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Abstract: Recently, algorithms based on the deep neural networks and residual networks have been
applied for super-resolution and exhibited excellent performance. In this paper, a multi-branch deep
residual network for single image super-resolution (MRSR) is proposed. In the network, we adopt a
multi-branch network framework and further optimize the structure of residual network. By using
residual blocks and filters reasonably, the model size is greatly expanded while the stable training
is also guaranteed. Besides, a perceptual evaluation function, which contains three parts of loss,
is proposed. The experiment results show that the evaluation function provides great support for
the quality of reconstruction and the competitive performance. The proposed method mainly uses
three steps of feature extraction, mapping, and reconstruction to complete the super-resolution
reconstruction and shows superior performance than other state-of-the-art super-resolution methods
on benchmark datasets.

Keywords: single image super-resolution; deep neural networks; residual networks; peak
signal-to-noise ratio; structural similarity index

1. Introduction

Single image super-resolution (SISR) is an important topic in digital image processing and
computer vision. SISR aims to recover a high resolution (HR) image from its low resolution (LR) image.
Generally, many studies assume that the LR image is down-sampled or bicubicing from HR image
with a scale factor. In the past decades, the problem of image super-resolution [1] (SR) has attracted
extensive attention. These SR works have been applied to satellite imaging [2], medical imaging [3,4],
face recognition [5], and surveillance [6]. Inherently, the SR is a highly ill-posed problem since there is a
lot of high-frequency information lost for the LR image. Furthermore, the one-to-many mapping from
LR image to HR image has many solutions. Therefore, SR can be considered as an inference problem,
which needs to restructure the missing high-frequency data from the low-frequency components.

Thus far, many methods based on deep convolution neural network [7–10] have been proposed
for the single image super-resolution and show excellent performance. These approaches apply
the back-propagation algorithm [11] to train on large image datasets in order to learn the nonlinear
mappings between LR images and HR images. Compared with previous statistics-based [12–15]
and patch-based [16–22] models, these techniques provide improved performance for the peak
signal-to-noise ratio (PSNR) and the structural similarity (SSIM). Due to the characteristics of deep
convolution networks, these works will still have some existing defects. Such as the minor changes in
network structure and different training methods will cause huge differences in reconstruction results.
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Besides, for a better mapping between the LR and HR image, the network layers and parameters
often needs to be increased, which will cause the network overfitting and insensitivity to initialization
weights. Meanwhile, it will increase the training difficulty and the pressure of memory. Obviously,
this is not beneficial for the convergence of network and the reconstruction task.

With the development of residual network [23] (ResNet), SRResNe [9] is proposed for single
image super-resolution and successfully solves those overfitting and memory issues. However,
since SRResNet simply employs the residual network architecture that is proposed for image
classification and detection, it doesn’t have much modification, which makes it unable to obtain
the optimal performance in the process of reconstruction. Therefore, the method of enhanced deep
residual networks for single image super-resolution [24] (EDSR) optimizes the ResNet architecture
and removes unnecessary modules to simplify the network. Compared with SRResNet, EDSR solves
the legacy problems and achieves superior reconstruction performance on all datasets in terms of
PSNR and SSIM. However, this improved result is achieved at the cost of a large number of residual
blocks and parameters. Roughly 43 M parameters are applied to the network structure of EDSR.
In addition, EDSR increases the receptive field of the network structure by increasing the number
of filters, which uses 256 filters, so as to achieve the purpose of superior reconstruction from the LR
image. This design not only increases the difficulty of training and storage greatly, but also makes the
iterative updating of parameters insensitive.

In order to solve these issues, we propose a multi-branch deep residual network. There are two
designs in our method to improve the performance and ease the difficulty of training. First, multiple
branches network structure is adopted in our approach and all branches are supervised. Each branch
has its own reconstruction network. Additionally, the feature maps extracted by each branch are sent to
its own reconstruction network to complete the SR task. While this design solves the training problem,
it can also enlarge the receptive field of the network, which determines the amount of contextual
information that can be exploited to infer missing high-frequency components. Therefore, our network
effectively reduces the number of filters.

