be

implemented using a VDA method. In the literature, we can find several problems solved by VDA in

other areas of performance, such as [34–38], but the use of VDA to solve the problem of the next

release does not appear to be common. This leads to the search for satisfactory results in this

research that, based on the characteristics of several methods [18], chooses and uses the ZAPROS

III-i method [16].

The results will be compared with those obtained when using the metaheuristics (quantitative

methods) MOCell [39], NSGA-II [40] and SPEA2 [41]. The metaheuristics used here are different

from those used in Barbosa [13,14], because they have subsequently been discussed and have

evolved into their current versions. Updating the most recent versions available for these

metaheuristics brings an improvement in the results obtained by these solutions. The choice of

multicriteria resolution methods among those available owes to the characteristics of the problem in

question. To help validate the resulting information, we can insert a random search algorithm,

which does not offer any specific search methodology.

The methodology adopted in this work is represented in Figure 4. We will emphasize in detail

the methodology used by VDA to solve the proposed problem. Later we will comment on the results

of the solutions obtained by the metaheuristics of SBSE.

Figure 4. The methodology adopted in this work.

5. Problem Generation

In this work, we are dealing with empirical problems of prioritization of requirements.

Therefore, we seek to match as closely as possible the scenario faced by companies that develop

software. The mathematical formulation for the elaboration of the strategy to be studied can be

elaborated as follows:

���������(�) = ∑ �� × ��
�
��� , (1)

��������������(����) = ∑ (�� × ����
�) × �

��� ��, (2)

Subject to:

Figure 4. The methodology adopted in this work.

5. Problem Generation

In this work, we are dealing with empirical problems of prioritization of requirements. Therefore,
we seek to match as closely as possible the scenario faced by companies that develop software.
The mathematical formulation for the elaboration of the strategy to be studied can be elaborated as
follows:

Max fVALUE(y) = ∑N
i=1 Si × yi, (1)

Min fVOLATILITY

(
xPos

)
= ∑N

i=1

(
Bi × xPos

i

)
× yi, (2)

Subject to:
N

∑
i=1

costi × yi ≤ R (3)

xPos
i < xPos

j (4)

Function 1—Max fVALUE(y) objective of maximizing customer satisfaction and aggregate business

value (Si), where the score Si =
W
∑

m=1
wm×Value (m, i) expresses the business value to the requirement

ri. In this way, and considering the importance Value (m, i), with which the client wm associates a
requirement ri, the function adds more value as more requirements are selected. Therefore, the most
important requirements (M) and those which may be implemented yi (explained in function 3) are
selected for implementation, from the point of view of the most important customers.

Function 2—Represents the degree of stability B of the project requirements i, through the
advanced implementation of the requirements considered to be more stable. This function calculates
the product between the stability of the requirement and the position to which it was allocated.
The variable xPos

i represents the position of the requirement (ri), being able to assume a value of
{0, 1, 2, . . . N}, in the order of implementation established by the prioritization, for i = 1, 2, . . . N,
where 1 indicates that the requirement has higher priority in relation to the others. Thus, a smaller
value of the function indicates that requirements with greater stability were prioritized. In this way,
this function maximizes the degree of stability among the project requirements, first implementing the
requirements with greater aggregate stability.

Strategy constraints are presented in Equations 3 and 4, explained as follows:
Function 3—Represents the cost constraint of implementing the requirements to the available

budget R, where the variable yi indicates whether the requirement ri will be implemented (yi = 1)

Algorithms 2018, 11, 176 9 of 20

or not (yi = 0), to i = 1, 2, . . . N. Since the total cost to fully implement the project may be greater
than the amount of resources available, then some requirements may not be implemented. Thus, it is
important to implement the most important requirements for the most important customer of the
software developer company.

Function 4—Represents the constraint of precedence between the requirements, where in the case
presented above, ri technically precedes rj. If a requirement ri precedes a requirement rj, then ri must
be implemented before rj

(
xPos

i < xPos
j
)
.

The generation of these scenarios occurred through the software generation of files with the data
configured within the parameters described in the previous paragraphs. The problem settings (number
of clients, available budget, technical precedence, etc.) are similar to previous searches, but the data
contained in the files were regenerated for this job.

As described in the literature [13,14], the VDA methodology has a natural limitation regarding
the number of criteria. As we are considering a criterion here as a software requirement, which has a
series of characteristics, we have to adapt to the VDA model. Therefore, we consider that each problem
generated has 20 software requirements.

In addition, we consider the number of customers who are interested in the project to be seven.
Among these seven clients, each one of them has an importance for the technology company software
developer. Some clients (managers, CEO) may be more important than others. This is taken into
account. We also consider that each of these clients may have a preference for a set of requirements
that, for example, are inherent to their professional activities in the client company. To generate a more
realistic problem to make the process challenging, we consider that the amount of resources available is
between 70% and 80% of the total value needed to implement the 20 requirements, where each of these
20 has an estimated individual value. Logically the sum of these values corresponds to the estimated
overall project execution value. With a tight budget, there is a need to implement the more stable
requirements. Furthermore, this is a small guarantee that the more stable, the less prone to change
it will be throughout the implementation process, thus ensuring more efficient resource spending.
Therefore, implementing stable requirements first appears as an advantage to the IT company, and we
consider this stability as a sorting criterion. As is also known, requirements have technical precedence
between them. This characteristic was considered in this work and, as shown in Figure 4, is the first
step in the methodology discussed here. The representation of the simulations generated for these
situations is shown in Table 1.

Table 1. Representation of the variants for the problems generated [14].

