We will use the following packages for the processing.
library("devtools")
library("ggplot2")
library("reshape2")
Some information about the current session follows.
session_info()
## Session info -------------------------------------------------------------
## setting value
## version R version 3.4.1 (2017-06-30)
## system x86_64, mingw32
## ui RTerm
## language (EN)
## collate English_United Kingdom.1252
## tz Europe/Istanbul
## date 2017-09-06
## Packages -----------------------------------------------------------------
## package * version date source
## backports 1.1.0 2017-05-22 CRAN (R 3.4.0)
## base * 3.4.1 2017-06-30 local
## colorspace 1.3-2 2016-12-14 CRAN (R 3.4.0)
## compiler 3.4.1 2017-06-30 local
## datasets * 3.4.1 2017-06-30 local
## devtools * 1.13.3 2017-08-02 CRAN (R 3.4.1)
## digest 0.6.12 2017-01-27 CRAN (R 3.4.0)
## evaluate 0.10.1 2017-06-24 CRAN (R 3.4.0)
## ggplot2 * 2.2.1 2016-12-30 CRAN (R 3.4.0)
## graphics * 3.4.1 2017-06-30 local
## grDevices * 3.4.1 2017-06-30 local
## grid 3.4.1 2017-06-30 local
## gtable 0.2.0 2016-02-26 CRAN (R 3.4.0)
## htmltools 0.3.6 2017-04-28 CRAN (R 3.4.0)
## knitr 1.17 2017-08-10 CRAN (R 3.4.1)
## lazyeval 0.2.0 2016-06-12 CRAN (R 3.4.0)
## magrittr 1.5 2014-11-22 CRAN (R 3.4.0)
## memoise 1.1.0 2017-04-21 CRAN (R 3.4.0)
## methods * 3.4.1 2017-06-30 local
## munsell 0.4.3 2016-02-13 CRAN (R 3.4.0)
## plyr 1.8.4 2016-06-08 CRAN (R 3.4.0)
## Rcpp 0.12.12 2017-07-15 CRAN (R 3.4.1)
## reshape2 * 1.4.2 2016-10-22 CRAN (R 3.4.0)
## rlang 0.1.2 2017-08-09 CRAN (R 3.4.1)
## rmarkdown 1.6 2017-06-15 CRAN (R 3.4.0)
## rprojroot 1.2 2017-01-16 CRAN (R 3.4.0)
## scales 0.5.0 2017-08-24 CRAN (R 3.4.1)
## stats * 3.4.1 2017-06-30 local
## stringi 1.1.5 2017-04-07 CRAN (R 3.4.0)
## stringr 1.2.0 2017-02-18 CRAN (R 3.4.0)
## tibble 1.3.4 2017-08-22 CRAN (R 3.4.1)
## tools 3.4.1 2017-06-30 local
## utils * 3.4.1 2017-06-30 local
## withr 2.0.0 2017-07-28 CRAN (R 3.4.1)
## yaml 2.1.14 2016-11-12 CRAN (R 3.4.0)
We set a seed, to reproduce the analysis.
set.seed(12345)
source("figure_functions.R")
source("test_functions.R")
load("temperature_predictions.RData")
ts_mat <- as.matrix(temperature_data)
errors_df <- errors_compute(pred_df_temperature)