Second, we propose a new residual network structure. Compared with the existing ResNet
structure, our proposed structure can get more effective components to infer the missing high-frequency
that determines the authenticity of the reconstructed image. This is proved in the experiments, which
shows that the proposed ResNet structure can achieve better reconstruction with significantly fewer
parameters. Furthermore, the skip-connection from input to the reconstruction layer is applied in our
network, which can largely achieves the data correlation and information sharing between the input
and output. Finally, we evaluate our algorithm on the standard benchmark datasets. Compared with a
number of current methods, our model shows superior performance.

2. Related Work

2.1. Image Super-Resolution

Thus far, many methods have been proposed to solve the super-resolution problem. They can
be categorized into four types—image statistical methods, prediction based methods, edge based
methods, and patch-based methods. Early algorithms apply interpolation techniques and statistical
methods [25,26] to SR, but work hardly with the lost details and realistic textures. Then, methods based
on prediction, which are the first techniques for SISR, are proposed to reconstruct higher resolution
images. While those filtering algorithms use bicubicing or linear filtering to oversimplify the SISR
problem, methods based on edge preservation [27,28] have been proposed. These approaches not
only take advantage in speed, but can also achieve overly smooth texture reconstruction. In addition,
many works based on patch [14,26,29,30] are also designed for SR. With the patch redundancies
across scales within the image, Glasner et al. [29] proposed an algorithm to drive the research and
development of SR. Compared with the other three methods, these methods based on patch exhibit
superior performance.
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In order to achieve a better reconstruction, a superior mapping function from low resolution to
high resolution is necessary. Among the existing techniques, those works based on deep neural
networks are considered to have a strong capability to achieve significant mapping in image
super-resolution. Dong et al. [10] first adopt convolutional neural network (CNN) architecture to solve
the problem of SISR. They use a three-layer deep fully convolutional network to achieve state-of-the-art
SR performance. This attempt shows that the CNN model can further improve reconstruction both
in terms of speed and quality. Subsequently, various algorithms based on CNN model, including
deeply-recursive convolutional network (DRCN) [8], are proposed to study for SR. With the residual
network introduced by He et al. [23], the CNN methods can be used to train much deeper network
and have better performance. Such as the method of EDSR, which is proposed by Lim et al. [24],
uses enhanced deep residual networks for SISR and achieves improved performance. Moreover,
Ledig et al. [9] first adopts the generative adversarial networks [31] (GAN) for SISR. In their model,
powerful data generation capability of the GAN network and appropriate evaluation function based
on the Nash equilibrium have been well applied.

To train network models better, a perceptual loss function is needed. As the common loss function,
mean squared error [32,33] (MSE) has been widely used to calculate the pixel-wise error in general
image restoration. Meanwhile, MSE is usually applied to compute the peak signal-to-noise ratio
(PSNR), which is a major performance measure in reconstruction. Besides, the structural similarity
index (SSIM) is another evaluation index for SR. The higher PSNR or SSIM is corresponding to better
recovering quality.

2.2. Residual Network in Super-Resolution

Residual network (ResNet) is a kind of improved neural network, which achieves the identity
mapping by applying the shortcut connections in the structure. This design cannot only eliminate
the degradation during the SGD optimization process, but also enables the data to flow across layers.
It is this characteristic that allows the network to be extended deeper. Compared with the single
deep convolution neural network, ResNet can avoid the overfitting effectively and achieve better
performance. Thus far, ResNet has been widely used in deep networks to deal with the computer
vision problems. Meanwhile, these properties provide a guarantee for ResNet to be applied to solve
the SR problem. The methods of SRResNet and EDSR, which apply the residual network in their
structure, have achieved state-of-the-art performance in SISR.

3. Proposed Methods

3.1. Residual Blocks

Since the residual networks were proposed to solve the computer vision problems such as image
classification and detection, they have shown superior performance, especially for the tasks that are
from low-level to high-level. SRResNet employs the ResNet architecture directly to complete the SR
reconstruction. EDSR improves the performance by adjusting the ResNet structure. In proposed model,
the ResNet architecture is further improved and achieves better performance in SR. Compared with
original residual network, we optimize the structure of residual network by substituting BN layers
with the convolution layers. Further, different from the existing residual network structures that obtain
the output from the input and the output of the last layer of the network, the newly proposed ResNet
structure combines the input and the output of every layer to get the network output, as shown in
Figure 1. The experiment shows that these modifications can not only speed up the convergence of the
network, but can also improve the performance substantially in terms of image details and textures.
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Figure 1. The comparison of different residual networks structure among the Original, SRResNet,
EDSR, and our proposed.

