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Abstract: Hesitant multiplicative preference relation (HMPR) is a useful tool to cope with the
problems in which the experts utilize Saaty’s 1–9 scale to express their preference information
over paired comparisons of alternatives. It is known that the lack of acceptable consistency easily
leads to inconsistent conclusions, therefore consistency improvement processes and deriving the
reliable priority weight vector for alternatives are two significant and challenging issues for hesitant
multiplicative information decision-making problems. In this paper, some new concepts are first
introduced, including HMPR, consistent HMPR and the consistency index of HMPR. Then, based on
the logarithmic least squares model and linear optimization model, two novel automatic iterative
algorithms are proposed to enhance the consistency of HMPR and generate the priority weights
of HMPR, which are proved to be convergent. In the end, the proposed algorithms are applied
to the factors affecting selection of fog-haze weather. The comparative analysis shows that the
decision-making process in our algorithms would be more straight-forward and efficient.

Keywords: automatic iterative algorithms; hesitant multiplicative preference relation; consistency;
group decision making

1. Introduction

In a group decision making (GDM) situation, the decision makers (DMs) are usually required
to select the desirable alternative(s) from a collection of alternatives. To cope with this problem,
DMs would compare alternatives with each other and provide the preference information,
and a judgement matrix can be constructed [1–3].

In order to model DMs’ knowledge and preferences, preference relations have been introduced.
To characterize fuzziness and uncertainty, some kinds of extended preference relations have been
introduced, including fuzzy preference relation (FPR) [4–8], multiplicative preference relation
(MPR) [9–12] and linguistic preference relation (LPR) [13,14]. The experts describe their preference
information with a 0–1 scale crisp numbers in FPR, and they utilize a 1–9 scale to express their
preference information in MPR [15]. It is noted that the elements in MPRs are crisp values. However,
considering the fuzziness and hesitation involved in practical decision-making problems, it may
be difficult for DMs to express their evaluated information with crisp values. To describe the
imprecision, the interval multiplicative preference relation [16] and the intuitionistic multiplicative
preference relation (IMPR) [17] are introduced to express their decision-making preference information.
Xia et al. [18] first defined the intuitionistic multiplicative preference relation (IMPR) and developed
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some IMPRs information aggregation techniques. Xia and Xu [18] introduced the concepts of
hesitant fuzzy preference relation (HFPR) and hesitant multiplicative preference relation (HMPR) and
studied their properties, which are followed by the construction of some methods of group decision
making (GDM).

For various forms of preference relations, the most two important issues are consistency analysis
and consistency improvement [19]. Ma et al. [20] developed an approach to check the inconsistency
and weak transitivity for the FPR and to repair its inconsistency for reaching weak transitivity.
Herrera-Viedma et al. [21] designed a method to construct consistent FPRs from a set of original
preference data. For a given MPR, Xu and Wei [16] proposed a convergent model to improve its
consistency. With the help of the Abelian linearly ordered group, Xia and Chen [22] established
a general improving consistency and reaching consensus methods for different types of preference
relations. By using the order consistency and multiplicative consistency, Jin et al. [23] proposed
two new approaches for GDM with IFPRs to produce the normalized intuitionistic fuzzy weights
for alternatives. Wang [24] proposed some linear programming models for deriving intuitionistic
fuzzy weights. For the unbalanced LPRs, Dong et al. [25] investigated an optimization model to
increase the consistency level. Pei et al. [26] developed an iterative algorithm to adjust the additive
consistency of IFLPRs and derive the intuitionistic fuzzy weights for IFLPRs. Based on β-normalization,
Zhu et al. [27] utilized the optimized parameter to develop a novel approach for inconsistent HFPRs.
Under the hesitant fuzzy preference information environment, Zhang et al. [28] constructed a decision
support model to derive the most desirable alternative.

