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Abstract: We define a general model of stochastically-evolving graphs, namely the edge-uniform
stochastically-evolving graphs. In this model, each possible edge of an underlying general static
graph evolves independently being either alive or dead at each discrete time step of evolution
following a (Markovian) stochastic rule. The stochastic rule is identical for each possible edge and
may depend on the past k ≥ 0 observations of the edge’s state. We examine two kinds of random
walks for a single agent taking place in such a dynamic graph: (i) The Random Walk with a Delay
(RWD), where at each step, the agent chooses (uniformly at random) an incident possible edge, i.e., an
incident edge in the underlying static graph, and then, it waits till the edge becomes alive to traverse
it. (ii) The more natural Random Walk on what is Available (RWA), where the agent only looks at
alive incident edges at each time step and traverses one of them uniformly at random. Our study is
on bounding the cover time, i.e., the expected time until each node is visited at least once by the agent.
For RWD, we provide a first upper bound for the cases k = 0, 1 by correlating RWD with a simple
random walk on a static graph. Moreover, we present a modified electrical network theory capturing
the k = 0 case. For RWA, we derive some first bounds for the case k = 0, by reducing RWA to an
RWD-equivalent walk with a modified delay. Further, we also provide a framework that is shown to
compute the exact value of the cover time for a general family of stochastically-evolving graphs in
exponential time. Finally, we conduct experiments on the cover time of RWA in edge-uniform graphs
and compare the experimental findings with our theoretical bounds.

Keywords: dynamic graphs; random walk; cover time; stochastically-evolving; edge-independent;
temporal graphs

1. Introduction

In the modern era of the Internet, modifications in a network topology can occur extremely
frequently and in a disorderly way. Communication links may fail from time to time, while connections
amongst terminals may appear or disappear intermittently. Thus, classical (static) network theory fails
to capture such ever-changing processes. In an attempt to fill this void, different research communities
have given rise to a variety of theories on dynamic networks. In the context of algorithms and
distributed computing, such networks are usually referred to as temporal graphs [1]. A temporal
graph is represented by a (possibly infinite) sequence of subgraphs of the same static graph. That is,
the graph is evolving over a series of (discrete) time steps under a set of deterministic or stochastic
rules of evolution. Such a rule can be edge- or graph-specific and may take as input graph instances
observed in previous time steps.
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In this paper, we focus on stochastically-evolving temporal graphs. We define a model of evolution,
where there exists a single stochastic rule, which is applied independently to each edge. Furthermore,
our model is general in the sense that the underlying static graph is allowed to be a general connected
graph, i.e., with no further constraints on its topology, and the stochastic rule can include any finite
number of past observations.

Assume now that a single mobile agent is placed on an arbitrary node of a temporal graph
evolving under the aforementioned model. Next, the agent performs a simple random walk; at each
time step, after the graph instance is fixed according to the model, the agent chooses uniformly at
random a node amongst the neighbours of its current node and visits it. The cover time of such a walk
is defined as the expected number of time steps until the agent has visited each node at least once.
Herein, we prove some first bounds on the cover time for a simple random walk as defined above,
mostly via the use of Markovian theory.

Random walks constitute a very important primitive in terms of distributed computing. Examples
include their use in information dissemination [2] and random network structure [3]; also, see the
short survey in [4]. In this work, we consider a single random walk as a fundamental building block
for other more distributed scenarios to follow.

1.1. Related Work

A paper very relevant to ours is the one of Clementi, Macci, Monti, Pasquale and Silvestri [5],
where they considered the flooding time in edge-Markovian dynamic graphs. In such graphs, each
edge independently follows a one-step Markovian rule and their model appears as a special case of
ours (matches our case k = 1). Further work under this edge-Markovian paradigm includes [6,7].

Another work related to our paper is the one of Avin, Koucký and Lotker [8], who defined the
notion of a Markovian evolving graph, i.e., a temporal graph evolving over a set of graphs G1, G2, . . . ,
where the process transits from Gi to Gj with probability pij, and considered random walk cover
times. Note that their approach becomes computationally intractable if applied to our case; each of the
possible edges evolves independently, thence causing the state space to be of size 2m, where m is the
number of possible edges in our model.

Clementi, Monti, Pasquale and Silvestri [9] studied the broadcast problem, when at each time
step, the graph is selected according to the well-known Gn,p model. Furthermore, Yamauchi, Izumi
and Kamei [10] studied the rendezvous problem for two agents on a ring, when each edge of the ring
independently appears at every time step with some fixed probability p.

Moving to a more general scope, research in temporal networks is of interdisciplinary interest,
since they are able to capture a wide variety of systems in physics, biology, social interactions and
technology. For a view of the big picture, see the review in [11]. There exist several papers considering,
mostly continuous-time, random walks on different models of temporal networks: In [12], they
considered a walker navigating randomly on some specific empirical networks. Rocha and Masuda [13]
studied a lazy version of a random walk, where the walker remains at its current node according to
some sojourn probability. In [14], they studied the behaviour of a continuous time random walk on
a stationary and ergodic time-varying dynamic graph. Lastly, random walks with arbitrary waiting
times were studied in [15], while random walks on stochastic temporal networks were surveyed in [16].

In the analysis to follow, we employ several seminal results around the theory of random
walks and Markov chains. For random walks, we base our analysis on the seminal work in [2]
and the electrical network theory presented in [17,18]. For results on Markov chains, we cite the
textbooks [19,20].