3.2. Model Architecture

In this section, the proposed model structure will be introduced, outlined in Figure 2. Our model
conceptually consists of three parts: Feature extraction, mapping, and reconstruction. The feature
extraction operation gets the features from the input LR image and represents them as a set of feature
maps which are ready for the next mapping operation. In order to deliver more information to
the next operation, in addition to using multiple filters and residual blocks to operate on the input,
we also use a sliding connection to send the input directly to the mapping network. Then, non-linear
mapping from LR to HR is worked by the mapping operation, which is the main component that
solves the SR task. Obviously, the quality of SR mainly depends on the performance of the mapping
network. In proposed model, the mapping network is composed of five branches. Each branch applies
residual blocks and filters to achieve the effective mapping from LR to HR feature maps with different
parameters. Moreover, the convolution layers are inserted between every two branches, which will
result in different sizes of each branch network. This design provides the feasibility to implement
multi-scale network and takes advantage of inter-scale correlation. Finally, the reconstruction networks
undertake the task of rebuilding the super-resolution image. Since the output of each branch not only
differs in size but also in number, every branch has its own independent reconstruction subnetwork.
Every reconstruction network combines the output of the corresponding branch network with the
original input to restore the SR image. Furthermore, we apply the sub-pixel convolution layers to every
reconstruction network to upscale the LR image. Compared with the deconvolution layer or other
implementations, which use various forms of upscaling before convolution, the sub-pixel convolution
layer is faster in training. According to the structure of MRSR, the final SR image is derived from each
reconstruction network.

In the proposed architecture, the feature extraction modules consist of ten residual blocks and
filters with 3 × 3 kernels that allow more detailed texture information and hidden states to be passed.
As the most important component of the model, the mapping network combines the advantages of
multi-branch networks and residual networks where kernels are set to 5 × 5. By adopting larger kernels,
the larger receptive field can be covered in the mapping network. Our model has approximately
50 times more receptive field than DRCN.
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restored from every branch output and the LR input with different weights. 
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Figure 2. The architecture of our proposed SR network (MRSR), which consists of three parts: Feature
extraction, mapping, and reconstruction. The feature extraction is composed of multiple filters and
residual blocks. The non-linear mapping between LR and SR adopt the multi-branch network structure
and each branch is made up of residual blocks. In the reconstruction, the final output is restored from
every branch output and the LR input with different weights.

3.3. Training

As described in Section 3.2, the feature extraction network takes the low-resolution image ILR as
input. Assuming that this part of network is model F, we can get the output F(ILR), which is the input
to the mapping network M. Determined by the multi-branch structure, the output of each branch
network Mn, n = 1, 2, · · · , N can be described as:

Mn = gn(gn−1 · · · (g1(F(ILR), ILR))) (1)

where the operator g denotes the function which represents each branch network. Since every branch
network has different components, each gn, n = 1, 2 · · · , N represents different function expression.

The reconstruction network R takes the Mn as input and complete the reconstruction of
super-resolution images. Under the branch-supervision, the predictions Rn, n = 1, 2, · · · , N from
each reconstruction network are:

Rn = hn(ILR, Mn) (2)

Same as the mapping network, the function h completes the reconstruction task of each recursive
network. This process can be considered as the inverse operation of feature extraction network in a
sense. Following our model, the final output ISR is the weighted average of all intermediate predictions
and original input ILR:

ISR =
N

∑
n=1

wn · Rn + w0 · ILR (3)

Obviously, the wn represents the weight of every intermediate prediction in reconstruction.
Learning from training, these weights will directly determine the final reconstruction quality.