Similar to MPRs, studying the HMPR is an important research topic. However, there are few
techniques in the existing literature have been done about it. Xia and Xu [18] directly used the
proposed operators to aggregate the HMPRs information. However, it is generally known that the
unacceptable consistency preference relations easily lead to inconsistent conclusions. Therefore,
the decision-making results that obtained by the method in Xia and Xu [18] may be unreasonable.
Based on the β-normalization principle, Zhang and Wu [28] investigated a new decision-making
model to generate the interval weights of alternatives from HMPRs. However, with the algorithm in
Zhang and Wu [28], one must convert normalized HMPR into several MPRs, and it seems that the
decision-making process is an indirect computation process. Therefore, deriving the priority weight
vector of the HMPR efficiently and improving the consistency of HMPR are two most two important
issues. This paper first introduces a new version of HMPR, and then the consistency of HMPR and
consistency index of HMPR are presented. After that, two new algorithms are investigated to improve
the consistency of HMPRs.

To do this, the remainder of this paper is organized as follows: Section 2 reviews some of the
basic concepts. In Section 3, the definitions of HMPR, consistency of HMPR and consistency index of
HMPR are presented. Two algorithms to improve the consistency level for HMPRs are investigated in
Section 4. Section 5 provides an illustrative example to show the effectiveness and rationality of the
proposed methods. Concluding remarks are presented in Section 6.

2. Preliminaries

In this section, we review some related work of the MPR and hesitant multiplicative set (HMS).
Saaty [15] first introduced the concept of MPR, which is a useful tool to express evaluation information.
For convenience, let X = {x1, x2, · · · , xn} be a finite set of alternatives and N = {1, 2, · · · , n}.

Definition 1. [15] An MPR A on X is represented by a matrix A = (aij)n×n ⊂ X × X with
aii = 1, aij · aji = 1, i, j ∈ N, where aij denotes the ratio of preferred degree of alternative xi with respect to xj.

In particular, as Saaty [29] showed the 1–9 scale, aij = {1/9, 1/8, · · · , 1/2, 1, 2, · · · , 8, 9},
and aij = 1 denotes that there is no difference between xi and xj, aij = 9 denotes xi is
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absolutely preferred to xj, and aij = {2, 3, · · · , 8} (or aij = {1/2, 1/3, · · · , 1/8}) indicates the
intermediate evaluations [30].

Definition 2. Let A = (aij)n×n be a MPR, then A is consistent, if it satisfies the transitivity, i.e.,
aij = aik · akj, ∀i, j, k ∈ N.

For a MPR A = (aij)n×n, if there exists a crisp priority weight vector w = (w1, w2, · · · , wn)
T,

such that aij = wi/wj, ∀i, j ∈ N, then A is consistent [15], where wi > 0, i ∈ N, and ∑n
i=1 wi = 1.

Because of the complexity and uncertainty involved in practical GDM problems, it may be
difficult for DMs to express their preference information with only one crisp number, but they can be
represented by a few different crisp values.

Definition 3. An HMS on X is defined as H = {〈xi, bH(xi)〉|i ∈ N}, where bH(xi) = {γk ∈ [1/9, 9]
|k = 1, 2, · · · , |bH(xi)|} is a hesitant multiplicative element (HME), which denotes all of the possible
membership degrees of the element x ∈ X for the set H, |bH(xi)| is the cardinal of bH(xi).

Definition 4. [28] Let b = {γk|k = 1, 2, · · · , |b|} be a HME, |b| be the cardinal of b, the score function of b is

defined by f (b) =
(

∏
|b|
k=1 γk

)1/|b|
. Suppose that b1 and b2 are two HMEs, if f (b1) ≥ f (b2), then b1 ≥ b2.

3. Hesitant Multiplicative Preference Relations and Consistency Index

In what follows, inspired by MPR and score function of HME, we define a new version of HMPR,
and then the consistency of HMPR and consistency index of HMPR are presented.

Definition 5. An HMPR P on X can be defined as reciprocal matrix P = (pij)n×n ⊂ X× X, where pij is an
HME, which indicates the possible preference degrees of alternative xi over xj, and it satisfies

f (pij) · f (pji) = 1, pii = {1},
∣∣pij
∣∣ = ∣∣pji

∣∣, i, j ∈ N (1)

where f (pij) and
∣∣pij
∣∣ are the score function of pij and the number of values in pij, respectively.

For a HMPR P = (pij)n×n, since f (pij) =

(
∏
|pij |
k=1 γij,k

)1/|pij |

≥
(
(1/9)|pij |

)1/|pij |
= 1/9 and

f (pij) =

(
∏
|pij |
k=1 γij,k

)1/|pij |

≤
(

9|pij |
)1/|pij |

= 9, then f (pij) ∈ [1/9, 9], i, j ∈ N. On the other hand,

from Definition 5, one can obtain that f (pij) · f (pji) = 1, i, j ∈ N. Therefore, by using score function,
we can transform the HMPR P into an MPR F = ( fij)n×n, where fij = f (pij), ∀i, j ∈ N.