File
Description

No. of
Requirements

No. of
Clients

Percentage of Technical Precedence
between the Requirement

Budget Available
for the Project

File 1 20 7 10% 70%
File 2 20 7 10% 80%
File 3 20 7 20% 70%
File 4 20 7 20% 80%

The configurations presented in Table 1 were based on the situational workflow of companies
developing small software that have several requirements with technical precedence and a tight budget.
The data that each of the four files contains are empirical simulations, but they try to demonstrate the
reality of these companies.

Following the methodology of Figure 4, sessions 6 and 7 follow parallel runs of the tests in the
experiments from the previous sessions.

6. Use of the VDA Methodology

For the application of the decision-making process, the ARANAÚ support tool was used. This tool
gives graphical support to the use of the ZAPROS III-i methodology throughout the completion of the
project data that is required.

Algorithms 2018, 11, 176 10 of 20

To arrive at a useful classification using ARANAÚ, we follow these steps: (a) identification of the
alternatives; (b) definition of the criteria and the criteria values; and, (c) the ARANAÚ tool application.

6.1. Alternatives

Initially, we considered for the set of alternatives the 20 requirements of the software project
generated by Table 1. Note that this table generated four variants. We will use them all in
essays separately.

6.2. Definition of the Criteria and the Criteria Values

Since the generation of alternatives occurred in a quantitative format, we have numerical values
ranging from a minimum to a maximum. For example, for the cost of a requirement, we have values
between 10 and 20, where 10 represents the minimum cost added to a requirement and 20 the maximum
value. Thus, it is necessary to convert these numerical values to a format that ranges from the term
‘low cost’ to the term ‘high cost’, as shown in Table 2.

In order to ensure compatibility between quantitative and qualitative methods, conversion was
necessary. For example, if an alternative (also called here requirement 01) has, in the quantitative model,
value 04 as a parameter to determine its cost, with 01 being the lowest cost and 04 the highest cost,
then in the qualitative model we can state that the requirement 01 has “a high financial value needed
to be implemented”. This is due to the fact that the basis of the qualitative model (VDA) is natural
language, so it was necessary for the quantitative problem to be adapted to the qualitative method.
Thus, in VDA language the requirement 01, for example, has a “criteria” (in quantitative language we
can call this a “characteristic”) called cost, a “criteria” called stability, etc. Table 2 shows the definitions
of VDA criteria adopted in this work as well as their possible values in natural language. In this way,
we can define and evaluate the criteria to be used in ARANAÚ. It is important to emphasize that the
term “criteria” used in Table 2 deals with the characteristics that the requirements can have.

Table 2. Criteria and values of criteria adopted [14].

Criteria Criteria Values

1 Cost
1.1 Requirement has low cost
1.2 Cost of the requirement is reasonable
1.3 Cost of the requirement is high

2 Stability
2.1 The requirement will hardly change
2.2 The requirement may change
2.3 The requirement will change

3 Stakeholders
3.1 The stakeholder is significant
3.2 The stakeholder has partial and isolated importance
3.3 The stakeholder is of little importance

4 Customer requirement value 4.1 The requirement is of great value to the customer
4.2 The requirement is of low importance to the customer

6.3. The ARANAÚ Tool Application

With all the values of the files, represented in Table 1, defined and converted to the criteria
presented in Table 2, we can make use of the ARANAÚ tool.

Application of Questionnaire

We invited 12 professionals related to the areas of requirements management, software
engineering or management of software projects to participate in this research. The average experience
was 1 year. Decision-makers have an average of 5 months more experience than those that were
invited [13,14]. Their requirements and characteristics were previously registered. An explanation was
given about the experiment and participants were informed about the experiment scope in terms of

Algorithms 2018, 11, 176 11 of 20

available resources, technical precedence, values of importance of the client and other configurations
(criteria) contained in each requirement of the set that comprises a file. Decision-makers might have a
researcher available to clarify probable questions. A form was developed and applied via the Web
containing the values of the requirements, such as implementation cost values, technical precedence,
importance of that requirement for a particular client, and stability values. Decision-makers chose the
preferences that best fitted the project’s already-defined goals (e.g., implementing the most important
requirements for the most important customers to the company, leaving the more volatile requirements
to last), objectives and constraints (e.g., costs, client importance and total project budget). After the
generated result, the participant was able to see the generated solution and evaluate it with a score
from 0 to 10 (where 0 is a minimum score and 10 is a maximum score). The mean time between the
application of the questionnaire until the evaluation of the obtained result was of 9 min.

In addition to being a limiting factor for ZAPROS III-i and the ARANAÚ tool, the implementation
of many alternatives (more than 20 requirements and all of their characteristics, for example) can make
the questioning process time-consuming and tiring.

As this is a multi-criteria problem, some conflict issues were presented to these professionals to
indicate the most feasible solution. The questions were elaborated on by the tool itself, taking into
account the information provided about the project and the requirements. Figure 5 shows the format
of the ARANAÚ application.Algorithms 2018, 11, x FOR PEER REVIEW 12 of 21

Figure 5. ARANAÚ Tool.

Here the decision-maker and his team decided what his preferences were when asked by the

tool that presents available solutions for a given context.

The subjectivity adopted by the VDA is expressed when the decision maker starts choosing

characteristics among the requirements that best fit the project at that moment; e.g., “is it better to

implement a requirement that has a high implementation cost but is valuable to an important

customer of the company?” or “for a very stable requirement, is it better to implement those that are

more expensive first or not?”. This last case is shown in Figure 5. All these subjective parameters

were considered before the ZAPROS III-i methodology generated a result.

SBSE uses similar approaches to this work, such as the one described in [42], in which these

problems are well solved. However, here we consider the adoption of a perspective that works with

VDA. The point of encounter between these fields in the problem of the next release is the key point

of this work.