In order to achieve superior performance, besides the ingenious network architecture, a loss
function, which is as accurate as possible, is also necessary. Here, the training loss function, which can
find optimal parameters for a proposed network, will be introduced. First, the difference between
super-resolution image and high-resolution is the most intuitive expression. Combined with L2 loss,
which is generally preferred since it minimizes the MSE, the part of loss function is defined as:
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lSR
1 =

1
WH

W

∑
i=1

H

∑
j=1

(ISR
(i,j) − IHR

(i,j))
2

(4)

where W and H are the image size. The ISR and IHR represent the reconstructed image and reference
image respectively. According to proposed model, every branch network needs to be supervised:

lSR
2 =

1
NWH

N

∑
n=1

W

∑
i=1

H

∑
j=1

(Rn(i,j) − IHR
(i,j))

2
(5)

Furthermore, based on the ideas of Johnson et al. [34] and Bruna et al. [35], a pre-trained 16 layer
VGG network is adopted to compute the VGG loss lSR

VGG, which is closer to perceptual similarity.
The lSR

VGG is based on the ReLU activation layers of the VGG network, described as Zisserman [36].
Each activation layer in the VGG network will get different feature maps for the two different inputs
of the reconstructed image ISR and the truth image IHR. Then, we define the lSR

VGG as the Euclidean
distance between these feature maps:

lSR
VGG =

1
XY

X

∑
i=1

Y

∑
j=1

∣∣∣∣∣∣ψ(i,j)(ISR)− ψ(i,j)(IHR)
∣∣∣∣∣∣2 (6)

where ψ(i,j) denotes the i-th feature map of j-th activation layer of the VGG network. X and Y are the
dimensions of the feature maps. For the final loss function, we have:

lSR = α × lSR
1 + (1 − α)× lSR

2 + β × lSR
VGG (7)

where α and β represents the weight of the partial loss, which are setting between 0 and 1. Based on a
series of experiments, we find that high α makes the model stable and easy to converge.

4. Experiments

4.1. Datasets

Fairly, we implement all experiments on the standard datasets which have been widely used
for other image restoration tasks. These datasets mainly include: Set5 [37], Set14 [38], BSD100 [39],
and Urban100 [40]. Meanwhile, our model is also being tested on a newly proposed high-quality
images dataset DIV2K [41], which contains 1000 training and testing images and is the official dataset
of the NTIRE2017 Super-Resolution Challenge.

4.2. Training Details

For all experiments, the RGB HR image is down-sampled by using a bicubic kernel with a
scale factor r. This is a common method to obtain the LR image, which has been applied in other
state-of-the-art methods for an SR problem. The HR images used in all experiments are cropped to
96 × 96 with a batch-size of 16. In training, our network is trained with an initialized learning rate of
10−4 and 106 update iterations on a GPU GTX1080. For optimization, we use the ADAM (Adaptive
Moment Estimation) with the setting β1 = 0.9, β2 = 0.99, and ε = 10−8.

In terms of network architecture, we use 60 residual blocks totally. The weights in layers are
initialized by the same method. For the biases, we set to zero. To achieve a fair comparison with other
SR reconstruction methods, we take the PSNR and SSIM as the performance metrics to evaluate the
experiment results.
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4.3. Comparisons with State-of-the-Art Methods

In this section, the qualitative and quantitative comparisons with other state-of-the-art SR
approaches will be introduced. We mainly compare the performance of MRSR with results from
Bicubic, A+ [21], SRCNN, DRCN, SRResNet, EDSR, and the most recent work WSD [42]. Benchmark,
the public code for these algorithms and the same technique to obtain the LR images from HR images
were used in experiments. For a good visual comparison, we also adopt same method to deal with the
luminance components.

Besides, compared with EDSR, the new ResNet structure uses fewer filters and parameters.
The proposed model only uses 128 filters that account for 50% of EDSR. Not only that, the parameters
has been reduced to about 12 M, which is 0.28 times compared with EDSR, as shown in Table 1.
Consequently, the GPU memory usage and the training difficulty can be dramatically reduced.
Moreover, the optimized ResNet architecture exhibits better performance with less computation.