Therefore, the following consistency of HMPR is introduced.

Definition 6. Assume that P = (pij)n×n is an HMPR, where pij is HME, then P = (pij)n×n is called
consistent HMPR, if there exists a normalized crisp weight vector w = (w1, w2, · · · , wn)T, such that

f (pij) = wi/wj, ∀i, j ∈ N (2)

where wi > 0, ∀i ∈ N, ∑n
i=1 wi = 1.

From Equation (2), we have ln f (pij) = ln wi − ln wj, ∀i, j ∈ N. However, for the HMPR
provided by DMs, it is difficult to satisfy the consistency, and then Equation (2) cannot hold,
it means that there exist i, j ∈ N, such that ln f (pij) 6= ln wi − ln wj, then we can use
(ln f (pij)− (ln wi − ln wj))

2 = (ln f (pij)− ln wi + ln wj)
2 to measure the deviation between ln f (pij)
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and ln wi − ln wj. Therefore, the values of (ln f (pij)− ln wi + ln wj)
2(i, j ∈ N) can be used to measure

the consistency level of the HMPR P = (pij)n×n.

Definition 7. Assume that P = (pij)n×n is an HMPR, w = (w1, w2, · · · , wn)
T is the priority weight vector

derived from P satisfying wi > 0, ∀i ∈ N, ∑n
i=1 wi = 1, then the consistency index of P is defined as

CI(P) =
2

n(n− 1)∑i<j
(ln f (pij)− ln wi + ln wj)

2 (3)

The smaller is the value of CI(P), the better is the consistency of HMPR P. If CI(P) = 0, then P is
consistent. If we provide the threshold δ0 and CI(P) ≤ δ0, then P is called of acceptable consistency.

4. Consistency Repaired Methods for an HMPR

Motivated by the logarithmic least squares model [31], the priority weight vector can be derived
by using the following optimization model:

(M− 1) minJ1 = ∑n
i,j=1 (ln f (pij)− ln wi + ln wj)

2

s.t. ∑n
i=1 wi = 1, wi > 0, i ∈ N.

(4)

In fact, since f (pij) · f (pji) = 1, i, j ∈ N, then we have

J1 = ∑i<j (ln f (pij)− ln wi + ln wj)
2 + ∑i>j (ln f (pij)− ln wi + ln wj)

2

= ∑i<j (ln f (pij)− ln wi + ln wj)
2 + ∑i>j (−(− ln f (pij) + ln wi − ln wj))

2

= ∑i<j (ln f (pij)− ln wi + ln wj)
2 + ∑j<i (ln f (pji)− ln wj + ln wi)

2

= 2∑i<j (ln f (pij)− ln wi + ln wj)
2,

thus, the developed optimization model (M-1) can be converted into the following optimization model:

(M− 2) minJ1 = ∑i<j (ln f (pij)− ln wi + ln wj)
2

s.t.
n

∑
i=1

wi = 1, wi > 0, i ∈ N.
(5)

According to Definition 6, we know that an HMPR P = (pij)n×n is consistent, then there exists

a normalized crisp weight vector w = (w1, w2, · · · , wn)
T, such that f (pij) = wi/wj, ∀i, j ∈ N, i.e.,

ln f (pij)− ln wi + ln wj = 0, i, j ∈ N, then we have

∑n
j=1 (ln f (pij)− ln wi + ln wj) = 0,

thus

∑n
j=1 ln f (pij)− n ln wi + ∑n

j=1 ln wj = 0.