7. Use of the SBSE Methodology

The metaheuristics NSGA-II, MOCell, and SPEA-2 presented previously, were applied to find

solutions to the problem. In addition to these, in this work we also used, as a reference, the

algorithms using a random search for the purposes of comparison and validation of the results

obtained by these algorithms and the metaheuristics.

In SBSE a metaheuristic must surpass a random algorithm in order to be considered adequate

[43]. The parameters of the algorithms were conceived with the tests of the search approaches for the

best solution to the problem. For this, the parameters described in Table 3 were defined.

Figure 5. ARANAÚ Tool.

Here the decision-maker and his team decided what his preferences were when asked by the tool
that presents available solutions for a given context.

The subjectivity adopted by the VDA is expressed when the decision maker starts choosing
characteristics among the requirements that best fit the project at that moment; e.g., “is it better to

Algorithms 2018, 11, 176 12 of 20

implement a requirement that has a high implementation cost but is valuable to an important customer
of the company?” or “for a very stable requirement, is it better to implement those that are more
expensive first or not?”. This last case is shown in Figure 5. All these subjective parameters were
considered before the ZAPROS III-i methodology generated a result.

SBSE uses similar approaches to this work, such as the one described in [42], in which these
problems are well solved. However, here we consider the adoption of a perspective that works with
VDA. The point of encounter between these fields in the problem of the next release is the key point of
this work.

7. Use of the SBSE Methodology

The metaheuristics NSGA-II, MOCell, and SPEA-2 presented previously, were applied to find
solutions to the problem. In addition to these, in this work we also used, as a reference, the algorithms
using a random search for the purposes of comparison and validation of the results obtained by these
algorithms and the metaheuristics.

In SBSE a metaheuristic must surpass a random algorithm in order to be considered adequate [43].
The parameters of the algorithms were conceived with the tests of the search approaches for the best
solution to the problem. For this, the parameters described in Table 3 were defined.

Table 3. Definition of metaheuristic parameters.

Algorithm Parameters Used

NSGA-II SPEA-2

• Initial population size: 250 individuals;
• Maximum number of evaluations: 100,000 (resulting in 400 generations);
• The probability of crossing: 0.9 (TwoPointsCrossover operator);
• The probability of mutation: 1.0 (SwapMutation operator);
• Selection using the binary turner method.

MOCell

• Initial population size: 256 individuals;
• External file size: 256;
• Maximum number of evaluations: 102,400 (resulting in 400 generations);
• Feedback mechanism: 20;
• Crossing rate: 0.9 (TwoPointsCrossover operator);
• Mutation rate: 1.0 (SwapMutation operator);
• Selection using the binary turner method.

Random Search • The maximum number of evaluations: 100,000.

The applications of metaheuristics under the proposed approach were carried out with the help
of the jMetal framework [44]. This tool, implemented in the Java language, provides support for the
construction of multi-objective metaheuristics. Each generated solution represents an average of 10
equally executed solutions. The results for SBSE metaheuristics will be discussed in the next session.
As the last step of the workflow presented in Figure 4, the comparison of results and discussion will
also follow.

8. Results and Discussion

The ARANAÚ tool resulted in a set of requirements ordered according to the order of
implementation, while respecting the criteria for each requirement and the choices made by the
decision-maker. Table 4 shows the ranking of requirements generated by the ARANAÚ tool for the

Algorithms 2018, 11, 176 13 of 20

problem File 3, where requirement 15, for example, will be the first to be implemented and requirement
3 will be the 20th if there is a resource available for such implementation.

Table 4. Ranking generated for the problem File 3.

Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Requirement 15 10 11 14 4 7 13 20 6 18 2 9 12 16 19 8 5 1 17 3

Figure 6 shows a graph of dominance among the alternatives of the set of prioritized requirements
for the problem File 3.

The results obtained from the four problems executed by the methods were extracted and
tabulated. Finding the set of non-dominated solutions is one of the premises of multi-objective
optimization. This set can be called the Pareto front. With this set, the decision-maker is able to choose
which of the solutions best meets their needs in the context of the project.

Due to the high disparity and the difference of scales between the results obtained by the
strategies, a normalization of the values of the solutions was applied in order to match the results.
After normalizing, the results were evaluated by the generational distance metric.

Algorithms 2018, 11, x FOR PEER REVIEW 14 of 21

Figure 6. Graph of dominance for the File 3.

Generational Distance (GD)

The Generational Distance (GD) metric [15] calculates the distance related to the convergence

between the Pareto front solutions of the current instance (�������) with respect to the actual Pareto

front (������) [45]. For each solution of ������� is calculated the smallest distance with respect to

the elements of ������, defined by:

�� = min�(||�����
�

− ������
� ||)�

In this metric, �� is multiplied by ��
��� , defining a weighting for the distance. The

normalization is obtained by the application (�� − ��)/(�� − ��). The metric is defined by:

������� = � ��
���

�

���

(
�� − ��

�� − ��

)

It is preferable for an algorithm to reach a low value for this metric. In Table 5, we compare the

results obtained in [13,14] with those obtained in this work. The lower the value presented, the closer

the obtained solution to the actual Pareto front. A value of 0 means that the solution is already part

of the real Pareto front. This occurs with the results from File 2. High values indicate that the

solution is away from the Pareto front and, therefore, is not a good solution. Due to the high

disparity and the difference of scales between the results obtained concerning the Pareto front, a

normalization of the values of the solutions was applied to match the results.

Figure 6. Graph of dominance for the File 3.