1.2. Our Results

We define a general model of stochastically-evolving graphs, where each possible edge evolves
independently, but all of them evolve following the same stochastic rule. Furthermore, the stochastic
rule may take into account the last k states of a given edge. The motivation for such a model lies in
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several practical examples from networking where the existence of an edge in the recent past means it
is likely to exist in the near future, e.g., for telephone or Internet links. In some other cases, existence
may mean that an edge has “served its purpose” and is now unlikely to appear in the near future,
e.g., due to a high maintenance cost. The model is a discrete-time one following previous work in
the computer science literature. Moreover, as a first start and for mathematical convenience, it is
formalized as a synchronous system, where all possible edges evolve concurrently in distinct rounds
(each round corresponding to a discrete time step).

Special cases of our model have appeared in previous literature, e.g., in [9,10] for k = 0 and in the
line of work starting from [5] for k = 1; however, they only consider special graph topologies (like ring
and clique). On the other hand, the model we define is general in the sense that no assumptions, aside
from connectivity, are made on the topology of the underlying graph and any amount of history is
allowed in the stochastic rule. Thence, we believe it can be valued as a basis for more general results to
follow, capturing search or communication tasks in such dynamic graphs.

We hereby provide the first known bounds relative to the cover time of a simple random walk
taking place in such stochastically-evolving graphs for k = 0. To do so, we make use of a simple, yet
fairly useful, modified random walk, namely the Random Walk with a Delay (RWD), where at each
time step, the agent is choosing uniformly at random from the incident edges of the static underlying
graph and then waits for the chosen edge to become alive in order to traverse it. Despite the fact that
this strategy may not sound naturally-motivated enough, it can act as a handy tool when studying
other, more natural, random walk models, as in the case of this paper. Indeed, we study the natural
random walk on such graphs, namely the Random Walk on what is Available (RWA), where at each
time step, the agent only considers the currently alive incident edges and chooses to traverse one out
of them uniformly at random.

For the case k = 0, that is when each edge appears at each round with a fixed probability p
regardless of history, we prove that the cover time for RWD is upper bounded by CG/p, where CG
is the cover time of a simple random walk on the (static) underlying graph G. The result can be
obtained both by a careful mapping of the RWD walk to its corresponding simple random walk on the
static graph and by generalizing the standard electrical network theory literature in [17,18]. Later, we
proceed to prove that the cover time for RWA is between CG/(1− (1− p)∆) and CG/(1− (1− p)δ),
where δ, respectively ∆, is the minimum, respectively maximum, degree of the underlying graph. The
main idea here is to reduce RWA to an RWD walk, where at each step, the traversal delay is lower,
respectively upper, bounded by (1− (1− p)δ), respectively (1− (1− p)∆).

For k = 1, the stochastic rule takes into account the previous, one time step ago, state of the edge.
If an edge was not present, then it becomes alive with probability p, whereas if it was alive, then it
dies with probability q. For RWD, we show a CG/ξmin upper bound by considering the minimum
probability guarantee of existence at each round, i.e., ξmin = min{p, 1− q}. Similarly, we show a
CG/ξmax lower bound, where ξmax = max{p, 1− q}.

Consequently, we demonstrate an exact, exponential-time approach to determine the precise cover
time value for a general setting of stochastically-evolving graphs, including also the edge-independent
model considered in this paper.

Finally, we conduct a series of experiments on calculating the cover time of RWA (k = 0 case) on
various underlying graphs. We compare our experimental results with the achieved theoretical bounds.

1.3. Outline

In Section 2, we provide preliminary definitions and results regarding important concepts and
tools that we use in later sections. Then, in Section 3, we define our model of stochastically-evolving
graphs in a more rigorous fashion. Afterwards, in Sections 4 and 5, we provide the analysis of our
cover time bounds when for determining the current state of an edge, we take into account its last zero
and one states, respectively. In Section 6, we demonstrate an exact approach for determining the cover
time for general stochastically-evolving graphs. Then, in Section 7, we present some experimental
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results on zero-step history, RWA cover time and compare them to the corresponding theoretical
bounds in Section 4. Finally, in Section 8, we cite some concluding remarks.

2. Preliminaries

Let us hereby define a few standard notions related to a simple random walk performed by a
single agent on a simple connected graph G = (V, E). By d(v), we denote the degree, i.e., the number
of neighbours, of a node v ∈ V. A simple random walk is a Markov chain where, for v, u ∈ V, we set
pvu = 1/d(v), if (v, u) ∈ E, and pvu = 0, otherwise. That is, an agent performing the walk chooses the
next node to visit uniformly at random amongst the set of neighbours of its current node. Given two
nodes v, u, the expected time for a random walk starting from v to arrive at u is called the hitting time
from v to u and is denoted by Hvu. The cover time of a random walk is the expected time until the
agent has visited each node of the graph at least once. Let P stand for the stochastic matrix describing
the transition probabilities for a random walk (or, in general, a discrete-time Markov chain), where pij
denotes the probability of transition from node i to node j, pij ≥ 0 for all i, j and

∑
j pij = 1 for all i.

Then, the matrix Pt consists of the transition probabilities to move from one node to another after t
time steps, and we denote the corresponding entries as p(t)ij . Asymptotically, limt→∞ Pt is referred to
as the limiting distribution of P. A stationary distribution for P is a row vector π such that πP = π

and
∑

i πi = 1. That is, π is not altered after an application of P. If every state can be reached from
another in a finite number of steps, i.e., P is irreducible and the transition probabilities do not exhibit
periodic behaviour with respect to time, i.e., gcd{t : p(t)ij > 0} = 1, then the stationary distribution is
unique, and it matches the limiting distribution (fundamental theorem of Markov chains). The mixing
time is the expected number of time steps until a Markov chain approaches its stationary distribution.