That is
ln wi =

1
n∑n

j=1 ln wj +
1
n∑n

j=1 ln f (pij),

i.e.,

wi = k · e
1
n ∑n

j=1 ln f (pij) = k ·
(
∏n

j=1 f (pij)
)1/n

,
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where k =
(

∏n
j=1 wj

)1/n
. Since ∑n

i=1 wi = 1, then we have k = 1 /∑n
i=1

(
∏n

j=1 f (pij)
)1/n

, one can
get that

wi =
(
∏n

j=1 f (pij)
)1/n

/∑n
i=1

(
∏n

j=1 f (pij)
)1/n

(6)

Therefore, the following Algorithm 1 is designed to be adjusted the consistency of the HMPR P:

Algorithm 1: The consistency adjusting process of HMPR based on logarithm least squares model

Step 1. Suppose that P(t) = (p(t)ij )
n×n

= P = (pij)n×n and t = 0, and pre-set the threshold δ0,
the controlling parameter θ and the maximum number of iterations tmax;

Step 2. Derive the priority vector w̃(t) = (w̃(t)
1 , w̃(t)

2 , · · · , w̃(t)
n )

T
by Equation (6);

Step 3. Determine the consistency index CI(P(t)) by using Equation (3);
Step 4. If CI(P(t)) ≤ δ0 or t > tmax, then go to Step 7. Otherwise, go to Step 5;

Step 5. Let P(t+1) = (p(t+1)
ij )

n×n
, where

p(t+1)
ij =

{
γ
(t+1)
ij,k

∣∣∣k = 1, 2, · · · ,
∣∣∣p(t+1)

ij

∣∣∣}, γ
(t+1)
ij,k =

(
γ
(t)
ij,k

)1−θ
·
(

w̃(t)
i /w̃(t)

j

)θ

Step 6. Let t = t + 1 and return to Step 2;
Step 7. Output P(t), w̃(t), CI(P(t)) and t;
Step 8. End.

In the following, we prove that the developed Algorithm 1 is convergent.

Theorem 1. Let P = (pij)n×n be an HMPR, θ(0 < θ < 1) be the adjusted parameter,
{

P(t)
}

be a collection

of HMPRs in Algorithm 1. If CI(P(t)) is the consistency index of P(t), then we have

CI(P(t+1)) < CI(P(t)) for each t, and lim
t→∞

CI(P(t)) = 0 (7)

Proof. Suppose that w̃(t) = (w̃(t)
1 , w̃(t)

2 , · · · , w̃(t)
n )

T
is the priority weight vector of P(t) for each t,

from the above analysis, we know that w̃(t) = (w̃(t)
1 , w̃(t)

2 , · · · , w̃(t)
n )

T
also is the optimal weight vector

by solving model (M-2) for P(t). Thus, we have

∑i<j (ln f (p(t+1)
ij )− ln w̃(t+1)

i + ln w̃(t+1)
j )

2
≤∑i<j (ln f (p(t+1)

ij )− ln w(t+1)
i + ln w(t+1)

j )
2

(8)

Let w(t+1)
i = w̃(t)

i , i ∈ N, then we have

∑i<j (ln f (p(t+1)
ij )− ln w̃(t+1)

i + ln w̃(t+1)
j )

2
≤∑i<j (ln f (p(t+1)

ij )− ln w̃(t)
i + ln w̃(t)

j )
2

(9)

In addition, according to Step 5 in Algorithm 1, we have

ln f (p(t+1)
ij ) =

(
∏
|p(t+1)

ij |
k=1 γ

(t+1)
ij,k

)1/|p(t+1)
ij |

= ln

(
∏
|p(t+1)

ij |
k=1

((
γ
(t)
ij,k

)1−θ
·
(

w̃(t)
i /w̃(t)

j

)θ
))1/|p(t+1)

ij |

= ln


(∏

|p(t)ij |
k=1 γ

(t)
ij,k

)1/|p(t)ij |
1−θ

·
(

w̃(t)
i /w̃(t)

j

)θ

 = (1− θ) ln f (p(t)ij ) + θ(ln w̃(t)
i − ln w̃(t)

j ).
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Therefore,

CI(P(t+1)) = 2
n(n−1) ∑

i<j
(ln f (p(t+1)

ij )− ln w̃(t+1)
i + ln w̃(t+1)

j )
2

≤ 2
n(n−1) ∑

i<j
(ln f (p(t+1)

ij )− ln w̃(t)
i + ln w̃(t)

j )
2

= 2
n(n−1) ∑

i<j

(
(1− θ) ln f (p(t)ij ) + θ(ln w̃(t)

i − ln w̃(t)
j )− (ln w̃(t)

i − ln w̃(t)
j )
)2

= (1− θ) 2
n(n−1) ∑

i<j
(ln f (p(t)ij )− ln w̃(t)

i + ln w̃(t)
j )