Generational Distance (GD)

The Generational Distance (GD) metric [15] calculates the distance related to the convergence
between the Pareto front solutions of the current instance (PFknown) with respect to the actual Pareto

Algorithms 2018, 11, 176 14 of 20

front (PFtrue) [45]. For each solution of PFknown is calculated the smallest distance with respect to the
elements of PFtrue, defined by:

di = minj(‖ f j
true − f i

known‖)2

In this metric, di is multiplied by eGER
i , defining a weighting for the distance. The normalization

is obtained by the application (di − f j)/
(

f j − f j

)
. The metric is defined by:

NDWDGER =
N

∑
i=1

eGER
i

di − f j

f j − f j

It is preferable for an algorithm to reach a low value for this metric. In Table 5, we compare the

results obtained in [13,14] with those obtained in this work. The lower the value presented, the closer
the obtained solution to the actual Pareto front. A value of 0 means that the solution is already part of
the real Pareto front. This occurs with the results from File 2. High values indicate that the solution is
away from the Pareto front and, therefore, is not a good solution. Due to the high disparity and the
difference of scales between the results obtained concerning the Pareto front, a normalization of the
values of the solutions was applied to match the results.

Table 5. Evaluation of the results obtained by GD metric.

File Previous Solutions [13,14] Current Solution

File 1 0.13112 0.04962
File 2 0.0 0.0
File 3 0.01026 0.00992
File 4 0.04743 0.01263

As shown in Table 5, the low values expressed by the GD metric demonstrate that the solutions
obtained by ZAPROS III-i in this work surpassed the results found in [13,14] in all the files, except
File 2. In the previous results, the File 2 solution was already part of the real Pareto front and, hence,
could not be further improved.

In addition, we can see in Figures 7–10, the result of the four experiments concerning Files 1, 2,
3 and 4 (summarized in Table 1), respectively. The graphical difference between the results obtained in
this and previous research is relatively small but, nonetheless, quite promising. The figures show the
executions of NSGA-II, SPEA2, MOCell, ZAPROS III-i, and the random search algorithm.

Algorithms 2018, 11, x FOR PEER REVIEW 15 of 21

Table 5. Evaluation of the results obtained by GD metric.

File
Previous

Solutions [13,14]

Current

Solution

File 1 0.13112 0.04962

File 2 0.0 0.0

File 3 0.01026 0.00992

File 4 0.04743 0.01263

As shown in Table 5, the low values expressed by the GD metric demonstrate that the solutions

obtained by ZAPROS III-i in this work surpassed the results found in [13,14] in all the files, except

File 2. In the previous results, the File 2 solution was already part of the real Pareto front and, hence,

could not be further improved.

In addition, we can see in Figures 7–10, the result of the four experiments concerning Files 1, 2, 3

and 4 (summarized in Table 1), respectively. The graphical difference between the results obtained

in this and previous research is relatively small but, nonetheless, quite promising. The figures show

the executions of NSGA-II, SPEA2, MOCell, ZAPROS III-i, and the random search algorithm.

Figure 7. The graph for File 1.

We can also observe in the figures five Pareto fronts, which are superimposed and

differentiated by color according to the legend. The graphs take into account the requirements,

importance criteria and the stability of the requirement. As already stated, the more stable

requirements are implemented first, the better for the developer company, which will make the most

of the available resource. However, an unstable (more volatile) requirement may be of significant

importance to a valued customer to the developer company. This would result in a different

situation. Figures 8 and 10 represent solutions to problems with 20 requirements, 7 customers

interested in this requirement and only 80% resource available to implement the software project.

Figure 8 presents 10% of technical precedence between requirements while Figure 10 presents 20%.

Similarly, Figures 7 and 9 represent solutions to problems that have the same number of

requirements and customers, but 70% of the available budget. The solution shown in Figure 7 has

10% of technical precedence, while the solution represented by Figure 9 has 20%.

Figure 7. The graph for File 1.

Algorithms 2018, 11, 176 15 of 20

We can also observe in the figures five Pareto fronts, which are superimposed and differentiated by
color according to the legend. The graphs take into account the requirements, importance criteria and
the stability of the requirement. As already stated, the more stable requirements are implemented first,
the better for the developer company, which will make the most of the available resource. However,
an unstable (more volatile) requirement may be of significant importance to a valued customer
to the developer company. This would result in a different situation. Figures 8 and 10 represent
solutions to problems with 20 requirements, 7 customers interested in this requirement and only 80%
resource available to implement the software project. Figure 8 presents 10% of technical precedence
between requirements while Figure 10 presents 20%. Similarly, Figures 7 and 9 represent solutions to
problems that have the same number of requirements and customers, but 70% of the available budget.
The solution shown in Figure 7 has 10% of technical precedence, while the solution represented by
Figure 9 has 20%.Algorithms 2018, 11, x FOR PEER REVIEW 16 of 21

Figure 8. The graph for File 2.

Figure 9. The graph for File 3.

Figure 8. The graph for File 2.

Algorithms 2018, 11, x FOR PEER REVIEW 16 of 21

Figure 8. The graph for File 2.

Figure 9. The graph for File 3. Figure 9. The graph for File 3.

Algorithms 2018, 11, 176 16 of 20
Algorithms 2018, 11, x FOR PEER REVIEW 17 of 21

Figure 10. The graph for File 4.

Many methods based on metaheuristics are used to solve this type of problem, with quite quite

similar solutions. The result obtained from ZAPROS III-i is represented by a single black dot in the

graphs. This point represents the only solution available to the decision-maker from the ARANAÚ

tool. The other algorithms do not provide a single solution, but a set of solutions.

The superiority of the results of metaheuristics relative to those pointed out by the

decision-maker can be proven in experiments [46]. However, although metaheuristics may present

better results, they do not represent the expressed will of the decision-maker as a whole. There are

several methodologies in SBSE that incorporate the desire of the decision-maker. A more consistent

explanation about this method of selection is given in [42]. The black dots shown in Figures 7–10

show that these are the best choices for the decision-maker, or the best solutions to the problem

given the decision-maker’s particularities and experience.