In order to derive lower bounds for RWA, we use the following graph family, commonly known
as lollipop graphs, capturing the maximum cover time for a simple random walk, e.g., see [21,22].

Definition 1. A lollipop graph Lk
n consists of a clique on k nodes and a path on n− k nodes connected with a

cut-edge, i.e., an edge whose deletion makes the graph disconnected.

3. The Edge-Uniform Evolution Model

Let us define a general model of a dynamically-evolving graph. Let G = (V, E) stand for a simple,
connected graph, from now on referred to as the underlying graph of our model. The number of
nodes is given by n = |V|, while the number of edges is denoted by m = |E|. For a node v ∈ V, let
N(v) = {u : (v, u) ∈ E} stand for the open neighbourhood of v and d(v) = |N(v)| for the (static)
degree of v. Note that we make no assumptions regarding the topology of G, besides connectedness.
We refer to the edges of G as the possible edges of our model. We consider evolution over a sequence
of discrete time steps (namely 0, 1, 2, . . .) and denote by G = (G0, G1, G2, . . .) the infinite sequence of
graphs Gt = (Vt, Et), where Vt = V and Et ⊆ E. That is, Gt is the graph appearing at time step t, and
each edge e ∈ E is either alive (if e ∈ Et) or dead (if e /∈ Et) at time step t.

Let R stand for a stochastic rule dictating the probability that a given possible edge is alive at
any time step. We apply R at each time step and at each edge independently to determine the set of
currently alive edges, i.e., the rule is uniform with regard to the edges. In other words, let et stand for
a random variable where et = 1, if e is alive at time step t, or et = 0, otherwise. Then, R determines the
value of Pr(et = 1|Ht) where Ht is also determined by R and denotes the history length, i.e., the values
of et−1, et−2, . . ., considered when deciding for the existence of an edge at time step t. For instance,
Ht = ∅ means no history is taken into account, while Ht = {et−1} means the previous state of e is
taken into account when deciding its current state.

Overall, the aforementioned Edge-Uniform Evolution model (EUE) is defined by the parameters
G, R and some initial input instance G0. In the following sections, we consider some special cases for
R and provide some first bounds for the cover time of G under this model. Each time step of evolution
consists of two stages: in the first stage, the graph Gt is fixed for time step t following R, while in the
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second stage, the agent moves to a node in Nt[v] = {v} ∪ {u ∈ V : (v, u) ∈ Et}. Notice that, since G is
connected, then the cover time under EUE is finite, since R models edge-specific delays.

4. Cover Time with Zero-Step History

We hereby analyse the cover time of G under EUE in the special case when no history is taken
into consideration for computing the probability that a given edge is alive at the current time step.
Intuitively, each edge appears with a fixed probability p at every time step independently of the others.
More formally, for all e ∈ E and time steps t, Pr(et = 1) = p ∈ [0, 1].

4.1. Random Walk with a Delay

A first approach toward covering G with a single agent is the following: The agent is randomly
walking G as if all edges were present, and when an edge is not present, it just waits for it to appear in
a following time step. More formally, suppose the agent arrives on a node v ∈ V with (static) degree
d(v) at the second stage of time step t. Then, after the graph is fixed for time step t + 1, the agent
selects a neighbour of v, say u ∈ N(v), uniformly at random, i.e., with probability 1

d(v) . If (v, u) ∈ Et+1,
then the agent moves to u and repeats the above procedure. Otherwise, it remains on v until the first
time step t′ > t + 1 such that (v, u) ∈ Et′ and then moves to u. This way, p acts as a delay probability,
since the agent follows the same random walk it would on a static graph, but with an expected delay
of 1

p time steps at each node. Notice that, in order for such a strategy to be feasible, each node must
maintain knowledge about its neighbours in the underlying graph; not just the currently alive ones.
From now on, we refer to this strategy for the agent as the Random Walk with a Delay (RWD).

Now, let us upper bound the cover time of RWD by exploiting its strong correlation to a simple
random walk on the underlying graph G via Wald’s equation (Theorem 1). Below, let CG stand for the
cover time of a simple random walk on the static graph G.

Theorem 1 ([23]). Let X1, X2, . . . , XN be a sequence of real-valued, independent and identically distributed
random variables, where N is a nonnegative integer random variable independent of the sequence (in other
words, a stopping time for the sequence). If each Xi and N have finite expectations, then it holds:

E[X1 + X2 + . . . + XN ] = E[N] · E[X1]

Theorem 2. For any connected underlying graph G evolving under the zero-step history EUE, the cover time
for RWD is expectedly CG/p.

Proof. Consider a Simple Random Walk (SRW) and an RWD (under the EUE model) taking place on
a given connected graph G. Given that RWD decides on the next node to visit uniformly at random
based on the underlying graph, that is in exactly the same way SRW does, we use a coupling argument
to enforce RWD and SRW to follow the exact same trajectory, i.e., sequence of visited nodes.