2

= (1− θ)CI(P(t)) < CI(P(t)),

(10)

i.e., CI(P(t+1)) = (1− θ)CI(P(t)) < CI(P(t)) for each t.
Furthermore, on the one hand, according to Equation (10), we get that

lim
t→+∞

CI(P(t)) ≤ lim
t→+∞

(1− θ)CI(P(t−1)) ≤ lim
t→+∞

(1− θ)2CI(P(t−2)) ≤ · · · ≤ lim
t→+∞

(1− θ)tCI(P(0)) = 0.

On the other hand, it is obvious that CI(P(t)) ≥ 0, hence lim
t→∞

CI(P(t)) = 0.�

From Definition 6, if HMPR P = (pij)n×n is consistent, then Equation (2) holds. Hence, it can be
rewritten as ln f (pij) = ln wi − ln wj, ∀i, j ∈ N. However, in many real situations, due to fuzziness and
uncertainty, the HMPR provided by DMs is usually inconsistent, thus Equation (2) cannot hold, i.e.,
there exist (i, j) ∈N × N, such that ln f (pij) 6= ln wi − ln wj. In this case, some non-negative deviation
variables d−ij and d+ij , d−ij · d

+
ij = 0, i, j ∈ N are introduced, such that

ln f (pij) + d−ij − d+ij = ln wi − ln wj, i, j ∈ N (11)

The smaller is the value of deviation variables d−ij and d+ij , the better is the consistency of HMPR.
Therefore, we develop a linear optimization model to derive the smallest deviation variables and
priority weight vector as follows:

(M− 3) minJ2 = ∑n
i,j=1 (d

−
ij + d+ij )

s.t.

{
ln f (pij) + d−ij − d+ij = ln wi − ln wj, i, j ∈ N,

∑n
i=1 wi = 1, wi > 0, i ∈ N.

(12)

From Definition 5 and Equation (11), one can obtain that

d−ij − d+ij = ln wi − ln wj − ln f (pij) = −(ln wj − ln wi − ln(1/ f (pij)))

= −(ln wj − ln wi − ln f (pji)) = −(d−ji − d+ji ) = d+ji − d−ji ,

i.e., d−ij + d−ji = d+ij + d+ji .

As d−ij , d+ij ≥ 0 and d−ij · d
+
ij = 0, i, j ∈ N, it follows that d−ij = d+ji , d+ij = d−ji , i, j ∈ N. Therefore,

we can obtain the following simplified optimization model:

(M− 4) minJ2 = ∑i<j (d
−
ij + d+ij )

s.t.

{
ln f (pij) + d−ij − d+ij = ln wi − ln wj, i < j,

∑n
i=1 wi = 1, wi > 0, i ∈ N.

(13)
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By using MATLAB or LINGO, we obtain the priority vector w = (w1, w2, · · · , wn)
T and optimal

nonzero deviation values d̃−ij , d̃+ij , then we have ln f (pij) + d̃−ij − d̃+ij = ln wi − ln wj, i.e., f (pij) · exp(d̃−ij
−d̃+ij ) = wi/wj.

Therefore, the following Algorithm 2 is designed to improve the consistency of the HMPR P:

Algorithm 2: The consistency adjusting process of HMPR based on linear optimization model

Step 1’. See Algorithm 1;

Step 2’. According to model (M− 4), we get the optimal nonzero deviation values d̃−(t)ij and d̃+(t)
ij , i, j ∈ N,

and the priority weight vector w̃(t) = (w̃(t)
1 , w̃(t)

2 , · · · , w̃(t)
n )

T
;

Step 3’–4’. See Algorithm 1;
Step 4. If CI(P(t)) ≤ δ0 or t > tmax, then go to Step 7. Otherwise, go to Step 5;

Step 5’. Let P(t+1) = (p(t+1)
ij )

n×n
, where p(t+1)

ij =
{

γ
(t+1)
ij,k

∣∣∣k = 1, 2, · · · ,
∣∣∣p(t+1)

ij

∣∣∣},

γ
(t+1)
ij,k =

(
w(t)

i /w(t)
j

)θ
·
(

γ
(t)
ij,k

)1−θ
=
(

γ
(t)
ij,k · exp(d̃−(t)ij − d̃+(t)

ij )
)θ
·
(

γ
(t)
ij,k

)1−θ
= γ

(t)
ij,k · exp(θ(d̃−(t)ij − d̃+(t)

ij ))

Step 6’–8’. See Algorithm 1.