In general, when we compare these results with those of [13,14], we notice that there was an

improvement in three of the four solutions tested by the ZAPROS III-i method. Having more

experienced decision-makers responding to the questionnaires contributed to the improvement of

the VDA solution, in addition to the upgrade and improvement of the SBSE solutions.

As mentioned, at the end of the execution and following the derivation of the solutions of

ordered requirements, the decision-maker was asked to evaluate the solution generated by

ARANAÚ, where 0 is the worst score and 100 the best score. The average overall rating was 87

points. This is considered to be satisfactory when we consider that research in this field is taking its

first steps. Satisfactory human evaluations of the solutions generated by ZAPROS III-i is of great

importance for this research. The evaluation scores corresponding to each decision-maker and the

average are shown in Figure 11.

Figure 10. The graph for File 4.

Many methods based on metaheuristics are used to solve this type of problem, with quite quite
similar solutions. The result obtained from ZAPROS III-i is represented by a single black dot in the
graphs. This point represents the only solution available to the decision-maker from the ARANAÚ
tool. The other algorithms do not provide a single solution, but a set of solutions.

The superiority of the results of metaheuristics relative to those pointed out by the decision-maker
can be proven in experiments [46]. However, although metaheuristics may present better results,
they do not represent the expressed will of the decision-maker as a whole. There are several
methodologies in SBSE that incorporate the desire of the decision-maker. A more consistent explanation
about this method of selection is given in [42]. The black dots shown in Figures 7–10 show that these are
the best choices for the decision-maker, or the best solutions to the problem given the decision-maker’s
particularities and experience.

In general, when we compare these results with those of [13,14], we notice that there was
an improvement in three of the four solutions tested by the ZAPROS III-i method. Having more
experienced decision-makers responding to the questionnaires contributed to the improvement of the
VDA solution, in addition to the upgrade and improvement of the SBSE solutions.

As mentioned, at the end of the execution and following the derivation of the solutions of ordered
requirements, the decision-maker was asked to evaluate the solution generated by ARANAÚ, where 0
is the worst score and 100 the best score. The average overall rating was 87 points. This is considered
to be satisfactory when we consider that research in this field is taking its first steps. Satisfactory
human evaluations of the solutions generated by ZAPROS III-i is of great importance for this research.
The evaluation scores corresponding to each decision-maker and the average are shown in Figure 11.

Algorithms 2018, 11, 176 17 of 20

Algorithms 2018, 11, x FOR PEER REVIEW 18 of 21

Figure 11. The score of each decision-maker for the solution generated by ZAPROS III-i.

Moreover, this can significantly increase the time of enterprise production if we consider that

the project manager will not need to look at the other options to decide on the best. Relying on his

own criteria, informed by his professional experience, the solution presented by ZAPROS III-i is the

one that best applies to the business.

9. Conclusions

Software release planning is one of the most complex activities in the process of incremental

software development [47]. This article demonstrates a new methodology for solving software

release planning problems. This problem was developed for multi-objective search, where the

objectives are to maximize the satisfaction of stakeholders and to minimize problems of

reimplementation of volatile requirements. The efficiency of resource expenditure is increased

because the more stable requirements are implemented first. By using this methodology, project

managers have a range of options to increasingly customize the solutions generated and to minimize

wrong decisions.

Barbosa [13,14] corroborates the results of this research. The earlier study used ten requirements

and five clients interested in the project, and generated similar results to the present work, which

used 20 software requirements and seven interested customers. This also demonstrates that the

effectiveness of the method is maintained when the number of requirements, and consequently the

difficulty of finding a satisfactory solution, is increased. As was noted, although small changes and

updates were made to the algorithms used in this research, the data obtained were similar to those of

previous studies. The order of implementation was little modified. However, we infer that these

modifications would have an effect in the case of a large number of requirements of a software

project (e.g., 3000). However, VDA methods are impaired when we increase the number of

alternatives (i.e., requirements). This work provides a valuable contribution and incentive to

continue with this research working with projects of up to 20 requirements.

Automated methods can generate excellent solutions [48,49]. However, it is essential for the

software release planning process to consider the opinion of the decision-maker and her team, and

thus provide a solution in which they can participate and contribute to the process of comparing

alternatives.

A significant observation we can make is that methods structured in verbal decision analysis,

which consider qualitative analysis of attributes, can generate solutions to solve the problems of

allocation of software requirements that are currently resolved by SBSE. This work thus provides a

precedent for new research in the field, which has been little discussed in the literature until now.

In future work we will try to solve the limitations of the VDA—for example, the limitations of

criteria—to try to improve the solutions to larger problems. We may also seek other metaheuristics

with improved methodologies for comparison with any new results that we obtain.

Figure 11. The score of each decision-maker for the solution generated by ZAPROS III-i.

Moreover, this can significantly increase the time of enterprise production if we consider that the
project manager will not need to look at the other options to decide on the best. Relying on his own
criteria, informed by his professional experience, the solution presented by ZAPROS III-i is the one
that best applies to the business.

9. Conclusions

Software release planning is one of the most complex activities in the process of incremental
software development [47]. This article demonstrates a new methodology for solving software release
planning problems. This problem was developed for multi-objective search, where the objectives
are to maximize the satisfaction of stakeholders and to minimize problems of reimplementation of
volatile requirements. The efficiency of resource expenditure is increased because the more stable
requirements are implemented first. By using this methodology, project managers have a range of
options to increasingly customize the solutions generated and to minimize wrong decisions.