Then, let the trajectory end when each node in G has been visited at least once, and denote by T
the total number of node transitions made by the agent. Such a trajectory under SRW will cover all
nodes in expectedly E[T] = CG time steps. On the other hand, in the RWD case, for each transition, we
have to take into account the delay experienced until the chosen edge becomes available. Let Di ≥ 1
be a random variable, where 1 ≤ i ≤ T stands for the actual delay corresponding to node transition
i in the trajectory. Then, the expected number of time steps till the trajectory is realized is given by
E[D1 + . . . + DT ]. Since the random variables Di are independent and identically distributed by the
edge-uniformity of our model, T is a stopping time for them and all of them have finite expectations,
then by Theorem 1, we get: E[D1 + . . . + DT ] = E[T] · E[D1] = CG · 1/p.

For an explicit general bound on RWD, it suffices to use CG ≤ 2m(n− 1) proven in [2].
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A Modified Electrical Network

Another way to analyse the above procedure is to make use of a modified version of the standard
literature approach of electrical networks and random walks [17,18]. This point of view gives us
expressions for the hitting time between any two nodes of the underlying graph. That is, we hereby
(in Lemmata 1, 2 and Theorem 3) provide a generalization of the results given in [17,18], thus correlating
the hitting and commute times of RWD with an electrical network analogue and reaching a conclusion
for the cover time similar to the one of Theorem 2.

In particular, given the underlying graph G, we design an electrical network, N(G), with the
same edges as G, but where each edge has a resistance of r = 1

p ohms. Let Hu,v stand for the hitting
time from node u to node v in G, i.e., the expected number of time steps until the agent reaches v after
starting from u and following RWD. Furthermore, let φu,v declare the electrical potential difference
between nodes u and v in N(G) when, for each w ∈ V, we inject d(w) amperes of current into w and
withdraw 2m amperes of current from a single node v. We now upper-bound the cover time of G
under RWD by correlating Hu,v to φu,v.

Lemma 1. For all u, v ∈ V, Hu,v = φu,v holds.

Proof. Let us denote by Cuw the current flowing between two neighbouring nodes u and w. Then,
d(u) =

∑
w∈N(u) Cuw, since at each node, the total inward current must match the total outward

current (Kirchoff’s first law). Moving forward, Cuw = φuw/r = φuw/(1/p) = p · φuw by Ohm’s law.
Finally, φuw = φuv − φwv, since the sum of electrical potential differences forming a path is equal to
the total electrical potential difference of the path (Kirchoff’s second law). Overall, we can rewrite
d(u) =

∑
w∈N(u) p(φu,v − φw,v) = d(u) · p · φu,v − p

∑
w∈N(u) φw,v. Rearranging gives:

φu,v =
1
p
+

1
d(u)

∑
w∈N(u)

φw,v.

Regarding the hitting time from u to v, we rewrite it based on the first step:

Hu,v =
1
p
+

1
d(u)

∑
w∈N(u)

Hw,v

since the first addend represents the expected number of steps for the selected edge to appear due to
RWD and the second addend stands for the expected time for the rest of the walk.

Wrapping it up, since both formulas above hold for each u ∈ V \ {v}, therefore inducing two
identical linear systems of n equations and n variables, it follows that there exists a unique solution to
both of them, and Hu,v = φu,v.

In the lemma below, let Ru,v stand for the effective resistance between u and v, i.e., the electrical
potential difference induced when flowing a current of one ampere from u to v.

Lemma 2. For all u, v ∈ V, Hu,v + Hv,u = 2mRu,v holds.

Proof. Similar to the definition of φu,v above, one can define φv,u as the electrical potential difference
between v and u when d(w) amperes of current are injected into each node w and 2m of them
are withdrawn from node u. Next, note that changing all currents’ signs leads to a new network
where for the electrical potential difference, namely φ′, it holds φ′u,v = φv,u. We can now apply the
superposition theorem (see Section 13.3 in [24]) and linearly superpose the two networks implied from
φu,v and φ′u,v, creating a new one where 2m amperes are injected into u, 2m amperes are withdrawn
from v and no current is injected or withdrawn at any other node. Let φ′′u,v stand for the electrical
potential difference between u and v in this last network. By the superposition argument, we get
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φ′′u,v = φu,v + φ′u,v = φu,v + φv,u, while from Ohm’s law, we get φ′′u,v = 2m · Ru,v. The proof concludes
by combining these two observations and applying Lemma 1.

Theorem 3. For any connected underlying graph G evolving under the zero-step history EUE, the cover time
for RWD is at most 2m(n− 1)/p.

Proof. Consider a spanning tree T of G. An agent, starting from any node, can visit all nodes by
performing a Eulerian tour on the edges of T (crossing each edge twice). This is a feasible way to
cover G, and thus, the expected time for an agent to finish the above task provides an upper bound
on the cover time. The expected time to cover each edge twice is given by

∑
(u,v)∈ET

(Hu,v + Hv,u)

where ET is the edge-set of T with |ET | = n− 1. By Lemma 2, this is equal to 2m
∑

(u,v)∈ET
Ru,v =

2m
∑

(u,v)∈ET
1
p = 2m(n− 1)/p.

4.2. Random Walk on What Is Available

Random walk with a delay does provide a nice connection to electrical network theory. However,
depending on p, there could be long periods of time where the agent is simply standing still at the
same node. Since the walk is random anyway, waiting for an edge to appear may not sound very
wise. Hence, we now analyse the strategy of a Random Walk on what is Available (shortly RWA).
That is, suppose the agent has just arrived at a node v after the second stage at time step t, and then,
Et+1 is fixed after the first stage at time step t + 1. Now, the agent picks uniformly at random only
amongst the alive incident edges at time step t + 1. Let dt+1(v) stand for the degree of node v in Gt+1.
If dt+1(v) = 0, then the agent does not move at time step t + 1. Otherwise, if dt+1(v) > 0, the agent
selects an alive incident edge each having probability 1

dt+1(v)
. The agent then follows the selected edge

to complete the second stage of time step t + 1 and repeats the strategy. In a nutshell, the agent keeps
moving randomly on available edges and only remains on the same node if no edge is alive at the
current time step. Below, let δ = minv∈V d(v) and ∆ = maxv∈V d(v).