Next, we will prove that the developed Algorithm 2 is convergent.

Theorem 2. Let P = (pij)n×n be an HMPR, θ(0 < θ < 1) be the adjusted parameter,
{

P(t)
}

be a collection

of HMPRs in Algorithm 2, CI(P(t)) be the consistency index of P(t), then we have

CI(P(t+1)) < CI(P(t)) for each t, and lim
t→∞

CI(P(t)) = 0 (14)

Proof. The proof of Theorem 2 is similar to Theorem 1. �

5. Illustrative Example Results and Discussion

5.1. Numerical Example

There is a city that was affected by fog-haze for a long time, and the scientists found that
there are four main influence factors x1, x2, x3, x4 for this city’s fog-haze. In order to determine the
most important influence factor and rank these factors for fog-haze, a group scientist compares
these four factors with each other and then provides the following preference information,
HMPR P = (pij)4×4 [23]:

P =


{1} {1/7, 1/6, 1/5} {1, 3} {1/8, 2/7}
{5, 6, 7} {1} {1, 2} {7, 9}
{1/3, 1} {1/2, 1} {1} {1/4}
{7/2, 8} {1/9, 1/7} {4} {1}

.

Now, we apply this paper’s Algorithms 3 and 4 respectively to select the most important factor
for fog-haze.

Algorithm 3: The consistency adjusting process of HMPR based on logarithm least squares model

Step 1. Let t = 0,P(t) = P, δ0 = 0.3 and θ = 0.1
Step 2. By Equation (6), we obtain the priority vector:

w̃(0) = (0.0934, 0.5512, 0.1090, 0.2464)T.
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Algorithm 3: The consistency adjusting process of HMPR based on logarithm least squares model

Step 3. By Equation (3), we determine the consistency index CI(P(0)) = 0.7573
Step 4. As CI(P(0)) = 0.7573 > δ0, then we utilize Step 5 in Algorithm 1
to repair the consistency of the HMPR P(0) and derive the new HMPR P(1):

P(1) =


{1} {0.1453, 0.1669, 0.1967} {0.9847, 2.6467} {0.1397, 0.2939}

{5.0839, 5.9916, 6.8823} {1} {1.1759, 2.1944} {6.2452, 7.8302}
{0.3778, 1.0155} {0.4557, 0.8504} {1} {0.2647}
{3.4025, 7.1581} {0.1277, 0.1601} {3.7779} {1}


Step 5. By Equation (3), we determine the consistency index CI(P(0)) = 0.7573.
Because CI(P(1)) = 0.6133 > δ0, then by using Step 5 in Algorithm 1, we have

P(2) =


{1} {0.1476, 0.1672, 0.1938} {0.9711, 2.3645} {0.1544, 0.3015}

{5.1601, 5.9824, 6.7772} {1} {1.3606, 2.3855} {5.6358, 6.9081}
{0.4229, 1.0297} {0.4192, 0.7350} {1} {0.2786}
{3.3170, 6.4781} {0.1448, 0.1774} {3.5888} {1}


Step 6. By Equation (3), we obtain the consistency index CI(P(2)) = 0.4968. As CI(P(2)) =0.4968 > δ0,
then according to Step 5 in Algorithm 1, we have

P(3) =


{1} {0.1497, 0.1674, 0.1912} {0.9591, 2.1363} {0.1689, 0.3089}

{5.2296, 5.9727, 6.6820} {1} {1.5515, 2.5716} {5.1383, 6.1714}
{0.4681, 1.0427} {0.3889, 0.6445} {1} {0.2918}
{3.2416, 5.9202} {0.1620, 0.1946} {3.4272} {1}


Applying Equation (6), the priority vector of HMPR P(3) can be determined : w̃(3) = (0.0883, 0.4437,
0.1908, 0.2772)T.
Step 7. We calculate the consistency index CI(P(3)) = 0.2923.
Step 8. Since CI(P(3)) < δ0, then the iteration stops, and P(3) is acceptable consistent HMPR.