Barbosa [13,14] corroborates the results of this research. The earlier study used ten requirements
and five clients interested in the project, and generated similar results to the present work, which used
20 software requirements and seven interested customers. This also demonstrates that the effectiveness
of the method is maintained when the number of requirements, and consequently the difficulty of
finding a satisfactory solution, is increased. As was noted, although small changes and updates were
made to the algorithms used in this research, the data obtained were similar to those of previous
studies. The order of implementation was little modified. However, we infer that these modifications
would have an effect in the case of a large number of requirements of a software project (e.g., 3000).
However, VDA methods are impaired when we increase the number of alternatives (i.e., requirements).
This work provides a valuable contribution and incentive to continue with this research working with
projects of up to 20 requirements.

Automated methods can generate excellent solutions [48,49]. However, it is essential for the
software release planning process to consider the opinion of the decision-maker and her team, and thus
provide a solution in which they can participate and contribute to the process of comparing alternatives.

A significant observation we can make is that methods structured in verbal decision analysis,
which consider qualitative analysis of attributes, can generate solutions to solve the problems of
allocation of software requirements that are currently resolved by SBSE. This work thus provides a
precedent for new research in the field, which has been little discussed in the literature until now.

In future work we will try to solve the limitations of the VDA—for example, the limitations of
criteria—to try to improve the solutions to larger problems. We may also seek other metaheuristics
with improved methodologies for comparison with any new results that we obtain.

Algorithms 2018, 11, 176 18 of 20

Author Contributions: Methodology, P.P.; Writing—original draft, P.B.; Writing—review & editing, R.S.

Funding: This research received no external funding.

Acknowledgments: The author Plácido Pinheiro is thankful to the National Council of Technological and Scientific
Development (CNPq) for the support received for this project. The author Paulo Alberto Melo Barbosa is thankful
to the Federal Institute of Ceara e a pro-rector of research and post-graduation (PRPI) for the support received for
this project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Harman, M.; Jones, B.F. Search-based Software Engineering. Inf. Softw. Technol. 2001, 43, 833–839. [CrossRef]
2. Harman, M.; Mansouri, A.; Zhang, Y. Search-Based Software Engineering: A Comprehensive Analysis and Review

of Trends Techniques and Applications; Technical Report TR-09-03; Department of Computer Science, King’s
College London: London, UK, April 2009; Available online: http://discovery.ucl.ac.uk/id/eprint/170689
(accessed on 3 November 2018).

3. Harman, M.; McMinn, P.; de Souza, J.T.; Yoo, S. Search-Based Software Engineering: Techniques, Taxonomy,
Tutorial. In Empirical Software Engineering and Verification; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 1–59.

4. Vergilio, S.; Colanzi, T.E.; Pozo, A.T.R.; Assuncao, W.K.G. Search-Based Software Engineering: A Review
from the Brazilian Symposium on Software Engineering. In Proceedings of the CbSoft 2011, XXV Simpósio
Brasileiro de Engenharia de Software (SBES 2011), Sao Paulo, Brazil, 28–30 September 2011; pp. 49–54.

5. Colares, F.; Souza, J.T.; Carmo, R.A.; Padua, C.I.P.S.; Mateus, G.R. A New Approach to the Software Release
Planning. In Proceedings of the XXII Simpósio Brasileiro de Engenharia de Software, Fortaleza, Ceara, Brazil,
5–9 October 2009; Anais do XXII Simpósio Brasileiro de Engenharia de Software. IEEE Computer Society:
Los Alamitos, CA, USA, 2009; pp. 207–215. [CrossRef]

6. Ruhe, G.; Saliu, M.O. The Art and Science of Software Release Planning. IEEE Softw. 2005, 22, 47–53.
[CrossRef]

7. Bagnall, A.J.; Rayward-Smith, V.J.; Whittley, I.M. The next release problem. Inf. Softw. Technol. 2001, 43,
883–890. [CrossRef]

8. Hasan, M.S.; Mahmood, A.A.; Alan, M.J.; Hasan, S.N.; Rahman, F. An Evaluation of Software Requirement
Prioritization Techniques. Int. J. Comput. Sci. Inf. Secur. 2010, 8.

9. Curtis, B.; Iscoe, N. Modeling the Software Design Process. In Empirical Foundations of Information and Software
Science V; Springer: Boston, MA, USA, 1990; pp. 21–27. [CrossRef]

10. Fonseca, C.M.; Fleming, P.J. Genetic algorithms for multiobjective optimization: Formulation, discussion,
and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms,
Urbana-Champaign, IL, USA, 17–21 July 1993; pp. 416–423.

11. Saraiva, R.; Araujo, A.A.; Neto, A.D.B.; Bruno, I.Y.M.; Souza, J.T. Incorporating decision-maker preferences
in a multi-objective approach for the software release planning. J. Braz. Comput. Soc. (Online) 2017, 23, 11.
[CrossRef]

12. Tamanini, I.; Pinheiro, P.R.; Machado, T.C.S. Project management aided by verbal decision analysis approach:
A case study for the selection of the best SCRUM practices. Int. Trans. Oper. Res. 2015, 22, 287–312. [CrossRef]

13. Barbosa, P.A.M.; Pinheiro, P.R.; Silveira, F.R.V.; Filho, M.S. Applying Verbal Analysis of Decision to prioritize
software requirement considering the stability of the requirement. In Proceedings of the 6th Computer
Science Online Conference 2017 (CSOC) Advances in Intelligent Systems and Computing, Prague, Czech
Republic, 26–29 April 2017; Volume 575, ISBN 978-3-319-57141-6. [CrossRef]