Theorem 4. For any connected underlying graph G with min-degree δ and max-degree ∆ evolving under the
zero-step history EUE, the cover time for RWA is at least CG/(1− (1− p)∆) and at most CG/(1− (1− p)δ).

Proof. Suppose the agent follows RWA and has reached node u ∈ V after time step t. Then, Gt+1

becomes fixed, and the agent selects uniformly at random a neighbouring edge to which to move. Let
Muv (where v ∈ {w ∈ V : (u, w) ∈ E}) stand for a random variable taking value one if the agent moves
to node v and zero otherwise. For k = 1, 2, . . . , d(u) = d, let Ak stand for the event that dt+1(u) = k.
Therefore, Pr(Ak) = (d

k)pk(1− p)d−k is exactly the probability k out of the d edges existing since each
edge exists independently with probability p. Now, let us consider the probability Pr(Muv = 1|Ak):
the probability v will be reached given that k neighbours are present. This is exactly the product of
the probability that v is indeed in the chosen k-tuple (say p1) and the probability that then v is chosen
uniformly at random (say p2) from the k-tuple. p1 = (d−1

k−1)/(
d
k) =

k
d , since the model is edge-uniform,

and we can fix v and choose any of the (d−1
k−1) k-tuples with v in them out of the (d

k) total ones. On the
other hand, p2 = 1

k by uniformity. Overall, we get Pr(Muv = 1|Ak) = p1 · p2 = 1
d . We can now apply

the total probability law to calculate:

Pr(Muv = 1) =
∑d

k=1 Pr(Muv = 1|Ak)Pr(Ak) =
1
d
∑d

k=1 (
d
k)pk(1− p)d−k = 1

d (1− (1− p)d)

To conclude, let us reduce RWA to RWD. Indeed, in RWD, the equivalent transition probability
is Pr(Muv = 1) = 1

d p, accounting both for the uniform choice and the delay p. Therefore, the RWA
probability can be viewed as 1

d p′, where p′ = (1− (1− p)d). To achieve edge-uniformity, we set
p′ = (1− (1− p)δ), which lower bounds the delay of each edge, and finally, we can apply the same
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RWD analysis by substituting p by p′. Similarly, we can set the upper-bound delay p′′ = (1− (1− p)∆)

to lower bound the cover time. Applying Theorem 2 completes the proof.

The value of δ used to lower-bound the transition probability may be a harsh estimate for general
graphs. However, it becomes quite more accurate in the special case of a d-regular underlying graph
where δ = ∆ = d. To conclude this section, we provide a worst-case lower bound on the cover time
based on similar techniques as above.

Lemma 3. There exists an underlying graph G evolving under the zero-step history EUE such that the RWA
cover time is at least Ω(mn/(1− (1− p)∆)).

Proof. We consider the L2n/3
n lollipop graph, which is known to attain a cover time of Ω(mn) for a

simple random walk [21,22]. Applying the lower bound from Theorem 4 completes the proof.

5. Cover Time with One-Step History

We now turn our attention to the case where the current state of an edge affects its next state.
That is, we take into account a history of length one when computing the probability of existence for
each edge independently. A Markovian model for this case was introduced in [5]; see Table 1. The left
side of the table accounts for the current state of an edge, while the top for the next one. The respective
table box provides us with the probability of transition from one state to the other. Intuitively, another
way to refer to this model is as the birth-death model: a dead edge becomes alive with probability p,
while an alive edge dies with probability q.

Table 1. Birth-death chain for a single edge [5].

Dead Alive

dead 1− p p

alive q 1− q

Let us now consider an underlying graph G evolving under the EUE model where each possible
edge independently follows the aforementioned stochastic rule of evolution.

RWD for General (p, q)-Graphs

Let us hereby derive some first bounds for the cover time of RWD via a min-max approach.
The idea here is to make use of the “being alive” probabilities to prove lower and upper bounds for
the cover time parameterized by ξmin = min{p, 1− q} and ξmax = max{p, 1− q}.

Let us consider an RWD walk on a general connected graph G evolving under EUE with a
zero-step history rule dictating Pr(et = 1) = ξmin for any edge e and time step t. We refer to this walk
as the Upper Walk with a Delay (UWD). Respectively, we consider an RWD walk when the stochastic
rule of evolution is given by Pr(et = 1) = ξmax. We refer to this specific walk as the Lower Walk with a
Delay (LWD). Below, we make use of UWD and LWD in order to bound the cover time of RWD in
general (p, q)-graphs.

Theorem 5. For any connected underlying graph G and the birth-death rule, the cover time of RWD is at least
CG/ξmax and at most CG/ξmin.

Proof. Regarding UWD, one can design a corresponding electrical network where each edge has a
resistance of 1/ξmin capturing the expected delay till any possible edge becomes alive. Applying
Theorem 2 gives an upper bound for the UWD cover time.