Step 9. Output w̃(3) = (0.0883, 0.4437, 0.1908, 0.2772)T. As w(3)
2 > w(3)

4 > w(3)
1 > w(3)

3 ,
then we have x2 � x4 � x1 � x3. Therefore, the most important factor for fog− haze is x2.

Algorithm 4: The consistency adjusting process of HMPR based on linear optimization model

Step 1’. Let t = 0,P̃(t) = P,δ0 = 0.3 and θ = 0.1.

Step 2’. Using a model (M-4), we get the optimal deviation values d̃+(0)
13 = 0.8124, d̃−(0)23 =1.0245, d̃+(0)

24 =

1.4958, d̃−(0)12 = d̃+(0)
12 = d̃−(0)13 = d̃−(0)14 = d̃+(0)

14 = d̃+(0)
23 = d̃−(0)24 = d̃−(0)34 = d̃+(0)

34 = 0, and the priority weight
vector can be obtained as follows:

w̃(0) = (0.0745, 0.4695, 0.0994, 0.3566)T.

Step 3’. Utilizing Equation (3) to get the consistency index CI(P̃(0)) = 0.7033.
Step 4’. As CI(P̃(0)) > δ0, then we apply Step 5’ in Algorithm 2 to adjust the consistency of HMPR P̃(0),
and one can obtain a new HMPR P̃(1) as follows:

P̃(1) =


{1} {0.1478, 0.1672, 0.1935} {0.9696, 2.3351} {0.1561, 0.3023}

{5.1658, 5.9809, 6.7659} {1} {1.3823, 2.4077} {5.5718, 6.8125}
{0.4282, 1.0314} {0.4153, 0.7234} {1} {0.2802}
{3.3080, 6.4061} {0.1468, 0.1795} {3.5689} {1}


Step 5’. Using model (M-4), we get the optimal deviation values d̃+(1)

13 = 0.3288, d̃−(1)12 =0.1329, d̃+(1)
14 =

0.6202, d̃+(1)
23 = 0.8904, d̃−(1)24 = 1.3359, d̃+(1)

34 = 0.3337.d̃−(1)23 = d̃+(1)
24 = d̃+(1)

12 = d̃−(1)13 = d̃−(1)14 = d̃−(1)34 = 0.
By using Equation (3), we have CI(P̃(1)) = 0.5016 > δ0. Thus, by Step 5’ in Algorithm 2, one can obtain

P̃(2) =


{1} {0.1503, 0.1702, 0.1966} {0.9349, 2.1205} {0.1701, 0.3141}

{5.0865, 5.8754, 6.6534} {1} {1.6102, 2.6441} {5.1098, 6.1204}
{0.4716, 1.0696} {0.3768, 0.6210} {1} {0.3112}
{3.1837, 5.8789} {0.1634, 0.1957} {3.2134} {1}


Step 6’. Using model (M-4), we determine the priority weight vector w̃(2) = (0.1107, 0.3910,0.2056, 0.3027)T.
Step 7’. By using Equation (3), we have CI(P̃(2)) = 0.2855. As CI(P̃(2)) < δ0, then the iteration stops, and P̃(2)

is acceptable consistent HMPR.
Step 8’. Output w̃(2) = (0.1107, 0.3910, 0.2056, 0.3027)T.

Step 9’. As w̃(2)
2 > w̃(2)

4 > w̃(2)
1 > w̃(2)

3 , then we have x2 � x4 � x1 � x3, and the most important factor for
fog-haze is x2.
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5.2. Discussions

In what follows, we utilize the Algorithm I proposed by Zhang and Wu [28] to cope with the
aforementioned problem, and then the following steps are involved:

Step 1”. Let optimized parameter ξ = 1, then we obtain the normalized HMPR P = (pij)4×4
as follows:

P =


{1} {1/7, 1/6, 1/5} {1, 3, 3} {1/8, 2/7, 2/7}
{5, 6, 7} {1} {1, 2, 2} {7, 9, 9}

{1/3, 1/3, 1} {1/2, 1/2, 1} {1} {1/4, 1/4, 1/4}
{7/2, 7/2, 8} {1/9, 1/9, 1/7} {4, 4, 4} {1}

.