The summary quantitative results on several datasets are presented in Table 2. As can be seen
from the table, our model exhibits superior performance than existing methods in all datasets and scale
factors in terms of PSNR and SSIM. In addition, visual comparisons of the super-resolution images
are shown in Figures 3–5. It can be seen intuitively from the figures that our reconstructed images
show higher quality regardless of details or textures and exhibit more realistic outputs compared with
the previous works. In Figure 6, the proposed approach is also compared with DRCN quantitatively.
Moreover, the comparison between our algorithm and the most recent work WSD, which use wiener
filter in similarity domain to achieve the reconstruction of single image super-resolution, is shown in
Figure 7. Obviously, the SR result has been improved greatly.

Table 1. Parameters comparison.

SRResNet EDSR MRSR

Residual blocks 16 32 60
Filters 64 256 128

parameters 1.5 M 43 M 12 M

Table 2. Benchmark test results (PSNR(dB)/SSIM) on datasets Set5, Set14, B100, Urban100, and DIV2K
for scale factor ×2, ×3, ×4. Bold indicates the best performance.

Dataset Scale Bicubic A+ SRCNN DRCN SRResNet EDSR WSD MRSR (ours)

Set5
×2 33.66/0.9299 36.54/0.9544 36.66/0.9542 37.63/0.9588 -/- 38.11/0.9601 37.21/- 38.32/0.9610
×3 30.39/0.8682 32.58/0.9088 32.75/0.9090 33.82/0.9226 -/- 34.65/0.9282 33.50/- 34.88/0.9305
×4 28.42/0.8104 30.28/0.8603 30.48/0.8628 31.53/0.8854 32.05/0.8910 32.46/0.8968 31.39/- 32.97/0.9004

Set14
×2 30.24/0.8688 32.28/0.9056 32.42/0.9063 33.04/0.9118 -/- 33.92/0.9195 32.83/- 34.25/0.9214
×3 27.55/0.7742 29.13/0.8188 29.28/0.8209 29.76/0.8311 -/- 30.52/0.8462 29.72/- 30.83/0.8539
×4 26.00/0.7027 27.32/0.7491 27.49/0.7503 28.02/0.7670 28.53/0.7804 28.80/0.7876 27.98/- 29.42/0.7984

B100
×2 29.56/0.8431 31.21/0.8863 31.36/0.8879 31.85/0.8942 -/- 32.32/0.9013 30.29/- 32.67/0.9081
×3 27.21/0.7385 28.29/0.7835 28.41/0.7863 28.80/0.7963 -/- 29.25/0.8093 26.95/- 29.54/0.8112
×4 25.96/0.6675 26.82/0.7087 26.90/0.7101 27.23/0.7233 27.57/0.7354 27.71/0.7420 25.16/- 28.23/0.7556

Urban100
×2 26.88/0.8403 29.20/0.8938 29.50/0.8946 30.75/0.9133 -/- 32.93/0.9351 -/- 33.31/0.9384
×3 24.46/0.7349 26.03/0.7973 26.24/0.7989 27.15/0.8076 -/- 28.80/0.8653 -/- 29.12/0.8705
×4 23.14/0.6577 24.32/0.7183 24.52/0.7221 25.14/0.7510 26.07/0.7839 26.64/0.8033 -/- 27.17/0.8129

DIV2K
validation

×2 31.01/0.9393 32.89/0.9570 33.05/0.9581 -/- -/- 35.03/0.9695 -/- 35.46/0.9731
×3 28.22/0.8906 29.50/0.9116 29.64/0.9138 -/- -/- 31.26/0.9304 -/- 31.53/0.9382
×4 26.66/0.8521 27.70/0.8736 27.78/0.8753 -/- -/- 29.25/0.9017 -/- 29.73/0.9076
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5. Conclusions

In this paper, we present a multi-branch deep residual algorithm for the SR problem. By optimizing
the residual network, our model achieves better performance with fewer parameters and filters on
all datasets. Coupled with the use of multi-branch networks, the training and convergence problems
were partly solved. Due to the proposed supervision function, the reconstructed images show a better
performance in the edge details and textures compared with other existing reconstruction methods.
Furthermore, we develop a multi-scale SR residual network to achieve superior mapping between the
LR and SR images by increasing the reduced-dimensional convolution layers in every two adjacent
branch networks. The experiment results prove that the proposed approach achieves state-of-the-art
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performance in terms of PSNR and SSIM. In the future, we will continue to improve our algorithms for
a superior performance.
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