Let C′ stand for the UWD cover time and C stand for the cover time of RWD under the birth-death
rule. It now suffices to show C ≤ C′ to conclude.
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In birth-death, the expected delay before each edge traversal is either 1/p, in case the possible
edge is dead, or 1/(1− q), in case the possible edge is alive. In both cases, the expected delay is
upper-bounded by the 1/ξmin delay of UWD, and therefore, C ≤ C′ follows since any trajectory under
RWD will take at most as much time as the same trajectory under UWD.

In a similar manner, the cover time of LWD lower bounds the cover time of RWD, and by applying
Theorem 2, we derive a lower bound of CG/ξmax.

6. An Exact Approach

So far, we have established upper and lower bounds for the cover time of edge-uniform
stochastically-evolving graphs. Our bounds are based on combining extended results from simple
random walk theory and careful delay estimations. In this section, we describe an approach to
determine the exact cover time for temporal graphs evolving under any stochastic model. Then, we
apply this approach to the already seen zero-step history and one-step history cases of RWA.

The key component of our approach is a Markov chain capturing both phases of evolution: the
graph dynamics and the walk trajectory. In that case, calculating the cover time reduces to calculating
the hitting time to a particular subset of Markov states. Although computationally intractable for large
graphs, such an approach provides the exact cover time value and is hence practical for smaller graphs.

Suppose we are given an underlying graph G = (V, E) and a set of stochastic rules R capturing
the evolution dynamics of G. That is, R can be seen as a collection of probabilities of transition from
one graph instance to another. We denote by k the (longest) history length taken into account by the
stochastic rules. Like before, let n = |V| stand for the number of nodes and m = |E| for the number of
possible edges of G. We define a Markov chain M with states of the form (H, v, Vc), where:

• H = (H1, H2, . . . , Hk) is a k-tuple of temporal graph instances, that is for each i = 1, 2, . . . , k, Hi is
the graph instance present i− 1 time steps before the current one (which is H1)

• v ∈ V(G) is the current position of the agent
• Vc ⊆ V(G) is the set of already covered nodes, i.e., the set of nodes that have been visited at least

once by the agent

As described earlier for our edge-uniform model, we assume evolution happens in two phases.
First, the new graph instance is determined according to the rule-set R. Second, the new agent
position is determined based on a random walk on what is available. In this respect, consider a state
S = (H, v, Vc) and another state S′ = (H′, v′, V′c ) of the described Markov chain M. Let Pr[S → S′]
denote the transition probability from S to S′. We seek to express this probability as a product of the
probabilities for the two phases of evolution. The latter is possible, since, in our model, the random
walk strategy is independent of the graph evolution.

For the graph dynamics, let Pr[H R−→ H′] stand for the probability to move from a history-tuple
H to another history-tuple H′ under the rules of evolution in R. Note that, for i = 1, 2, . . . , k− 1, it
must hold H′i+1 = Hi in order to properly maintain history, otherwise the probability becomes zero.
On the other hand, for valid transitions, the probability reduces to Pr[H′1|(H1, H2, . . . , Hk)], which is
exactly the probability that H′1 becomes the new instance given the history H = (H1, H2, . . . , Hk) of
past instances (and any such probability is either given directly or implied by R).

For the second phase, i.e., the random walk on what is available, we denote by Pr[v
Hj−→ v′] the

probability of moving from v to v′ on some graph instance Hj. Since the random walk strategy is
only based on the current instance, we can derive a general expression for this probability, which
is independent of the graph dynamics R. Below, let NHj(v) stand for the set of neighbours of v in
graph instance Hj. If {v, v′} 6∈ E(G), that is if there is no possible edge between v and v′, then for

any temporal graph instance Hj, it holds Pr[v
Hj−→ v′] = 0. The probability is also zero for all graph

instances Hj where the possible edge is not alive, i.e., {v, v′} 6∈ E(Hj). In contrast, if {v, v′} ∈ E(Hj),

then Pr[v
Hj−→ v′] = |NHj(v)|−1, since the agent chooses a destination uniformly at random out of the
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currently alive ones. Finally, if v = v′, then the agent remains still, with probability one, only if there
exist no alive incident edges. We summarize the above facts in the following equation:

Pr[v
Hj−→ v′] =


1 , if NHj(v) = ∅ and v′ = v
|NHj(v)|−1 , if v′ ∈ NHj(v)
0 , otherwise

(1)

Overall, we combine the two phases in M and introduce the following transition probabilities.

• If |Vc| < n:

Pr[(H, v, Vc)→ (H′, v′, V′c )] =


Pr[H R−→ H′] · Pr[v

H′1−→ v′] , if v′ ∈ V′c and V′c = Vc

Pr[H R−→ H′] · Pr[v
H′1−→ v′] , if v′ 6= v, v′ 6∈ V′c and V′c = Vc ∪ {v′}

0 , otherwise

• If |Vc| = n:

Pr[(H, v, Vc)→ (H′, v′, V′c )] =

®
1 , if H = H′, v = v′, Vc = V′c
0 , otherwise

For |Vc| < n, notice that only two cases may have a non-zero probability with respect to the
growth of Vc. If the newly visited node v′ is already covered, then V′c must be identical to Vc since no
new nodes are covered during this transition. Further, if a new node v′ is not yet covered, then V′c is
updated to include it, as well as all the covered nodes in Vc.

For |Vc| = n, the idea is that once such a state has been reached, and so all nodes are covered,
then there is no need for further exploration. Therefore, such a state can be made to absorb. In this
respect, let us denote the set of these states as Γ = {(H, v, Vc) ∈ M : |Vc| = n}.