Step 2”. Utilize Equation (21) in Zhang and Wu [28] to construct the MPRs As(s = 1, 2, 3) from
P = (pij)4×4

:

A1 =


1 1/7 1 1/8
7 1 1 7
1 1 1 1/4
8 1/7 4 1

, A2 =


1 1/6 3 2/7
6 1 2 9

1/3 1/2 1 1/4
7/2 1/9 4 1

, A3 =


1 1/5 3 2/7
5 1 2 9

1/3 1/2 1 1/4
7/2 1/9 4 1

.

Step 3”. Acceptable consistency of As(s = 1, 2, 3) is checked by Algorithm I in Xu and Wei [17].
Due to vast amount of computation, we would not list the iterative calculation process of adjusting
the consistency of As(s = 1, 2, 3). After six iterations of Algorithm I in Xu and Wei [17], any of
A(6)

s (s = 1, 2, 3) is acceptably consistent.
Step 4”. Employ Equation (28) in Zhang and Wu [28] to obtain the weight vectors of A(6)

s (s = 1, 2, 3):

W(A(6)
1 ) = (0.4557, 2.7600, 0.4677, 1.4346)T,

W(A(6)
2 ) = (0.3404, 3.2789, 0.6613, 1.0911)T,

W(A(6)
3 ) = (0.6185, 2.9184, 0.7418, 1.3343)T.

Step 5”. By Equation (31) in Zhang and Wu [28], we obtain the interval weight vector of
P = (pij)4×4 as follows:

w1 = [0.3404, 0.6185], w2 = [2.7600, 3.2489], w3 = [0.4677, 0.7418], w4 = [1.0911, 1.4346].

Step 6”. Compute the degree of possibility of wi ≥ wj(i, j = 1, 2, 3, 4) by Equation (32) in Zhang
and Wu [28], we have w2 > w4 > w3 > w1, and then the ranking of the four main influence factors is
x2 � x4 � x1 � x3. Therefore, the most important factor for fog-haze is x2.

From the above numerical example and comparison with Algorithm I in Zhang and Wu [28],
the proposed decision-making algorithms have the following characteristics:

(1) According to the above decision-making process, it is observed that our algorithms and Zhang
and Wu’s [28] approach produce the same ranking of the four influence factors for fog-haze, which
means that our algorithms are reasonable.

(2) It is clear that the decision-making process in our approaches would be more straight-forward
and efficient than the Algorithm 1 proposed by Zhang and Wu [28]. In fact, in the process of
consistency-improving, our approaches utilize the original HMPR information provided by DMs
and all the calculations directly using the HMEs to produce results, which can preserve the original
information of DMs. However, with the Zhang and Wu’s [28] method, one must transfer the original
HMPR given by the DMs into its corresponding MPRs, therefore it seems to be an indirect computation
process. Meanwhile, in the process of obtaining the interval weight vector, it may be derived the same
interval weights for different alternatives when the number of alternatives is too large, which leads to
the original information losses.
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(3) Our approaches investigate effective methods to improve the consistency of HMPRs, so that the
improved HMPRs are acceptably consistent. Furthermore, in order to obtain the acceptably consistent
HMPRs (or MPRs), the required number of iterations by our algorithms are less than Zhang and
Wu’s [28] approach.

6. Conclusions

In this paper, we have reviewed some concepts of HMPR, consistency of HMPR and the
consistency index of HMPR. Then, we have constructed the logarithmic least squares model and
linear optimization model to obtain the priority weight vector of alternatives. Furthermore, in order to
improve the consistency of HMPR, we have developed two algorithms to transform the unacceptable
consistent HMPRs into the acceptable ones, which were followed by the discussion of the convergence
of the developed algorithms. Finally, a numerical example of ranking the influence factors for fog-haze
is provided, and the comparison with an existing approach is performed to validate the effectiveness
of the proposed automatic iterative decision-making algorithms.

However, this paper does not discuss the situation where some DMs decide to not provide their
evaluation information, that is how to construct a decision-making method with incomplete HMPRs in
the GDM problems. Therefore, in the future, we would focus on investigating some novel algorithms
to improve the consistency for incomplete HMPRs, designing the consensus-reaching models for
incomplete HMPRs, and applying the incomplete HMPRs to solve practical applications in other areas
such as pattern recognition, information fusion system, and image processing.
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