14. Barbosa, P.A.M.; Pinheiro, P.R.; Silveira, F.R.V.; Filho, M.S. Selection and prioritization of software
requirements using the Verbal Decision Analysis paradigm. In Proceedings of the 29th International
Conference on Software Engineering and Knowledge Engineering, Pittsburgh, PA, USA, 5–7 July 2017.
[CrossRef]

15. Veldhuizen, D.A.V.; Lamont, G.B. Evolutionary Computation and Convergence to a Pareto Front. Available
online: https://pdfs.semanticscholar.org/f329/eb18a4549daa83fae28043d19b83fe8356fa.pdf (accessed on
3 November 2018).

http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://discovery.ucl.ac.uk/id/eprint/170689
http://dx.doi.org/10.1109/SBES.2009.23
http://dx.doi.org/10.1109/MS.2005.164
http://dx.doi.org/10.1016/S0950-5849(01)00194-X
http://dx.doi.org/10.1007/978-1-4684-5862-6_3
http://dx.doi.org/10.1186/s13173-017-0060-0
http://dx.doi.org/10.1111/itor.12078
http://dx.doi.org/10.1007/978-3-319-57141-6_45
http://dx.doi.org/10.18293/SEKE2017-150
https://pdfs.semanticscholar.org/f329/eb18a4549daa83fae28043d19b83fe8356fa.pdf

Algorithms 2018, 11, 176 19 of 20

16. Tamanini, I.; Pinheiro, P.R. Reducing Incomparability in Multicriteria Decision Analysis: An Extension of
The ZAPROS Methods. Pesquisa Operacional 2011, 31, 251–270. [CrossRef]

17. Tamanini, I.; Pinheiro, P.R. Challenging the Incomparability Problem: An Approach Methodology Based on
ZAPROS. Commun. Comput. Inf. Sci. 2008, 14, 338–347.

18. Tamanini, I.; Pinheiro, P.R.; Machado, T.C.S.; Albuquerque, A.B. Hybrid Approaches of Verbal Decision
Analysis in the Selection of Project Management Approaches. Procedia Comput. Sci. 2015, 55, 1183–1192.
[CrossRef]

19. Larichev, O.; Moshkovich, H.M. Verbal Decision Analysis for Unstructured Problems; Kluwer Academic
Publishers: Boston, MA, USA, 1997.

20. Figueira, J.; Greco, S.; Ehrgott, M. Multiple Criteria Decision Analysis: State of the Art Surveys; Springer:
New York, NY, USA, 2005.

21. Doumpos, M.; Zopounidis, C. Multicriteria Decision Aid Classification Methods; Springer: Boston, MA,
USA, 2002.

22. Tamanini, I.; Pinheiro, P.R.; Carvalho, A.L. Aranaú Software: A New Tool of the Verbal Decision Analysis;
Technical Report; University of Fortaleza: Fortaleza, Brazil, 2007.

23. Greer, D.; Ruhe, G. Software release planning: An evolutionary and iterative approach. Inf. Softw. Technol.
2004, 46, 243–253. [CrossRef]

24. Allen, J.H.; Barnun, S.J.; Ellison, R.J.; Mcgraw, W.G.; Mead, N.R. Software Security Engineering: A Guide for
Project Managers; Addison-Wesley: Upper Saddle River, NJ, USA, 2008; p. 368.

25. Karlsson, J.; Wohlin, C.; Regnell, B. An Evaluation of Methods for Prioritizing Software Requirements.
Inf. Softw. Technol. 1998, 39, 939–947. [CrossRef]

26. Berander, P. Prioritization of Stakeholder Needs in Software Engineering Understanding and Evaluation.
Ph.D. Thesis, Licentiate of Technology in Software Engineering, Department of Systems and Software
Engineering, Blekinge Institute of Technology, Karlskrona, Sweden, 2004; p. 172.

27. Nurmuliani, N.; Zowghi, D.; Fowell, S. Analysis of requirements volatility during software development life
cycle. In Proceedings of the Australian Software Engineering Conference (ASWEC’04), Melbourne, Victoria,
Australia, 13–16 April 2004.

28. Curtis, B.; Krasner, H.; Iscoe, N. A Field Study of the Software Design Process for Large Systems. Commun.
ACM 1988, 31, 1268–1287. [CrossRef]

29. Becceneri, J.C. Computation and Mathematics Applied to Space Sciences and Technologies. Meta-heuristics and
Combinatorial Optimization: Applications in Environmental Problems; INPE: São José dos Campos, Brazil, 2008.

30. Souza, J.T.; Maia, C.L.B.; Ferreira, T.; Carmo, R.A.F.; Brasil, M. An ant colony optimization approach to the
software release planning with dependent requirements. In Proceedings of the 3rd International Symposium
on Search Based Software Engineering (SSBSE ’11), Szeged, Hungary, 10–12 September 2011; pp. 142–157.

31. Paixão, M.; Brasil, M.M.A.; Nepomuceno, T.; Souza, J.T. Applying the ant-q algorithm to the prioritization
of software requirements with precedence. In Proceedings of the III Brazilian Workshop on Software
Engineering Based on Search—SBSE/WESB’12, Natal, Brazil, 23–28 September 2012.

32. Brasil, M.M.A.; Silva, T.G.N.; Freitas, F.G.; Ferreira, T.N.; Cortés, M.I.; Souza, J.T. Applying multiobjective
search techniques in the prioritization of software requirements. In Proceedings of the XLIII Brazilian
Symposium on Operational Research (BSOR), Ubatuba, Brazil, 15–18 August 2011.