Definition 2. Let ECT(G, R) be the problem of determining the exact value of the cover time for an RWA on a
graph G stochastically evolving under rule-set R.

Theorem 6. Assume all probabilities of the form Pr[H R−→ H′] used in M are exact reals and known a priori.
Then, for any underlying graph G and stochastic rule-set R, it holds that ECT(G, R) ∈ EXPTIME.

Proof. For each temporal graph instance, Hi, in the worst case, there exist 2m possibilities, since each
of the m possible edges is either alive or dead at a graph instance. For the whole history H, the number
of possibilities becomes (2m)k = 2k·m by taking the product of k such terms. There are n possibilities
for the walker’s position v. Finally, for each v ∈ V(G), we only allow states such that v ∈ Vc. Therefore,
since we fix v, there are up to n− 1 nodes to be included or not in Vc leading to a total of O(2n−1)

possibilities for Vc. Taking everything into account, M has a total of O(2k·m+n−1n) states.
Let Hs,Γ stand for the hitting time of Γ when starting from a state s ∈ M. Assuming exact real

arithmetic, we can compute all such hitting times by solving the following system (Theorem 1.3.5 [20]):®
Hs,Γ = 0 , ∀s ∈ Γ

Hs,Γ = 1 +
∑

s′ 6∈Γ Pr[s→ s′] · Hs′ ,Γ , ∀s 6∈ Γ

Let C stand for the cover time of an RWA on G evolving under R. By definition, the cover time
is the expected time till all nodes are covered, regardless of the position of the walker at that time.
Consider the set S = {(H, v, {v}) ∈ M : v ∈ V(G)} of start positions for the agent as depicted in M.
Then, it follows C = maxs∈S Hs,Γ, where we take the worst-case hitting time to a state in Γ over any
starting position of the agent. In terms of time complexity, computing C requires computing all values



Algorithms 2018, 11, 149 11 of 15

Hs,Γ, for every s ∈ S. To do so, one must solve the above linear system of size O(2k·m+n−1n), which
can be done in time exponential to input parameters n, m and k.

It is noteworthy to remark that this approach is general in the sense that there are no assumptions
on the graph evolution rule-set R besides it being stochastic, i.e., describing the probability of transition
from each graph instance to another given some history of length k. In this regard, Theorem 6 captures
both the case of Markovian evolving graphs [8] and the case of edge-uniform graphs considered
in this paper. We now proceed and show how the aforementioned general approach applies to the
zero-step and one-step history cases of edge-uniform graphs. To do so, we calculate the corresponding
graph-dynamics probabilities. The random walk probabilities are given in Equation (1).

6.1. RWA on Edge-Uniform Graphs (Zero-Step History)

Based on the general model, we rewrite the transition probabilities for the special case when RWA
takes place on an edge-uniform graph without taking into account any memory, i.e., the same case as
in Section 4. Notice that, since past instances are not considered in this case, the history-tuple reduces
to a single graph instance H. We rewrite the transition probabilities, for the case |Vc| < n, as follows:

Pr[(H, v, Vc)→ (H, v′, V′c )] =


Pr[H′|H] · Pr[v H′−→ v′] , if v′ ∈ V′c and V′c = Vc

Pr[H′|H] · Pr[v H′−→ v′] , if v′ 6= v, v′ 6∈ V′c and V′c = Vc ∪ {v′}
0 , otherwise

Let α stand for the number of edges alive in H′. Since there is no dependence on history and each
edge appears independently with probability p, we get Pr[H′|H] = Pr[H′] = pα · (1− p)m−α.

6.2. RWA on Edge-Uniform Graphs (One-Step History)

We hereby rewrite the transition probabilities for a Markov chain capturing an RWA taking place
on an edge-uniform graph where, at each time step, the current graph instance is taken into account to
generate the next one. This case is related to the results in Section 5. Due to the history inclusion, the
transition probabilities become more involved than those seen for the zero-history case. Again, we
consider the non-absorbing states, where |Vc| < n.

Pr[((H1, H2), v, Vc)→ ((H′1, H′2), v′, V′c )] =


Pr[(H1, H2)→ (H′1, H′2)] · Pr[v

H′1−→ v′] , if v′ ∈ V′c and V′c = Vc

Pr[(H1, H2)→ (H′1, H′2)] · Pr[v
H′1−→ v′] , if v′ 6∈ V′c and V′c = Vc ∪ {v′}

0 , otherwise

If H′2 6= H1, i.e., if it does not hold that, for each e ∈ G, e ∈ H′2 if and only if e ∈ H1, then
Pr[(H1, H2) → (H′1, H′2)] = 0, otherwise the history is not properly maintained. On the other hand,
if H′2 = H1, then Pr[(H1, H2) → (H′1, H′2)] = Pr[(H1, H2) → (H′1, H1)] = Pr[H′1|H1]. To derive an
expression for the latter, we need to consider all edge (mis)matches between H′1 and H1 and properly
apply the birth-death rule (Table 1). Below, we denote by D(H) = E(G) \ E(H) the set of possible
edges of G, which are dead at instance H. Let c00 = |D(H1) ∩ D(H′1)|, c01 = |D(H1) ∩ E(H′1)|,
c10 = |E(H1) ∩ D(H′1)| and c11 = |E(H1) ∩ E(H′1)|. Each of the c00 edges was dead in H1 and
remained dead in H′1, with probability 1 − p. Similarly, each of the c01 edges was dead in H1

and became alive in H′1, with probability p. Furthermore, each of the c10 edges was alive in H1

and died in H′1, with probability q. Finally, each of the c11 edges was alive in H1 and remained
alive in H′1, with probability 1 − q. Overall, due to the edge-independence of the model, we get
Pr[H′1|H1] = (1− p)c00 · pc01 · qc10 · (1− q)c11 .
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7. Experimental Results

In this section, we discuss some experimental results to complement our previously-established
theoretical bounds. We simulated an RWA taking place in graphs evolving under the zero-step history
model. We provided an experimental estimation of the value of the cover time for such a walk. To do
so, for each specific graph and value of p considered, we repeated the experiment a large number of
times, e.g., at least 1000 times. In the first experiment, we started from a graph instance with no alive
edges. At each step, after the graph evolved, the walker picked uniformly at random an incident alive
edge to traverse. The process continued till all nodes were visited at least once. Each next experiment
commenced with the last graph instance of the previous experiment as its first instance.

We constructed underlying graphs in the following fashion: given a natural number n, we initially
constructed a path on n nodes, namely v1, v2, . . . , vn. Afterwards, for each two distinct nodes vi and
vj, we added an edge {vi, vj} with probability equal to a randomThreshold parameter. For instance,
randomThreshold = 0 means the graph remains a path. On the other hand, for randomThreshold = 1,
the graph becomes a clique.

In Tables 2–4, we display the average cover time, rounding it to the nearest natural number,
computed in some indicative experiments for randomThreshold equal to 0.85, 0.5 and 0.15, respectively.
Consequently, we provide estimates for a lower and an upper bound on the temporal cover time. In
this respect, we experimentally compute a value for the cover time of a simple random walk in the
underlying graph, i.e., the static cover time. Then, we plug in this value in place of CG to apply the
bounds given in Theorem 4. Overall, the temporal cover times computed appear to be within their
corresponding lower and upper bounds.

Table 2. Experimental results for randomly-produced graphs (randomThreshold = 0.85).

Size δ ∆ p Static Cover Time Temporal Cover Time Lower Bound Upper Bound

10 6 9 0.9 28 28 28 28
10 7 9 0.5 28 28 28 28
10 7 9 0.2 27 31 31 34
10 7 9 0.1 29 50 47 61
10 7 9 0.05 28 78 76 93
10 7 8 0.01 28 356 83 413

100 74 92 0.9 535 535 535 535
100 74 91 0.05 530 543 535 543
100 76 92 0.01 536 912 888 1003
100 74 92 0.005 541 1476 1465 1746

250 197 229 0.99 1551 1551 1551 1551
250 194 228 0.75 1555 1555 1555 1555
250 192 225 0.01 1548 1744 1728 1810
250 201 228 0.005 1538 2326 2259 2423
250 198 225 0.001 1546 7948 7670 8603
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Table 3. Experimental results for randomly-produced graphs (randomThreshold = 0.5).

Size δ ∆ p Static Cover Time Temporal Cover Time Lower Bound Upper Bound

10 3 6 0.9 35 35 35 35
10 3 7 0.5 33 35 34 38
10 5 8 0.2 28 37 33 41
10 4 8 0.1 34 69 60 100
10 3 8 0.05 32 118 96 226
10 3 7 0.01 33 780 486 1113

100 39 60 0.9 542 542 542 542
100 37 68 0.1 561 571 561 572
100 35 63 0.05 556 589 579 667
100 38 63 0.01 544 1349 1160 1714
100 35 61 0.005 549 2436 2085 3413

250 106 144 0.9 1589 1589 1589 1589
250 105 145 0.025 1581 1646 1623 1700
250 109 147 0.01 1579 2150 2046 2372
250 105 150 0.005 1584 3324 2998 3871

Table 4. Experimental results for randomly-produced graphs (randomThreshold = 0.15).

Size δ ∆ p Static Cover Time Temporal Cover Time Lower Bound Upper Bound

10 2 5 0.9 38 38 38 38
10 1 5 0.5 62 70 64 125
10 2 4 0.2 41 88 69 113
10 2 5 0.1 48 176 117 252
10 1 5 0.05 46 361 203 919
10 2 4 0.01 38 1356 959 1899

100 9 28 0.9 671 671 671 671
100 8 24 0.1 634 740 689 1113
100 11 25 0.05 616 1033 852 1428
100 9 24 0.01 694 4152 3240 8028
100 10 23 0.005 642 7873 5894 13127

250 25 57 0.9 1708 1708 1708 1708
250 27 59 0.1 1700 1739 1700 1803
250 23 54 0.01 1750 5167 4179 8480
250 23 54 0.005 1736 9601 7321 15944

8. Conclusions

We defined the general edge-uniform evolution model for a stochastically-evolving graph, where
a single stochastic rule is applied, but to each edge independently, and provided lower and upper
bounds for the cover time of two random walks taking place on such a graph (cases k = 0, 1).
Moreover, we provided a general framework to compute the exact cover time of a broad family of
stochastically-evolving graphs in exponential time.

An immediate open question is how to obtain a good lower/upper bound for the cover time of
RWA in the birth-death model. In this case, the problem becomes quite more complex than the k = 0
case. Depending on the values of p and q, the walk may be heavily biased, positively or negatively,
toward possible edges incident to the walker’s position, which were used in the recent past.

The source code associated with the experiments in Section 7 is available online at https://github.
com/yiannislamprou/AvgRWA.
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