33. Brasil, M.M.A.; Freitas, F.G.; Silva, T.N.; Souza, J.T.; Cortés, M.I. A New Approach to Multiobjective
Optimization for the Planning of Releases Iterative and Incremental Software Development. In Proceedings
of the 1st Brazilian Workshop on Optimization in Software Engineering (CBSOFT/WOES’2010), Salvador,
Brazil, 27 September–1 October 2010.

34. Filho, M.S.; Pinheiro, P.R.; Albuquerque, A.B. Analysis of task allocation in distributed software development
through a hybrid methodology of verbal decision analysis. J. Softw. Evol. Process 2017, 1, e1867. [CrossRef]

35. Pinheiro, P.R.; Tamanini, I.; Pinheiro, M.C.D.; Albuquerque, V.H.C. Evaluation of the Alzheimers Disease
Clinical Stages under the Optics of Hybrid Approaches in Verbal Decision Analysis. Telemat. Inform. 2017,
35, 776–789. [CrossRef]

36. Silva, T.; Pinheiro, P.R.; Poggi, M. A More Human-like Portfolio Optimization Approach. Eur. J. Oper. Res.
2016, 256, 252–260. [CrossRef]

37. Vasconcelos, P.; Furtado, E.; Pinheiro, P.R. An approach of multidisciplinary criteria for modeling alternatives
of flexible working. Comput. Hum. Behav. 2015, 51, 1054–1060. [CrossRef]

http://dx.doi.org/10.1590/S0101-74382011000200004
http://dx.doi.org/10.1016/j.procs.2015.07.093
http://dx.doi.org/10.1016/j.infsof.2003.07.002
http://dx.doi.org/10.1016/S0950-5849(97)00053-0
http://dx.doi.org/10.1145/50087.50089
http://dx.doi.org/10.1002/smr.1867
http://dx.doi.org/10.1016/j.tele.2017.04.008
http://dx.doi.org/10.1016/j.ejor.2016.06.018
http://dx.doi.org/10.1016/j.chb.2015.02.071

Algorithms 2018, 11, 176 20 of 20

38. Filho, M.S.; Gomes, U.R.P.; Pinheiro, P. Project portfolio prioritization aided by verbal decision analysis.
In Proceedings of the 13th Iberian Conference on Information Systems and Technologies (CISTI), Caceres,
Spain, 13–16 June 2018. [CrossRef]

39. Nebro, A.J.; Durillo, J.J.; Luna, F.; Dorronsoro, B.; Alba, E. MOCell: A Cellular Genetic Algorithm for
Multiobjective Optimization. Int. J. Intell. Syst. 2009, 24, 726–746. [CrossRef]

40. Nebro, A.J.; Durillo, J.J.; Machín, M.; Coello, C.A.C.; Dorronsoro, B. A Study of the Combination of Variation
Operators in the NSGA-II Algorithm. In Proceedings of the Conference of the Spanish Association for
Artificial Intelligence (CAEPIA), Madrid, Spain, 17–20 September 2013; pp. 269–278.

41. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm; TIK-Report
103 Computer Engineering and Networks Laboratory (TIK); Department of Electrical Engineering, Swiss
Federal Institute of Technology (ETH), Zurich ETH Zentrum: Zurich, Switzerland, 2001.

42. Ferreira, T.N.; Vergilio, S.R.; de Souza, J.T. Incorporating user preferences in Search-Based Software
Engineering: A systematic mapping study. Inf. Softw. Technol. 2017, 90, 55–69. [CrossRef]

43. Maia, C.L.; Ferreira, T.N.; Freitas, F.G.; Souza, J.T. An Evolutionary Optimization Approach to Software Test
Case Allocation. Commun. Comput. Inf. Sci. 2011, 250, 637–641.

44. Durillo, J.J.; Nebro, A.J. JMetal: A Java Framework for Developing Multi-Objective Optimization Metaheuristics;
Tech-Report ITI-2006-10; Department of Languages and Computer Science, Teatinos Campus, University of
Málaga: Malaga, Spain, 2006.

45. Coello, C.A.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problem;
Kluwer Academics Publishers: Boston, MA, USA, 2007.

46. De Souza, J.T.; Maia, C.L.; de Freitas, F.G.; Coutinho, D.P. The Human Competitiveness of Search-Based
Software Engineering. In Proceedings of the II International Symposium on Search-Based Software
Engineering, Benevento, Italy, 7–9 September 2010; IEEE Computer Society: Los Alamitos, CA, USA,
2010; Volume 1, pp. 34–43.

47. Filho, M.S.; Pinheiro, P.R.; Albuquerque, A.B. Applying Verbal Decision Analysis to Task Allocation in
Distributed Development of Software. In Proceedings of the SEKE 2016, San Francisco Bay, CA, USA,
1–3 July 2016.

48. Filho, M.S.; Pinheiro, P.R.; Albuquerque, A. Task Assignment to Distributed Teams aided by a Hybrid
Methodology of Verbal Decision Analysis. IET Softw. 2017, 11, 245–255. [CrossRef]

49. Filho, M.S.; Pinheiro, P.R.; Albuquerque, A.B.; Rodrigues, J.J.P.C. Task Allocation in Distributed Software
Development: A Systematic Literature Review. Complexity 2018, 2018, 6071718.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.23919/CISTI.2018.8399312
http://dx.doi.org/10.1002/int.20358
http://dx.doi.org/10.1016/j.infsof.2017.05.003
http://dx.doi.org/10.1049/iet-sen.2016.0306
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Verbal Decision Analysis
	The ZAPROS III-i Method
	Prioritize Software Requirements
	Problem Generation
	Use of the VDA Methodology
	Alternatives
	Definition of the Criteria and the Criteria Values
	The ARANAÚ Tool Application

	Use of the SBSE Methodology
	Results and Discussion
	Conclusions
	References

